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a b s t r a c t

Accurately predicting the dynamic memory consumption (or heap space) of programs can
be critical during software development. It is well-known that garbage collection (GC)
complicates such problem. The peak heap consumption of a program is themaximum size of
the data on the heap during its execution, i.e., the minimum amount of heap space needed
to safely run the program. Existing heap space analyses either do not take deallocation into
account or adopt specificmodels of garbage collectorswhich do not necessarily correspond
to the actual memory usage. This paper presents a novel static analysis for garbage-
collected imperative languages that infers accurate upper bounds on the peak heap usage,
including exponential, logarithmic and polynomial bounds. A unique characteristic of the
analysis is that it is parametric on the notion of object lifetime, i.e., on when objects become
collectible.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Predicting the dynamic memory (heap) required to run a program is crucial in many contexts such as in embedded
applications with stringent space requirements or in real-time systems which must respond to events or signals within a
predefined amount of time. Due in part to the difficulty of predicting the heap usage of programs, real-time and embedded
software typically uses only statically allocated data, which is known to have disadvantages. It is also widely recognized that
memory usage estimation is important for an accurate prediction of running time, as cachemisses and page faults contribute
directly to the runtime.

On the other hand, garbage collection (GC) is a very powerful and useful mechanism which is increasingly used in high-
level languages such as Java. Unfortunately, GC makes difficult to predict the amount of memory required to run a program.
A first approximation to this problem is to simply ignore the GC and infer bounds on the total heap consumption, i.e., the
accumulated amount of memory dynamically allocated by a program. If such amount is available it is ensured that the
program can be executed without exhausting the memory, even if no GC is performed during its execution. However, it is
an overly pessimistic estimation of the actual heap consumption. In this article, we propose a novel peak heap space analysis,
also known as live heap space analysis, which aims at approximating the maximum size of the data on the heap during a
program’s execution, which provides a much tighter estimation.

Whereas analyzing the total heap consumption needs to observe the consumption at the final state only, peak heap
consumption analysis has to reason on the heap consumption at all program states along the execution. As a consequence,
the classical approach to static cost analysis proposed by Wegbreit in 1975 [37] will be directly applicable only to infer the
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total memory allocation. Intuitively, given a program, this approach produces a cost relation system (CR for short) which is a
set of recursive equations that capture the cost accumulated along the program’s execution. Symbolic closed-form solutions
(i.e., without recursion) are found then from the CR. This approach leads to very accurate cost bounds (including polynomial,
logarithmic, exponential consumption bounds) and, besides, it can be used to infer different notions of resources (total
memory allocation, number of executed instructions, number of calls to specific methods, etc.). Unfortunately, it is not
suitable to infer peak heap consumption because the heap usage is not an accumulative resource of a program’s execution
asCRs capture. Instead, it requires to reason on all possible states to obtain theirmaximum. By relying ondifferent techniques
which do not generate CRs, peak heap consumption analysis is currently restricted to polynomial bounds [19], non-recursive
methods [10], to linear bounds dealing with recursion [14] or are not fully automatic [21].

When considering GC, several techniques exist which differ on:

(1) what can be collected, i.e., the lifetime of objects;
(2) when GC is performed.

As regards (1), a GC strategy classifies objects in the heap into two categories: those which are collectible and those which
are not. Most types of garbage collectors determine unreachable objects as collectible, i.e., they eliminate those objects to
which there is no variable in the program environment pointing directly or indirectly. Themore precise alternative is to rely
on the notion of liveness. An object is said to be not live (or dead) at some state if it is not used from that point on during the
execution.

As regards (2), in this paper, we consider several possibilities. One is scope-basedGC inwhich deallocation of unreachable
objects takes place onmethod’s return and only those objects created during themethod’s execution can be freed. The scope
assumption is motivated by the notion of stack reference liveness [31] in Java-like languages, according to which some
objects which the local variables point to, become unreachable upon exit from methods, i.e., when the corresponding call
stack frames are removed. Another possibility is the so-called idealGC in which objects are collected as soon as they become
collectible. The third one assumes a given limit on the heap, and applies GC only when we are about to exceed this limit.

