
May-Happen-in-Parallel Analysis

with Returned Futures ?

Elvira Albert, Samir Genaim, and Pablo Gordillo

Complutense University of Madrid (UCM), Spain

Abstract. May-Happen-in-Parallel (MHP) is a fundamental analysis to
reason about concurrent programs. It infers the pairs of program points
that may execute in parallel, or interleave their execution. This infor-
mation is essential to prove, among other things, absence of data races,
deadlock freeness, termination, and resource usage. This paper presents
an MHP analysis for asynchronous programs that use futures as syn-
chronization mechanism. Future variables are available in most concur-
rent languages (e.g., in the library concurrent of Java, in the standard
thread library of C++, and in Scala and Python). The novelty of our
analysis is that it is able to infer MHP relations that involve future
variables that are returned by asynchronous tasks. Futures are returned
when a task needs to await for another task created in an inner scope,
e.g., task t needs to await for the termination of task p that is spawned
by task q that is spawned during the execution of t (not necessarily by
t). Thus, task p is awaited by task t which is in an outer scope. The
challenge for the analysis is to (back)propagate the synchronization of
tasks through future variables from inner to outer scopes.

1 Introduction

MHP is an analysis of utmost importance to ensure both liveness and safety
properties of concurrent programs. The analysis computes MHP pairs, which
are pairs of program points whose execution might happen, in an (concurrent)
interleaved way within one processor, or in parallel across di�erent processors.
This information is fundamental to prove absence of data races as well as more
complex properties: In [13], MHP pairs are used to discard unfeasible deadlock
cycles; namely if a deadlock cycle inferred by the deadlock analyzer includes pairs
of program points that are proven not to happen in parallel by our MHP analysis,
the cycle is spurious and the program is deadlock free. In [4], the use of MHP
pairs allows proving termination and inferring the resource consumption of loops
with concurrent interleavings. For instance, consider a loop whose termination
cannot be proven because of a potential execution in parallel of the loop with a
task that modi�es the variables that control the loop guard (and thus threatens

? This work was funded partially by the Spanish MINECO project TIN2015-69175-
C4-2-R, by the CM project S2013/ICE-3006 and by the UCM CT27/16-CT28/16
grant.

its termination). If our MHP analysis proves the unfeasibility of such parallelism,
then termination of the loop can be guaranteed.

For simplicity, we develop our analysis on a small asynchronous language
which uses future variables [12, 10] for task synchronization. A method call m on
some parameters x̄, written as f=m(x̄), spawns an asynchronous task, and the
future variable f allows synchronizing with the termination of such task by means
of the instruction await f ?; which delays the execution until the asynchronous
task has �nished. In this fragment of code f=m(..) ;...; await f ?; the execution
of the instructions of the asynchronous task m may happen in parallel with the
instructions between the asynchronous call and the await. However, due to the
future variable in the await instruction, the MHP analysis is able to ensure that
they will not run in parallel with the instructions after the await. Therefore,
future variables play an essential role within an MHP analysis and it is essential
for its precision to track them accurately. Future variables are available in most
concurrent languages: Java, Scala and Python allow creating pools of threads.
The users can submit tasks to the pool, which are executed when a thread of
the pool is idle, and may return future variables to synchronize with the tasks
termination. C++ includes the components async, future and promise in its
standard library, which allow programmers to create tasks (instead of threads)
and return future variables in the same way as we do.

In this paper, we present to the best of our knowledge the �rst MHP analysis
that captures MHP relations that involve tasks that are awaited in an outer
scope from the scope in which they were created. This happens when future
variables are returned by the asynchronous tasks, as it can be performed in
all programming languages that have future variables. Our analysis builds on
top of an existing MHP analysis [3] that was extended to track information of
future variables passed through method parameters in [5], but it is not able
to track information propagated through future variables that are returned by
tasks. The original MHP analysis [3] involves two phases: (1) a local analysis
which consists in analyzing the instructions of the individual tasks to detect the
tasks that it spawns and awaits, and (2) a global analysis which propagates the
local information compositionally. Accurately handling returned future variables
requires non-trivial extensions in both phases:

1. The local phase needs to be modi�ed to backpropagate the additional inter-
procedural relations that arise from the returned futures variables. Back-
propagation is achieved by modifying the data-�ow of the analysis so that it
iterates to propagate the new dependencies.

2. The global phase has to be modi�ed by re�ecting in the analysis graph the
additional information provided by the local phase. A main achievement has
been to generate the necessary information at the local phase so that the
process of inferring the MHP pairs remains as in the original analysis.

Our analysis has been implemented within the SACO static analyzer [2], which is
able to infer the safety and liveness properties mentioned above. The system can
be used online at http://costa.ls.fi.upm.es/saco/web/, where the bench-

2

marks used in the paper are available. Our experiments show that our analysis
improves the accuracy over the previous analysis with basically no overhead.

2 Language

We present the syntax and semantics of the asynchronous language on which we
develop our analysis. A program P is composed by a set of classes. Each class
contains a set of �elds and a set of methods. A (concurrent) object of a class
represents a processor with a queue of tasks which (concurrently) execute the
class methods, and access a shared-memory made up by the object �elds. One of
the tasks will be active (executing) and the others pending to be executed. The
notation M is used to abbreviate M1, ...,Mn. Each �eld and method has a type
T . The set of types includes class identi�ers C and future variable types fut〈T 〉.
A method receives a set of variables as arguments x, contains local variables x′,
a returned variable, and a sequence of instructions s.