The language we consider to develop our analysis is an imperative bytecode. Programming languages that are compiled
to bytecode and executed on a virtual machine are widely used nowadays. This is the approach used by Java bytecode [25]
and .NET. The executionmodel based on virtualmachines has the important advantagewhen compared to classical machine
code that bytecode is platform-independent, i.e., the same compiled code can be run on multiple platforms.

In this article, we present a general framework to infer accurate bounds on the peak heap consumption of bytecode
programs which improves the state-of-the-art in that:

• it is not restricted to any complexity class and deals with all bytecode language features including recursion,
• it is parametric w.r.t the lifetime of objects and,
• it can be instantiated with different GC strategies, e.g., the scope-based and ideal GC discussed above.

1.1. Motivating example

Let us motivate our work on a contrived example which is depicted in Fig. 1 (to the left). To the right, we show an
intermediate representation of the program thatwill be explained later. Because the programhas simple (constant)memory
consumption, it is useful to describe intuitively the differences among the different approximations tomemory consumption
and, later, to explain the main technical parts of the paper.

Example 1. In Fig. 1 (to the bottom) we provide four possible approximations inferred by our analysis for the memory
consumption of executing method m1, where the notation s(X) means the memory required to hold an instance of class X.

First, we consider a scope-based garbage collector in which object lifetimes are inferred by an escape analysis. In this
case, we can take advantage of the knowledge that at 4⃝ (i.e., upon exit fromm2) the object to which ‘‘c’’ refers can be freed,
i.e., it does not escape from the method. Hence, the upper bound (UB) S is obtained. The important point is that s(A) and s(B)
are always accumulated, plus the largest of the consumption of m2 (i.e., s(C)+ s(E)) and the memory escaped fromm2 (i.e.,
s(E)) plus the continuation (i.e., s(D)).

As another instance, we consider a reachability-based GC but without the assumption of being scope-based, rather we
assume an ideal GC. Then, our method is able to obtain the UB R in Fig. 1. This is due to the fact that the object to which ‘‘a.f’’
points becomes unreachable at program point 3⃝, the object to which ‘‘c’’ points becomes unreachable upon exit from m2,
and the object created immediately before 1⃝ becomes unreachable at 4⃝. We can observe that this information is reflected
in R by taking the maximum between: the consumption up to the first allocation instruction in m2; the consumption up to
the end of m2 taking into account that the object to which ‘‘a.f’’ points becomes unreachable, plus the consumption until the
end of m1 taking into account that both the object pointed by ‘‘a.f’’ and the object created immediately before 1⃝ become
unreachable.

As the third instance, we consider the combination of an ideal garbage collector based on liveness, i.e., objects are
reclaimed as soon as they become dead (i.e, will not be used in the future). Then, we obtain the UB L by taking advantage
of the fact that the object created immediately before 1⃝ and those to which ‘‘a.f’’ and ‘‘c’’ point are dead at program point
3⃝, and that the object created at the end of m2 is dead at program point 4⃝. This information is reflected in the elements of
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voidm1() {
A a=new A(); 1⃝
a.f=new B(); 2⃝
a=m2(a); 4⃝
D d=new D();

}

A m2(A a) {
C c=new C();
int i=a.f.data+c.data
a.f = null; 3⃝
return new E(i);

}

m1(⟨⟩,⟨⟩) ←
a:=new A, 1⃝
a.f:=new B, 2⃝
m2(⟨a⟩, ⟨a⟩), 4⃝
d:=new D.

m2(⟨a⟩,⟨r⟩) ←
c:=new C,
i:=a.f.data+c.data,
a.f:=null, 3⃝
r:=new E.
initE(⟨r, i⟩, ⟨⟩).

T = s(A)+ s(B)+ s(C)+ s(D)+ s(E)
S = s(A)+ s(B)+ s(E)+max(s(C), s(D))
R = max(s(A)+ s(B)+ s(C), s(A)+ s(C)+ s(E), s(E)+ s(D))
L = max(s(A)+ s(B)+ s(C), s(E), s(D))

Fig. 1. A Java program and its memory requirements: T= total-allocation; S= scope-based; R= reachability-based; L= liveness-based.

the max similarly to what we have seen for R. Note that, in theory, the peak heap consumption inferred in L is indeed the
minimal memory requirement for executing the method.