CL ::= class C {T f ;M}
M ::= T m(T x) {T x′; s}
s ::= ε | b; s
b ::= o = new C(x) | if (∗) then s1 else s2 | while (∗) do s | y = o.m(x) |

| await y? | z = y.get | return y | skip

y and z represent variables of type fut〈T 〉 and x represents a variable of type
T . Arithmetic expressions are omitted for simplicity and are represented by the
instruction skip. This instruction has no e�ect on the analysis of the program.
The loop and conditional statements are non-deterministic and the symbol ∗
represents true or false. The instruction y = o.m(x) corresponds to an asyn-
chronous call. It spawns a new instance of the task m in the object o and binds
the task to the future variable y. Instruction await y? is used to synchronize with
the task y = o.m(x), and blocks the execution in object o until task m �nishes
its execution. z = y.get retrieves the value returned by the method bound to y
and associates it with z. W.l.o.g., we make the following assumptions: each get

instruction is preceded by an await, i.e., the task associated to the get statement
has to be �nished to access its returned value; the program has a method call
main without parameters from which the execution will start; future variables
can be used once and they cannot be reused after they are bound to a task;
the get instruction can be applied once over each future variable; we restrict the
values returned by a method to future variables; each method can only have a
return statement in its body, and it has to be the last instruction of the sequence.
We let ppoints(m) and ppoints(P) be the set of program points of method m
and program P respectively, methods(P) be the set of method names of program
P and futures(P) be the set of all future variables de�ned in program P .

Let us de�ne the operational semantics for the language. A program state S
is a tuple S = 〈O, T 〉 where O is the set of objects and T is the set of tasks. Only
one task can be active in each object. An object is a term obj(o, a, lk) where o is

3

(1)
l′ = l[o→ bid1], O′ = O ∪ {obj(bid1, a,⊥)}, a = init_atts(C, x), bid1 is a fresh id

〈O, {tsk(tid ,m, l, bid ,>, o = new C(x); s) ‖ T}〉 〈O′, {tsk(tid ,m, l′, bid ,>, s) ‖ T}〉

(2)

l(o) = bid1 6= null , l′ = l[y → tid1], l1 = buildLocals(x,m)), tid1is a fresh id

〈O, {tsk(tid ,m, l, bid ,>, y=o.m1(x); s) ‖ T}〉
〈O, {tsk(tid ,m, l′, bid ,>, s), tsk(tid1,m1, l1, bid1,⊥, body(m1)) ‖ T}〉

(3)

l1(y) = tid2

〈O, {tsk(tid1,m1, l1, bid1,>, await y?; s1), tsk(tid2,m2, l2, bid2,⊥, ε(v)) ‖ T}〉
〈O, {tsk(tid1,m1, l1, bid1,>, s1), tsk(tid2,m2, l2, bid2,⊥, ε(v)) ‖ T}〉

(4)

l1(y) = tid2, l
′
1 = l1[z → v]

〈O, {tsk(tid1,m1, l1, bid1,>, z=y.get; s1), tsk(tid2,m2, l2, bid2,⊥, ε(v)) ‖ T}〉
〈O, {tsk(tid1,m1, l

′
1, bid1,>, s1), tsk(tid2,m2, l2, bid2,⊥, ε(v)) ‖ T}〉

(5)
obj(bid , a,>) ∈ O,O′ = O[obj(bid , a,>)/obj(bid , a,⊥)], v = l(y)

〈O, {tsk(tid ,m, l, bid ,>, return y) ‖ T}〉 〈O′, {tsk(tid ,m, l, bid ,⊥, ε(v)) ‖ T}〉

(6)

(l′, s′) = eval(instr,O, l)
instr ∈ {skip, if b then s1 else s2, while b do s3}

〈O, {tsk(tid ,m, l, bid ,>, instr; s) ‖ T}〉 〈O, {tsk(tid ,m, l′, bid ,>, s′) ‖ T}〉

(7)
obj(bid , a,⊥) ∈ O,O′ = O[obj(bid , a,⊥)/obj(bid , a,>)], s 6= ε(v)

〈O, {tsk(tid ,m, l, bid ,⊥, s) ‖ T}〉 〈O′, {tsk(tid ,m, l, bid ,>, s) ‖ T}〉

Fig. 1. Summarized Semantics

the identi�er of the object, a is a mapping from the object �elds to their values
and lk ∈ {>,⊥} indicates whether the object contains an active task executing
(>) or not (⊥). A task is a term tsk(t,m, l, o, lk, s) where t is a unique task
identi�er, m is the method name that is being executed, l is a mapping from the
variables of the task to their values, o is the identi�er of the object in which the
task is executing, lk ∈ {>,⊥} indicates if the task has the object's lock or not
and s is a sequence of instructions that the task will execute or s = ε(v) if the
task has �nished and the return value v is available. The execution of a program
starts from the initial state S0 = 〈obj(0, a,>), tsk(0,main, l, 0,>, body(main)〉
where a is an empty mapping, and l maps future variables to null .

The execution starts from S0 applying non-deterministically the semantic
rules from Fig. 1. We use the notation {t ‖ T} to represent that task t is the one
selected non-deterministically for the execution. At each step, a subset of the
state S is rewritten according to the rules of Fig. 1 as follows: (1) creates a new
object with an empty queue, free lock and initializes its �elds (init_atts). (2)
corresponds to an asynchronous call. It gets the identi�er of the object which

4

is going to execute the task, initializes the parameters and variables of the task
(buildLocals), and creates the new task with a new identi�er that is associated
with the corresponding future variable. (3) An await y? statement waits until the
task bound to y �nishes its execution. (4) checks if the task bound to the future
variable involved in the get statement is �nished. If so, it retrieves the value
associated with the future variable. (5) After executing the return statement, the
retrieved value is stored in v so that it can be obtained by the future variable
bound to this task. Then, the object's lock is released (O[o/o′] means that the
object o is replaced by o′ in O) and the task is �nished (ε(v) is added to the
sequence of instructions). (6) covers sequential instructions that do not a�ect
synchronization by moving the execution of the corresponding task to the next
instruction and possibly changing the state (represented by eval). Finally, (7) is
used to get the object's lock by an un�nished task and start its execution.

In what follows, given a task tsk(t,m, l, o, lk, s), pp(s) denotes the program
point of the �rst instruction of s. If s is empty, pp(s) returns the exit program
point of the corresponding method, denoted exit(m). Given a state S = 〈O, T 〉,
we de�ne its set of MHP pairs, i.e., the set of program points that can run in par-
allel as E(S) = {(pp(s1), pp(s2)) | tsk(tid1,m1, l1, o1, lk1, s1), tsk(tid2,m2, l2, o2,
lk2, s2) ∈ T, tid1 6= tid2}. The set of MHP pairs for a program P is de�ned as
the set of MHP pairs of all reachable states, namely EP = ∪{E(Sn) | S0 ;∗ Sn}.

3 Motivation: using MHP pairs in deadlock analysis

Let us motivate our work by showing its application in the context of deadlock
analysis. Consider the example in Fig. 2 that models a typical client-server ap-
plication with two delegate entities to handle the requests. The execution starts
from the main block by creating four concurrent objects, the client c, the server s,
and their delegates dc and ds, respectively. The call start at Line 6 (L6) spawns
an asynchronous task on the client object c that sends as arguments references
to the other objects. When this task is scheduled for execution on the client,
we can observe that it will spawn an asynchronous task on the server (L10) and
another one on the delegate-client (L14). The request task on the server in turn
posts two asynchronous tasks on the delegate-server (L19) and delegate-client
objects (L20). Such delegates communicate directly with each other as we have
passed as arguments the references to them.

The most challenging aspect for the analysis of this model is due to the
synchronization through returned future variables. For instance at L12 the in-
struction x.get retrieves the future variable returned by request at L21. Thus,
we would like to infer that after L13 the task executing result at the object
ds has terminated. The inference needs to backpropagate this synchronization
information from the inner scope where the task has been created (L19) to the
outer scope where it is awaited (L13). This backpropagation is necessary in order
to prove that the execution of this application is deadlock free. Otherwise, an
MHP-based deadlock analyzer will spot an unfeasible deadlock. Fig. 3 shows a
fragment of the graph that a deadlock analyzer [13] constructs: the concurrent

5

1 main() {
2 Client c = new Client();
3 Server s = new Server();
4 DS ds = new DS();
5 DC dc = new DC();
6 c. start (s ,ds,dc);
7 }
8 class Client {
9 Unit start (Server s , DS ds, DC dc){

10 x=s.request(ds,dc);
11 await x?;
12 z=x.get;
13 await z?;
14 dc.sendMessage(ds);
15 }
16 }
17 class Server {
18 Fut<Unit> request(DS ds, DC dc){
19 y=ds. result (dc);
20 p = dc.inform() ;
21 return y;
22 }
23 }

25 class DS {
26 Unit result (DC dc){
27 w = dc.myClientId();
28 await w?;
29 }
30 Unit myServerId() {
31 skip ;
32 }
33 }
34 class DC {
35 Unit sendMessage(DS ds){
36 r = ds.myServerId();
37 await r ?;
38 }
39 Unit myClientId() {
40 skip ;
41 }
42 Unit inform() {
43 skip ;
44 }
45 }

Fig. 2. Example of client-server model

objects are in circles, the asynchronous tasks in boxes, and labelled arrows con-
tain the program lines at which tasks post new tasks on the destiny objects. In
the bold arrows of the graph, we can observe the cycle detected by the analyzer
due to the task result and sendMessage executing respectively in objects ds and
dc. These two tasks wait for the termination of tasks myClientId and myServerId in
each other object, thus creating a potential cycle. Our MHP analysis will accu-
rately infer that these two tasks cannot happen simultaneously, and will allow
the deadlock analyzer to break this unfeasible deadlock cycle. Fig. 4 shows some
of the MHP pairs that the analysis in [3] infers, and we mark in bold font those
pairs that our analysis spots as spurious (as will be explained along the paper).
For instance, the original analysis infers L15||L28 and L37||L28. However, we
detect that at program point L14 the task result is �nished so it cannot run in
parallel with task sendMessage and hence those pairs are eliminated, this allows
us later to discard the potential deadlock described above.

4 MHP analysis

The MHP analysis of [3] consists of two phases. The �rst one, the local phase,
considers each method separately and infers information (at each program point
of the method) about the status of the tasks that are created locally in that

6

Client

start Server

request

DelegateS

result

myServerId

DelegateC

sendMessagemyClientId

L10

L14

L19L28

L37

Fig. 3. Partial data-�ow graph of example in Fig. 2.