1.2. Summary of contributions and applications

Our overall contribution is a flexible and powerful approach to infer the heap space consumption of object-oriented
imperative bytecode programs. Technically, the article makes the following important contributions:

1. We first present a novel application of the cost analysis framework in [3] to infer bounds on the total memory allocation
of sequential Java bytecode programs. This requires developing a cost model that defines the cost of memory allocation
instructions (e.g., new and newarray) in terms of the number of heap (memory) units they consume. For instance, the
cost of creating a new object is the number of heap units allocated to that object.

2. In a next step, we develop a new analysis to infer UBs on the active memory at a program point, i.e., the memory that has
been allocated and that cannot be collected by the GC at that program point. The key idea is to infer first an UB for the
total memory allocation of the method. Then, this bound can be manipulated, by relying on information pre-computed
on object lifetimes in order to extract from it an UB on the active memory.

3. As our main contribution, we present a novel approach to accurately estimating the peak heap consumption of object-
oriented imperative programs which is parametric w.r.t the lifetime of objects and it can be instantiated with different
GC strategies. The main challenge is to integrate into the framework object lifetime information where heap data might
be garbage collected at any program state. This is non-trivial since we need to generate recurrence relations that capture
the memory requirements at a program point level, rather than at a method level as all previous approaches do.

4. Finally, in order to improve the accuracy of the resulting UBs, we propose to use the technique of partial evaluation during
the process of generating the recurrence equations which, as our experimental results show, allows us to accurately infer
the memory requirements at the different program states.

5. We report on a prototype implementation that is integrated in the COSTA system [4] and experimentally evaluate it on
the JOlden benchmark suite by using different models for GC. Preliminary results demonstrate that our system obtains
reasonably accurate peak consumption UBs in a fully automatic way.

The resulting framework has the following important applications:

• Our work is the first to model accurately and safely the actual memory usage in Java-like languages under only the
assumption that GC will work before exceeding the memory limit. In particular, the only requirement is that the heap
size limit be fixed to the obtained UB and that GC be activated when new memory is to be allocated and the limit is
reached. We believe this assumption is practical and realistic, since the least that one can expect from GC (i.e., the least
restrictive assumption) is that it frees memory when no more memory is available.
• Our work can be used to produce very accurate results of the heap usage in compile-time garbage collection. Essentially,

in compile-time GC, the compiler determines the lifetime of the variables that are created during the execution of the
program, and thus also the memory that will be associated with these variables. Whenever the compiler can guarantee
that a variable, or more precisely, parts of the memory resources that this variable points to at run-time, will never ever
be accessed beyond a certain program instruction, then the compiler can add instructions to deallocate these resources
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at that particular instruction without compromising the correctness of the resulting code. If the program instruction is
followed by a series of instructions that require the allocation of new memory cells, then the compiler can replace the
sequence of deallocation and allocation instructions, by instructions updating the garbage cells, hence reusing these cells.
The information on the variables lifetime can be used by our analysis and achieve very accurate heap usage bounds.
• Also, if we base our analysis on the same liveness information, our approach is the first one to obtain UBs on thememory

consumption for:

1. GC schemes (for Java-like languages) that take advantage of liveness information inferred at compile time [31].
2. Languages with region-based memory management [33] in which programs are instrumented with explicit region

(de)allocation annotations by relying on a liveness analysis [12].

• The resulting heap space UBs provide information for understanding/debugging the memory usage of programs, which
can be a critical resource.

1.3. Organization of the article

The rest of the article is organized as follows. In Section 2, we first introduce the language and the semantics onwhich our
analysis is developed. We use an intermediate imperative language to which Java bytecode programs can be automatically
translated. Then, we provide the concrete definitions related to the notions of memory consumption we want to infer
statically later.

Section 3 presents the application of the cost analysis framework in [3] for inferring total memory consumption. We first
recall some basic concepts related to the underlying size analysis. These concepts are used then to formalize the notion of
total memory allocation equations, from which the UB on the memory consumption is obtained.