L11||L19 L11||L20 L11||L21 L11||L28 L11||L29 L11||L40 L12||L22
L12||L28 L12||L29 L12||L40 L14||L22 L14||L28 L14||L29 L14||L40
L15||L22 L15||L28 L15||L29 L15||L40 L15||L31 L21||L29 L21||L40
L22||L28 L22||L44 L28||L41 L28||L43 L28||L44 L29||L41 L29||L44
L29||L41 L29||L44 L28||L37 L28||L38 L29||L40 L21||L44

Fig. 4. Results of MHP analysis.

method. The second one, the global phase, uses the information inferred by the
�rst phase to construct an MHP graph from which an over-approximation of the
MHP pairs set can be extracted. As mentioned already, the limitation of this
analysis is that it does not track inter-procedural synchronizations originating
from (1) passing future variables as method parameters; or (2) returning future
variables from one method to another. The work of [5] extends [3] to handle
the �rst issue, and in this paper we extend it to handle the second one. Both
extensions require di�erent techniques, and are both complementary and com-
patible. To simplify the presentation, we have not started from the analysis with
future variables as parameters [5], but rather from the original formulation [3].
In Sec. 6, we provide a detailed comparison of [5] and our current extension.

4.1 Local MHP

The local phase of the MHP analysis (LMHP) of [3] considers each method n
separately, and for each program point ` ∈ ppoints(n) it infers a LMHP state
that describes the status of each task invoked in n before reaching `. Formally,
a LMHP state E is a multiset of MHP atoms, where an MHP atom is:

1. y:T(m, act), which represents a task that is an instance of method m and
can be executing at any program point. We refer to it as active task; and

7

(1) τ(y = o.m(x̄), E) = E[y:T(m,X)/?:T(m,X)] ∪ {y:T(m, act)}
(2) τ(await y?, E) = E[y:T(m, act)/y:T(m, fin)]
(3) τ(z = y.get, E) = E′ ∪ E′′ ∪ E′′′ where:

E′ = eliminate({y}, E[z:T(m,X)/?:T(m,X)])
E′′ = {z:T(n,X) | y:T(f, fin) ∈ E, T(n,X) ∈ Ret(f)}
E′′′ = {y:T(f, fin) | y:T(f, fin) ∈ E}

(4) τ(b, E) = E otherwise

Fig. 5. Local MHP transfer function τ .

2. y:T(m, fin), which represents a task that is an instance of method m and
has �nished its execution already (i.e., it is at its exit program point). We
refer to it as �nished task.

In both cases, the task is associated to future variable y, i.e., in the concrete state
that E describes y is bound to the unique identi�er of the corresponding task.
Intuitively, the MHP atoms of E represent the tasks that were created locally
and are executing in parallel. In what follows, we use y:T(m,X) to refer to an
MHP atom without specifying if it corresponds to an active or �nished task.
MHP atoms might also use the symbol ? instead of a future variable to indicate
that we do not know to which future variable, if any, the task is bound. Note that
if we have two atoms with the same future variable in a LMHP state E, then
they are mutually exclusive, i.e., only one of the corresponding tasks might be
executing since at the concrete level y can be bound only to one task identi�er.
This might occur when merging branches of a conditional statement. Note also
that MHP states are multisets because we might have several tasks created by
invoking the same method. Since LMHP states are multisets, we write (q, i) ∈ E
to indicate that atom q appears i > 0 times in E.

The LMHP analysis of [3], that infers the LMHP states described above,
is a data-�ow analysis based on the transfer function τ in Fig. 5, except for
Case (3) which is novel to our extension and whose auxiliary functions will be
given and explained later. Recall that the role of the transfer function in a data-
�ow analysis is to abstractly execute the di�erent instructions, i.e., transforming
one LMHP state to another. Let use explain the relevant cases of τ :

� Case (1) handles method calls, it adds a new active task (an instance of m)
that is bound to future variable y, and renames all atoms that already use
y to use ? since it is overwritten;

� Case (2) handles await, it changes the state of any task bound to future
variable y to �nished; and

� Case (4) corresponds to other instructions that do not create or wait for
tasks to �nish. In this case the abstract state is not a�ected.

In addition, the LMHP analysis merges states of conditional branches using
union of multisets, and loops are iterated, with a corresponding widening oper-

8

ator that transforms unstable MHP atoms (q, i) to (q,∞), until a �x-point is
reached.

Example 1. Consider a method f with a body while(∗){ y=o.m();}. The �rst
time we apply τ over f , we obtain {y:T(m, act)} at the exit program point
of the while. At the next iteration, we add a new atom bound to y so we lose
the association existing in the current state and add the new atom, obtaining
{?:T(m, act), y:T(m, act)}. After applying one more iteration, we lose the rela-
tion between y and the task m again obtaining {(?:T(m, act), 2), y:T(m, act)}.
When comparing the last two LMHP states, we observe that ?:T(m, act) is un-
stable, thus we apply widening and obtain {(?:T(m, act),∞), y:T(m, act)}.

In what follows we present how to extend the transfer function τ and the
LMHP states to handle returned futures in Case (3). We �rst explain it using a
simple example, and then describe it formally.

Example 2. Assume we have a method f with an instruction � return x�, and
that at the exit program point of f we have a LMHP state E0 = {x:T(h, act),
w:T(g, act)}, which means that at the exit program point of f we have two active
instances of methods h and g, bound to future variables x and w respectively.
This means that f returns a future variable that is bound to an active instance
of h. Now assume that in some other method, at some program point, we have
a state E1 = {y:T(f, fin), r:T(k, act), u:T(l, act)}, which means, among other
things, that before reaching the corresponding program point, we have invoked
f and waited for it to �nish (via future variable y). Let us now execute the
instruction u = y.get in the context of E1 and generate a new LMHP state E2.
Since y is bound to a task that is an instance of f , E2 should include an atom
representing that u is bound to an active task which is an instance of h (which
is returned by f via a future variable). Having this information in E2 allows us
to mark h as �nished when executing await u? later. We do this as follows:

� any MHP atom from E1 that does not involve u or y is copied to E2.
� any MHP atom from E1 that involves u is copied to E2 but with u renamed

to ? because u is overwritten.
� we transfer the atom x:T(h, act) from E0 to E2, by adding u:T(h, act) to E2

since now the corresponding task is bound to u as well.
� the atom y:T(f, fin) must be copied to E2 as well, but we �rst rewrite it

to y:T(f, fin) (in E2) to indicate that we have incorporated the information
from the exit program point of f already. This is important because after
executing the get, we will have two instances of h in E0 and E2 that refer to
the same task, and we want to avoid considering them as two di�erent ones
in the global phase that we will describe in the next section.

This results in E2 = {y:T(f, fin), r:T(k, act), ?:T(l, act), u:T(h, act)}.

To summarize the above example, the local phase of our analysis extends that
of [3] in two ways: it introduces a new kind of LMHP atom; and it has to treat
the get instruction in a special way. In the rest of this section we formalize this

9

extension by providing the auxiliary functions and the data-�ow inference. As
notation, we let E` be the LMHP state that corresponds to program point `;
we let Em

exit be the LMHP state that corresponds to the exit program point of
method m; and we de�ne

Ret(m) = {T(n,X) | return y ∈ body(m), y:T(n,X) ∈ Em
exit},

which is the set of tasks in Em
exit that are bound to a future variable that is

returned by method m. This set is needed in order to incorporate these tasks
when abstractly executing a get instruction as we have seen in the example above.
We also let eliminate(Y,E) be the LMHP set obtained from E by removing all
atoms that involve a future variable y ∈ Y . We �rst modify the transfer function
of [3] to treat the instruction z = y.get, similarly to what we have done in the
example above. This is done by adding Case (3) to the transfer function of Fig. 5:

� The set E′ is obtained from E by renaming future variable z to ?, since
variable z is overwritten, and then eliminating all atoms associated to future
variable y (they will be incorporated in E′′′ below).

� The set E′′ consists of new MHP atoms that correspond to futures that are
returned by methods to which y is bound. Note that all are now bound to
future variable z.

� In E′′′ we add all atoms bound to y from E but rewritten to mark them as
already been incorporated.

Due to the new case added to the transfer function, we need to modify the
work-�ow of the corresponding data-�ow analysis in order to backpropagate
the information learned from the returned future variables. This is because the
LMHP analysis of one method depends on the LMHP states of other methods
(via Ret(m) in Case (3) of τ). This means that a method cannot be analyzed
independently from the others as in [3], but rather we have to iterate over their
analysis results, in the reverse topological order induced by the corresponding
call graph, until their corresponding results stabilize.

Example 3. The left column of the table below shows the LMHP states resulting
from applying once the τ function to selected program points, the right column
shows the result after one iteration of τ over the results in the left column:

E11: {x:T(request, act)}
E12: {x:T(request, fin)}
E13: τ(z = x.get, E12)
E14: τ(await z?, E13)
E15: E14 ∪ {?:T(sendMessage, act)}

E20: {y:T(result , act)}
E21: {y:T(result , act),

p:T(inform, act)}
E22: {y:T(result , act),

p:T(inform, act))}

E11: {x:T(request, act)}
E12: {x:T(request, fin)}
E13: {x:T(request, fin), z:T(result , act)}
E14: {x:T(request, fin), z:T(result , fin)}
E15: {x:T(request, fin), z:T(result , fin),

?:T(sendMessage, act)}
E20: {y:T(result , act)}
E21: {y:T(result , act),

p:T(inform, act)}
E22: {y:T(result , act),

p:T(inform, act))}

10

Let us explain some of the above LMHP states. In the left column, E11 cor-
responds to the state when reaching program point L11, i.e., before executing
the statement await x?. It includes x:T(request, act) for the active task invoked
at L10. The state E12 includes the �nished task corresponding to the await
instruction of the previous program point. E13 cannot be solved, as we need
the information from state E22 (it is required when calculating E′′), which has
not been computed yet. Something similar happens with the state E14, which
cannot be calculated as the state E13 has not been totally computed. Atoms
y:T(result , act) and p:T(inform, act) appear in state E22 for the active tasks in-
voked at L19 and L20. The state E15 includes ?:T(sendMessage, act) for the task
invoked at L14, which is not bound to any future variable.

In the right column, after one iteration, we observe that most states are
not modi�ed except for E13, E14 and E15. As for E13, in the previous step we
could not obtain the set E′′ when analyzing E13 because the function τ had
not been applied to request (E22 had not been computed). Thus, it considered
E13: E

′ = {} as there was no task bound to z; E′′ = {z:T(result , act)} and;
E′′′ = {y:T(request, fin)}. Having E13 calculated, E14 is computed modifying
the state of result to �nished and E15 is updated with the new information.