In Section 4,we present the notion of collectible types, which approximates the set of objects that can be garbage collected.
This notion is parametric on the notion of object lifetime, which could be inferred by a reachability analysis or by a liveness
analysis. Collectible types are used in order to then obtain the peak heap consumption of executing the program for any input
data, as presented in Section 5. The accuracy of the analysis can be greatly improved by relying on thewell-known technique
of partial evaluation [22]. This is described in Section 6.

Experimental results showing the accuracy and efficiency of our method are presented in Section 7. Finally, Section 8
reviews related work and Section 9 concludes.

2. Basic concepts: language, semantics and memory consumption

To formalize our analysis, we consider a simple rule-based imperative language (in the style of any of the languages in
[6,36,23]). The key features of the rule-based language which facilitate the formalization of the analysis are: (1) recursion
is the only iterative mechanism, (2) guards are the only form of conditional, (3) there is no operand stack, (4) objects can
be regarded as records, and the behavior induced by dynamic dispatch in the original bytecode program is compiled into
dispatch blocks guarded by a type check. It has been shown that Java bytecode (and hence Java) can be compiled into this
intermediate language [3]. Moreover, the translation preserves the heapmemory consumption of the original program.

2.1. The language

A rule-based program consists of a set of procedures and a set of classes. A procedure p with k input arguments x̄ =
x1, . . . , xk and m output arguments ȳ = y1, . . . , ym is defined by one or more guarded rules. Rules adhere to this grammar:

rule ::= p(⟨x̄⟩, ⟨ȳ⟩) ← g, b1, . . . , bn
g ::= true | exp1 op exp2 | type(x, C)

b ::= x := exp | x := new Ci
|x := y.f | x.f := y | q(⟨x̄⟩, ⟨ȳ⟩)

exp ::= null | aexp
aexp ::= x | n | aexp−aexp | aexp+aexp | aexp∗aexp | aexp/aexp
op ::=> | < | ≤ | ≥ | = | ≠

where p(⟨x̄⟩, ⟨ȳ⟩) is the head of the rule; g its guard, which specifies conditions for the rule to be applicable; b1, . . . , bn the
body of the rule; n an integer; x and y variables; f a field name, and q(⟨x̄⟩, ⟨ȳ⟩) a procedure call. The language supports class
definition and includes instructions for object creation and field manipulation. A class C is a finite set of typed field names,
where the type can be integer or a class name. The superscript i on a class C is a unique identifier which associates objects
with the program points where they have been created. For ease of notation, we assume that there are no two different
procedures with the same name (even if they have different number of parameters). A program point [k, j] corresponds to
the point j of the k-th program rule. The points in a rule are assigned as follows: Let p(⟨x̄⟩, ⟨ȳ⟩)← g, bk1, . . . , b

k
n be a program

rule which has n+1 program points, then [k, 0] is the point after the execution of the guard g and before the execution of
b1, and [k, n] the one after the execution of bn.

Due to dynamic method resolution, in the case of a method invocation, the actual method to be called is only known at
runtime. The compilation to the rule-based program is made easier by approximating this information and introducing it
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class Test {

static Tree m(int n) {
if ( n>0 ) return new
Tree1(f(n,g(n)), m(n-1),m(n-1));

else return null;
}

static List g(int n) {
if ( n <= 0 ) return null
else return new List2(n,g(n-1));

}

static int f(int n, List l) {
int r=0;
while (l != null) {
r += (new Long3(l.data)).intValue();
l = l.next;

} // List2 is not live

for (int i=n; i>0; i--)
r *= (new Integer4(i)).intValue();

return r;
}

}

m(⟨n⟩, ⟨r⟩) ←
n > 0, a⃝
s0 := new Tree1, b⃝
g(⟨n⟩, ⟨s1⟩), c⃝
f(⟨n, s1⟩, ⟨s1⟩),
s2 := n− 1, d⃝
m(⟨s2⟩, ⟨s2⟩),
s3 := n− 1, e⃝
m(⟨s3⟩, ⟨s3⟩),
initTree(⟨s0, s1, s2, s3⟩, ⟨⟩),
r = s0.