4.2 Global MHP

In this section we describe how to use the LMHP information, inferred by the
local phase of Sec. 4.1, in order to construct an MHP graph from which an over-
approximation of the set of MHP pairs can be extracted. The construction of
the MHP graph is di�erent from the one of [3] in that we need to introduce new
kind of nodes to re�ect the information carried by the new kind of MHP atom
y:T(m, fin). However, the procedure for computing the MHP pairs from the
MHP graph is the same. The MHP graph of a given program P is a (weighted)
directed graph, denoted by G

P
, whose nodes are:

� method nodes: each method m ∈ methods(P) contributes 3 nodes act(m),
fin(m) and fin(m). We use X(m) to refer to a method node without spec-
ifying if it corresponds to act(m), fin(m), or fin(m).

� program point nodes: each program point ` ∈ ppoints(P) contributes a node
`.

� return nodes: each program point ` ∈ ppoints(P) that is an exit program
point, of some method m, contributes a node ¯̀.

� future variable nodes: each future variable y ∈ futures(P) and program
point ` ∈ ppoints(P) contribute a node `y (which can be ignored if y does
not appear in the corresponding LMHP state of `).

Note that nodes fin(m) and ¯̀are particular to our extension, they do not appear
in [3] and will be used, as we will see later, to avoid duplicating tasks that are
returned to some calling context.

The edges of G
P
are constructed in two steps. First we construct those that

do not depend on the LMHP states, and afterwards those that are induced by

11

LMHP states. The �rst kind of edges are constructed as follows, for each method
m ∈ methods(P):

� there are edges from act(m) to all program point nodes ` ∈ ppoints(m).
This kind of edges indicate that an active task can be executing at any
program point, including its exit program point;

� there is an edge from fin(m) to the exit program point node ` of m. This
kind of edges indicate that a �nished task can be only at the exit program
point;

� there is an edge from fin(m) to the corresponding return node ¯̀, i.e., ` here
is the exit program point of m. This kind of edges are similar to the previous
ones, but they will be used to avoid duplicating tasks that were returned to
some calling context.

All the above edges have weight 0. Next we construct the edges induced by the
LMHP states. For each program point ` ∈ ppoints(P), we consider E` and
construct the following edges:

� if (?:T(m,X), i) ∈ E`, we add an edge from node ` to node X(m) with weight
i. If ` is an exit program point we also add an edge from node ¯̀ to node
X(m) with weight i;

� if (y:T(m,X), i) ∈ E`, we add an edge from node ` to node `y with weight 0
and an edge from node `y to node X(m) with weight i. In addition, if ` is
an exit program point and y is not a returned future we add an edge from
node ¯̀ to node `y with weight 0.

Note that when ` is an exit program point, the di�erence between node ` and ¯̀

is that the later ignores tasks that were returned via future variables.

Example 4. Fig. 6 shows the MHP graph for some program points of interest for
our running example. Note that the out-going edges of program point nodes in
G coincide with the LMHP states at these program points depicted in Ex. 3. At
program point L15, the LMHP state E15 contains the atoms x:T(request, fin),
z:T(result , fin) and ?:T(sendMessage, act). Each of these atoms corresponds to
one of the edges from program point node 15. The �rst one is represented by
the edge that goes from program point node 15 to future variable node 15x and
from 15x to method node fin(request). The second one corresponds to the edge
that goes from 15 to 15z and from there to method node fin(result). The edge
which goes from 15 to method node act(sendMessage) originates from the MHP
atom ?:T(sendMessage, act). This last edge does not go to a future variable node
as the task is not bound to any future variable (?). Note that we have two nodes
22 and 22 to represent the exit program point L22, connected to fin(request)
and fin(request). The edges that go out from 22 correspond to the atoms in E22.
As L22 is the exit program point of method request, we have to build an edge.
This edge goes from 22 to 22p and from there to act(inform) and corresponds to
the atom in E22 whose future variable is not returned by request.

Given G
P
, using the same procedure as in [3], we say that two program points

`1, `2 may run in parallel if one of the following conditions hold:

12

act(start)

fin(start)

11

12

13

15

11x

12x

13x

13z

15x

15z

act(request)

fin(request)

fin(request)

20

22

22

20y

22y

22p

act(sendMessage)

fin(sendMessage)

37

38

37r

38r

act(result)

fin(result)

28

29

28w

29w

act(inform)

fin(inform)
44

act(myServerId)

fin(myServerId)

31

32

act(myClientId)

fin(myClientId)

40

41

1

1

1

1

1

1

1

1

1

1

1

1

1

1

G

Fig. 6. MHP graph obtained from the analysis of program in Fig. 2.

1. there is a non-empty path from `1 to `2 or vice-versa; or
2. there is a program point `3 and non-empty paths from `3 to `1 and from `3

to `2 such that the �rst edge is di�erent, or they share the �rst edge but it
has weight i > 1.

The �rst case is called direct MHP pairs and the second one indirect MHP pairs.

Example 5. Let us explain some of the MHP pairs shown in Fig. 4 and induced
by G . (22,28) and (22,44) are direct MHP pairs as we can �nd the paths 22 ; 28
and 22 ; 44 in G . In addition, as the �rst edge is di�erent, we can conclude
that (28,44) is an indirect pair. In contrast to the graph that one would obtain
for the original analysis, (15,28) is not an MHP pair (marked in bold in Fig. 4).
Instead, we have the path 15 ; 29 which indicates that the task result is �nished.
Similarly, the analysis does not infer the pair (28,37), allowing us to discard the
deadlock cycle described in Sec. 3. We �nd the path 15 ; 37 in G , but the path
15 ; 28, needed to infer this spurious pair, is not in G .

Let ẼP be the set of MHP pairs obtained by applying the procedure above.

Theorem 1 (soundness). EP ⊆ ẼP .

5 Implementation and experimental evaluation

The analysis presented in Sec. 4 has been implemented in SACO [2], a S tatic
Analyzer for Concurrent Objects, which is able to infer deadlock, termination

13

Examples Lines N PPs2 OMHPs MHPs Lmhp Gmhp Mhp OT T

ServerClient 69 19 361 176 140 <5 <5 22 64 60
Chat 331 73 5329 1351 1028 <5 <5 606 1686 1014
MailServer 140 28 784 315 284 <5 <5 47 172 166
DistHT 168 27 729 392 367 <5 <5 51 186 183
PeerToPeer 215 42 1764 325 297 8 <5 112 452 238
ETICS 1717 297 88209 30554 30523 175 20 40887 53023 53450
TradingSys1 1508 216 46656 40562 33038 53 15 13260 32065 31589
TradingSys2 1508 216 46656 41345 41345 62 26 11765 30308 31057

Fig. 7. Examples and statistics

and resource boundedness [14]. Our analysis has been built on top of the origi-
nal MHP analysis in SACO and can be tried online at: http://costa.ls.fi.
upm.es/saco/web/ by selecting MHP from the menu as type of analysis, then en-
abling the option Global Futures Synchronization in the Settings section,
and clicking on Apply. The benchmarks are also available in the folder ATVA17.
Given a program with a main procedure, the analysis returns a list of MHP pairs
and some statistics about the runtime of the local and global phases.

Fig. 7 summarizes our experiments. The �rst benchmark ServerClient corre-
sponds to the complete implementation of our running example. The next four
are some traditional programs for distributed and concurrent programming: Chat
models a chat application, MailServer models a distributed mail server with sev-
eral users, DistHT implements and uses a distributed hash table and PeerToPeer

which represents a peer-to-peer network. The last two examples, ETICS and
TradingSys are industrial case studies, respectively, developed by Engineering R©
and Fredhopper R© that model a system for remotely hosting and managing IT
resources and a system to manage sales and other facilities on a large product
database. These case studies are very conservative on the use of futures (namely
only 3 tasks return a future), however, we have included them to assess the
e�ciency of our analysis on large programs. For the TradingSys, we have two
versions, TradingSys1 which creates a constant number of tasks (namely 3), and
TradingSys2 which creates an unknown number of tasks within a loop. Experi-
ments have been performed on an Intel Core i7-6500U at 2.5GHz x 4 and 7.5GB
of Memory, running Ubuntu 16.04. For each program P , G

P
is built and the rela-

tion ẼP is computed for those points that a�ect the concurrency of the program
(i.e, entry points of methods, awaits, gets and exit points of methods).

Let us �rst discuss the accuracy of our approach. Columns Examples and
Lines show the name and number of lines of the benchmark. N is the number
of program point nodes in G

P
. PPs2 is the square of the number of program

points, i.e., the total number of pairs that could potentially run in parallel.
OMHPs and MHPs show the number of MHP pairs inferred by the original
analysis [3] and by ours. PPs2-MHPs is thus the number of MHP pairs that are
detected not to happen in parallel by the original analysis. Naturally the original
analysis already eliminates many pairs that arise from local future variables (not

14

returned). OMHPs-MHPs gives us the number of further spurious MHP pairs
that our analysis eliminates. We can observe that for all examples (except for
TradingSys2) we reduce the number of inferred MHP pairs (ranging from a
small reduction of 0.2% pairs for ETICS to a big reduction of 23.9% for Chat). In
TradingSys2 we do not eliminate any pair because the tasks created within the
loop use the same future variable to return their results, and the analysis needs
to over-approximate and assume that all of them may run in parallel.

As regards the e�ciency of the analysis, the next three columns contain the
time (in milliseconds) taken by the local MHP (Lmhp), the graph construction
(Gmhp) and the time needed to infer the MHP pairs (Mhp). The data presented
are the average time obtained across several executions. We can observe that
both LMHP and the graph construction are very e�cient and they only take
0.175s in the largest case. The inference of the MHP pairs is more complex and
takes more time. This time depends on the number of program point nodes
that the graphs contain. For medium programs, the inference technique is also
e�cient (taking 0.6s in the largest case), but the time increases notably in bigger
examples, reaching 40.8s in our experiments. However, in most applications we
are only interested in a subset of pairs. Besides, the pairs can be computed on
demand, spending less time to infer them. The last two columns contain the total
time (in milliseconds) taken by the analysis of [3] (OT) and our approach (T).
It can be observed that our analysis is more e�cient than the original one for all
examples except for the TradingSys2 and ETICS, being the overhead negligible
in these cases (less than 2.5 %). The reason for the e�ciency gain is that when
returned futures are tracked, our graph contains less paths that are inspected
to infer the MHP pairs. Thus, the process of computing all the feasible paths is
faster in these cases, and the global time of the analysis is smaller than [3].