m(⟨n⟩, ⟨r⟩) ←
n ≤ 0,
r := null.

f(⟨n, l⟩, ⟨r⟩) ←
r := 0, f⃝
f1(⟨l, r⟩, ⟨l, r⟩),
i := n, g⃝
f2(⟨i, r⟩, ⟨i, r⟩).

f1(⟨l, r⟩, ⟨l, r⟩) ←
l ≠ null, h⃝
s0 := new Long3,
s1 := l.data,
initLong(⟨s0, s1⟩, ⟨⟩),
intValueLong(⟨s0⟩, ⟨s0⟩),
r := r+ s0,
l := l.next, i⃝
f1(⟨l, r⟩, ⟨l, r⟩).

f1(⟨l, r⟩, ⟨l, r⟩) ←
l = null.

f2(⟨i, r⟩, ⟨i, r⟩) ←
i > 0, j⃝
s0 := new Integer4,
initInt(⟨s0, i⟩, ⟨⟩),
intValueInt(⟨s0⟩, ⟨s0⟩),
r := r ∗ s0,
i := i− 1, k⃝
f2(⟨i, r⟩, ⟨i, r⟩).

f2(⟨i, r⟩, ⟨i, r⟩) ←
i ≤ 0.

g(⟨n⟩, ⟨r⟩) ←
n ≤ 0,
r := 0.

g(⟨n⟩, ⟨r⟩) ←
n > 0,
s0 := n− 1, l⃝
g(⟨s0⟩, ⟨s0⟩), m⃝
s1 := new List2,
initList(⟨s1, n, s0⟩, ⟨⟩),
r := s1.

Fig. 2. Java code of our second running example and rule-based representation of m, f and g . Method m is the entry method.

explicitly in the control flow graph (see [3]). This is done by adding new blocks, which are called dispatch blocks, containing
calls to the actual methods which might be called at runtime. The access to these blocks is guarded by mutually exclusive
conditions on the runtime class of the object whose method is called. This is represented in the rule-based program by a
type comparison through the instruction type(x, C), which succeeds if the runtime class of x is exactly C. Our analysis will
compute a safe approximation by taking all such possible runtime methods into account.

The translation from (Java) bytecode to the rule-based form is performed in two steps [3]. First, a control flow
graph is built. Second, a procedure is defined for each basic block in the graph and the operand stack is flattened by
considering its elements as additional local variables. For simplicity, our language does not include advanced features of
Java such as exceptions, interfaces, static fields, access control and primitive types besides integers and references, but our
implementation deals with full (sequential) Java bytecode.

Example 2. Fig. 2 shows the Java source (at the top) of a second example that we will use in the paper that has interesting
memory consumption, namely exponential and polynomial bounds. The source code is shown only for clarity as the
analyzer generates the rule-based representation (at the bottom) from the corresponding bytecode only. The first two rules
correspond to method m. Each of them is guarded by a corresponding condition, resp. n > 0 and n ≤ 0. Variable names
of the form si indicate variables that originate from stack positions. For instance, the ‘‘new Tree1’’ instruction creates an
object of type Tree allocated at the allocation site 1 (the superscript 1 is the unique identifier for such an allocation site)
and assigns the corresponding reference to the variable s0. This corresponds to pushing the reference on the stack in the
original bytecode. Next, methods g and f are invoked. Then, the local variable n is decremented by one and the result is
assigned to s2 and a recursive call is done. A similar recursive invocation follows. Constructor methods are named init (as
in Java bytecode). In both rules, the return value is r which in the first one contains the object reference and in the second
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(1)
b ≡ x := exp, v = eval(exp, tv)

⟨p, b·bc, tv⟩·A; h ❀ ⟨p, bc, tv[x → v]⟩·A; h

(2)
b ≡ x := new Ci, o=newobject(Ci), r∉dom(h)

⟨p, b·bc, tv⟩·A; h ❀ ⟨p, bc, tv[x → r]⟩·A; h[r → o]

(3)
b ≡ x := y.f , tv(y) ≠ null, o = h(tv(y))

⟨p, b·bc, tv⟩·A; h ❀ ⟨p, bc, tv[x → o.f ]⟩·A; h

(4)
b ≡ x.f := y, tv(x) ≠ null, o = tv(x)

⟨p, b·bc, tv⟩·A; h ❀ ⟨p, bc, tv⟩·A; h[o.f → tv(y)]

(5)
b ≡ q(⟨x̄⟩, ⟨ȳ⟩), there is a program rule q(⟨x̄′⟩, ⟨ȳ′⟩):=g, b1, . . . , bk
such that tv′=newenv(q), ∀i.tv′(x′i) = tv(xi), eval(g, tv′) = true

⟨p, b·bc, tv⟩·A; h ❀ ⟨q, b1 · . . . · bk, tv′⟩·⟨p[ȳ, ȳ′], bc, tv⟩·A; h

(6)
⟨q, ϵ, tv⟩·⟨p[ȳ, ȳ′], bc, tv′⟩·A; h ❀ ⟨p, bc, tv′[ȳ → tv(ȳ′)]⟩·A; h

Fig. 3. Operational semantics of bytecode programs in rule-based form.

one contains null. In the rule-based representation for f, loops are extracted as separate procedures which are treated by
the analysis as methods; in our example, f1 and f2 are intermediate procedures that correspond, resp., to the while and for
loops in f. We refer to each procedure as a scope, which can be a method definition or an intermediate block.

2.2. Semantics

The execution of bytecode in rule-based form is the same as that of standard bytecode; a thorough explanation is outside
the scope of this paper (see [25]). The operational semantics for rule-based bytecode is shown in Fig. 3. An activation record is
of the form ⟨p, bc, tv⟩, where p is a procedure name, bc is a sequence of instructions and tv a variable mapping. Executions
proceed between configurations of the form A; h, where A is a stack of activation records and h is the heap, which is a partial
map from an infinite set ofmemory locations to objects. We use h(r) to denote the object referred to by the memory location
r in h, h[r → o] to indicate the result of updating the heap h by making h(r) = o, and dom(h) to denote the set of memory
locations in the heap h. An object o is a pair consisting of the object class tag and amapping from field names to values which
is consistent with the type of the fields.

Intuitively, rule (1) accounts for all instructions in the bytecode semantics that perform arithmetic and assignment
operations. The evaluation eval(exp, tv) returns the value of the arithmetic or Boolean expression exp for the values of the
corresponding variables from tv in the standard way, and for reference variables, it returns the reference. Rules (2), (3)
and (4) deal with objects. We assume that newobject(Ci) creates a new object of class C and initializes its fields to either 0
or null, depending on their types. Note that rules (3) and (4) require that the dereferenced variable is different from null,
we assume that the program aborts when dereferencing a nullpointer. Rule (5) (resp., (6)) corresponds to calling (resp.,
returning from) a procedure. The notation p[ȳ, ȳ′] records the association between the formal and actual return variables.
It is assumed that newenv creates a new mapping of local variables for the corresponding method, where each variable is
initialized as newobject does.

A complete execution starts from an initial configuration ⟨⊥, p(⟨x̄⟩, ⟨ȳ⟩), tv⟩; h and ends in a final configuration of the form
⟨⊥, ϵ, tv′⟩; h′ where tv and h are initialized to suitable initial values, tv′ and h′ include the final values, and ⊥ is a special
symbol indicating an initial state. Complete executions can be regarded as traces S0❀S1❀ · · ·❀Sn, denoted S0❀∗Sn, where
Sn is a final configuration. Infinite traces correspond to non-terminating executions. Traces that correspond to complete or
infinite executions are referred to as complete traces.

2.3. Basic notions of memory consumption

We use s(C) to denote the amount of memory required to hold an instance object of class C, s(o) denotes the amount
of memory occupied by an object o, and s(h) denotes the amount of memory occupied by all objects in the heap h, namely
Σr∈dom(h)s(h(r)). Since in the semantics of Fig. 3, there is no deallocation, given a finite complete trace t ≡ S0❀∗Sn, its total
memory allocation is defined as total(t) = s(hn)−s(h0). If the derivation is infinite, then total(t) = max({s(hi) | Si ∈ t∧Si =
(Ai; hi)})− s(h0).