6 Conclusions and related work

An MHP analysis learns from the future variables used in synchronization in-
structions when tasks are terminated, so that the analysis can accurately elimi-
nate unfeasible MHP pairs that would be otherwise inferred. Some existing MHP
analyses [3, 15, 1, 16] for asynchronous programs lose all the information when
future variables are awaited in a di�erent scope to the one that spawns the tasks
bound to the futures. We have presented a static MHP analysis which captures
inter-procedural MHP relations in which future variables are propagated back-

wards from one task to another(s). This implies that a task can be awaited in
an outer scope from the one in which it was created. Previous work [5] has con-
sidered the propagation of future variables forward, i.e., when future variables
are passed as arguments of the tasks. This implies that a task can be awaited in
an inner scope from the one in which it was created. Also, other MHP analyses
allow synchronizing the termination of the tasks in an inner scope, passing them
as arguments of methods, namely: [11] considers a fork-join semantics and uses
a Happens-Before analysis to infer the MHP information; in [6, 8], programs are
abstracted to a thread model which is then analyzed to infer the MHP pairs; [9]

15

builds a time based model to infer race conditions in high performance systems;
this work is extended in [7], using a model checker to solve the MHP decision
problem. The last six analyses are imprecise though when future variables or the
tasks identi�ers are returned by methods and awaited in an outer scope.

The solutions for the backwards and forward inference (namely as formalized
in [5]) are technically di�erent, but fully compatible. Essentially, they only have
in common that both the local and global analysis phases need to be changed.
For the forward inference, the analysis includes a separated must-have-�nished

(MHF) pre-analysis that allows inferring, for each program point `, which tasks
(both the tasks spawned locally and the passed as arguments) have �nished their
execution when reaching `. In contrast, for the backwards inference, the local
phase itself has to be extended to propagate backwards the new relations created
when a future variable is returned, which requires changing the analysis �ow. In
both analyses, the creation of the graph needs to be modi�ed to re�ect the new
information inferred by the respective local phases, but in each case is di�erent.
For the forward inference, the way in which the MHP pairs are inferred besides
has to be modi�ed. All in all, both extensions are fully compatible, and together
provide a full treatment of future variables in the MHP analysis.

References

1. S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. May-happen-in-parallel
analysis of x10 programs. In K. A. Yelick and J. M. Mellor-Crummey, editors, Proc.
of PPOPP'07, pages 183�193. ACM, 2007.

2. E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-Zamalloa,
E. Martin-Martin, G. Puebla, and G. Román-Díez. SACO: Static Analyzer for
Concurrent Objects. In Proc. of TACAS'14, volume 8413 of LNCS, pages 562�
567. Springer, 2014.

3. E. Albert, A. Flores-Montoya, and S. Genaim. Analysis of May-Happen-in-Parallel
in Concurrent Objects. In Proc. of FORTE'12, volume 7273 of LNCS, pages 35�51.
Springer, 2012.

4. E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin. Termination and
Cost Analysis of Loops with Concurrent Interleavings. In ATVA 2013, LNCS 8172,
pages 349�364. Springer, October 2013.

5. E. Albert, S. Genaim, and P. Gordillo. May-Happen-in-Parallel Analysis for Asyn-
chronous Programs with Inter-Procedural Synchronization. In Proc. of SAS 2015,
volume 9291 of LNCS, pages 72�89. Springer, 2015.

6. R. Barik. E�cient computation of may-happen-in-parallel information for concur-
rent Java programs. In LCPC'05, LNCS 4339, pages 152�169. Springer, 2005.

7. C. W. Chang and R. Dömer. May-happen-in-parallel analysis of ESL models using
UPPAAL model checking. In DATE 2015, pages 1567�1570. IEEE, March 2015.

8. C. Chen, W. Huo, L. Li, X. Feng, and K. Xing. Can we make it faster? E�cient
may-happen-in-parallel analysis revisited. In PDCAT 2012, pages 59�64, Dec 2012.

9. W. Chen, X. Han, and R. Dömer. May-happen-in-parallel analysis based on seg-
ment graphs for safe ESL models. In DATE 2014, pages 1�6. IEEE, March 2014.

10. F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide to the Future. In
ESOP'07, LNCS 4421, pages 316�330. Springer, 2007.

16

11. P. Di, Y. Sui, D. Ye, and J. Xue. Region-based may-happen-in-parallel analysis
for C programs. In ICPP 2015, pages 889�898. IEEE, Sept 2015.

12. C. Flanagan and M. Felleisen. The semantics of future and its use in program
optimization. In POPL'95, 22nd ACM SIGPLAN-SIGACT, 1995.

13. A. Flores-Montoya, E. Albert, and S. Genaim. May-Happen-in-Parallel based
Deadlock Analysis for Concurrent Objects. In FORTE'13, LNCS 7892, pages 273�
288. Springer, 2013.

14. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Ste�en. ABS: A Core
Language for Abstract Behavioral Speci�cation. In Proc. FMCO'10 (Revised Pa-
pers), LNCS 6957, pp. 142-164. Springer, 2012.

15. J. K. Lee, J. Palsberg, R. Majumdar, and H. Hong. E�cient may happen in parallel
analysis for async-�nish parallelism. In In SAS 2012, volume 7460, pages 5�23.
Springer, 2012.

16. A. Sankar, S. Chakraborty, and V. K. Nandivada. Improved mhp analysis. In CC
2016, pages 207�217. ACM, Sept 2016.

17