Languages with automatic memory management aim at automatically reclaiming memory (freeing it) when its content
can no longer affect future computations. Therefore, in the presence of any GC, the size of the heap might also decrease.



E. Albert et al. / Science of Computer Programming 78 (2013) 1427–1448 1433

Hence, the peak heap consumption of an execution is defined as themaximum size of all intermediate heaps. More formally,
given a complete trace t , and assuming that the initial heap h0 contains initial data that will not be deallocated during
the execution, the peak memory usage of t in the presence of GC is defined as peak(t) = max({s(hi) | Si ∈ t ∧ Si =
(Ai; hi)})− s(h0). This is the notion that our analysis aims at approximating statically, i.e., our goal is to obtain a sound and
tight UB on the peak heap usage for any input data and without having to run the program. Note that total(t) and peak(t)
might be undefined for infinite derivations, in such case we assume it is∞.

3. Total memory allocation

Any heap space analysis aims at approximating the memory usage of the program as a function of the input data sizes.
As customary, the size of data is determined by its variable type [3]: the size of an integer variable is its value; the size of
an array is its length; and the size of a reference variable is the length of the longest path that can be traversed through
the corresponding object (e.g., length of a list, depth of a tree, etc.). We use the original variable names (possible primed)
to refer to the corresponding size variables; but we write the size in italic, e.g., since variable l of procedure f1 (in Fig. 2) is
a reference to a list, then l represents its length. The size measure is mainly used for estimating the number of iterations of
recursive procedures. Note that, the size measure of data structures, as defined here, is unrelated to the notation s(C) which
measures the actual space occupancy, as defined in the previous section. When we need to compute the sizes v̄ of a tuple
of variables x̄, we use the notation v̄ = α(x̄, tv, h), which means that the integer value vi is the size of the variable xi in the
context of the variables table tv and the heap h. For example, we need to access the heap, h, where the list l is allocated to
compute its length v. If x is an integer variable, then its size (value) is obtained from the variable table tv.

Standard size analysis is used in order to obtain relations between the sizes of the program variables at different program
points [15]. For instance, associatedwith the recursive rule f1, we infer the size relation l > l′ which indicates that the length
of l decreases when calling f1 recursively, where l′ refers to the size of l at the program point where f1 is called recursively.
We denote by ϕr the conjunction of linear constraints that describes the size relations between the abstract variables of a
rule r (see [15,3] for more information). The rest of our analysis is parametric w.r.t. the size relations, which are an external
component, and can also admit user-defined size relations as [18].

Given a program P and the relations ϕ for its rules, a recurrence relation (RR) system for total memory allocation is
generated by applying the following definition to all rules in P .

Definition 3 (Total Memory Allocation Equations). Let r be a rule of the form p(⟨x̄⟩, ⟨ȳ⟩)← g, b1, . . . , bn and ϕr its corre-
sponding size relations. Then, the total memory allocation equation of r is defined as:

p(x̄) = Σn
i=1M(bi) ϕr

where M(x := new Ci) = s(Ci), M(qi(⟨x̄i⟩, ⟨ȳi⟩)) = qi(x̄i); otherwise M(bi) = 0.

Note that each call in the rule qi(⟨x̄i⟩, ⟨ȳi⟩) has a corresponding abstract version qi(x̄i) where x̄i are the size abstractions of
x̄i at the corresponding program point. The output variables are ignored in the RR as the cost is a function of the input data
sizes, but the relation they impose on other variables is kept in ϕr . The same procedure name is used to define its associated
cost relation, but in italic font. An important point is that the RRmust keep the order of the corresponding size constants and
the calls in their right hand sides (rhs) exactly as they appear in the rule they are generated from. This is required in order
to make RR capture the heap space usage at a program point level.

Example 4. The total allocation equations for the rules in Fig. 2 are:

m(n) =s(Tree1)+g(n)+f (n, s1)+m(s2)+m(s3) {n>0, s1=n, s2=n−1, s3=n−1}
m(n) =0 {n=0}
f (n, l) =f1(l, r)+ f2(i, r ′) {r=0, i=n}
f1(l, r)=s(Long3)+ f1(l′, r ′) {l ≥ 1, l′ < l}
f1(l, r)=0 {l = 0}
f2(i, r)=s(Integer4)+ f2(i′, r ′) {i > 0, i′ = i− 1}
f2(i, r)=0 {i ≤ 0}
g(n) =g(s0)+ s(List2) {n > 0, s0 = n− 1}
g(n) =0 {n ≤ 0}.

For simplicity we ignore calls to constructors initLong, initInteger, initList, and initTree, assuming they do not consume any
heap memory. The total allocation of m is defined by the first two equations. The first one states that the total memory
consumption when executing m with an input value n > 0 is the size of an object of type Tree1, plus the consumption of
the corresponding calls to g, f and the recursive calls to m. The attached constraints describe the size relations between the
local variables and the input variable n. The second equation corresponds to the base-case of m, i.e., when n ≤ 0. The total
allocation of f is defined by the third equation. It is the sum of the total allocations of loops f1 and f2. The total allocation of
f1 is defined in the fourth and fifth equations. The fourth equation states that a call to f1 with a non-empty list of length l
occupies the size of an object of type Long3, plus the occupation of the recursive call with a list of length l′ which is smaller
than l (due to the instruction l := l.next). The fifth rule corresponds to the case of calling f1 with an empty list, i.e., l = 0.
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Similarly, the sixth and seventh equations define the total allocation of f1. The last two equations define the total allocation
of g. The total allocation equations for methods m1 and m2 in Fig. 1 are:

m1 = s(A)+ s(B)+m2(a)+ s(D)
m2(a)= s(C)+ s(E)

which, as expected, are simpler than those for the program Fig. 2 since the corresponding program is not recursive and does
not contain any loop.

Once the RR are generated, a worst-case cost analyzer uses a solver in order to obtain closed-form UBs, i.e., cost expressions
without recurrences. The technical details of the process of obtaining a cost expression from the RR are not explained in the
paper as our analysis does not require anymodification to this part. In what follows, we rely on the RR solver of [1] to obtain
UBs for our examples, sometimes simplified by removing constants to facilitate understanding. Given a RR p(x̄), we denote
by pub(x̄) its UB. The UBs that [1] can infer from the above RR are cost expressions of the following form:

e ≡ n | s(C) | nat(l) | log(nat(l)+ 1) | e ∗ e | e1 + e1 | 2nat(l)
| max({e1, . . . , ek})

where n is an integer, l is a linear expression and C is a class. Function nat is defined as nat(v)=max({v, 0}) to avoid negative
values. A cost expression must evaluate to a non-negative value for any input.

Example 5. The total memory UBs obtained from the first RR of Example 4 are:

gub(n) = nat(n) ∗ s(List2)
f ub2 (i, r) = nat(i) ∗ s(Integer4)
f ub1 (l, r) = nat(l) ∗ s(Long3)
f ub(n, l)= nat(l) ∗ s(Long3)+nat(n) ∗ s(Integer4)
mub(n) = (2nat(n)

−1)∗(s(Tree1)+nat(n) ∗ (s(List2)+s(Long3)+s(Integer4))).

Intuitively, for method f (and its intermediate procedure f1 and f2), observe that the first (resp. the second) loop is executed
nat(l) (resp. nat(n)) times and at each iteration a Long3 (resp. Integer4) object is allocated. For m, we have an exponential
number of recursive calls, at each one: an object Tree1 is allocated, g allocates nat(n) objects List2 and f contributes with its
allocation. The inferred UBs capture exactly this intuition. The total memory UBs obtained from the second RR of Example 4
are:

mub
1 = s(A)+ s(B)+ s(C)+ s(D)+ s(E)

mub
2 (a)= s(C)+ s(D).

The following theorem states the soundness of the total memory allocation analysis. The proof is based on the soundness of
the generic cost analysis framework of [3] and soundness of the UB solver [1].

Theorem 6 (Soundness). Let P be a program with an entry procedure p, and let pub(x̄) be an UB for the corresponding total
memory allocation equations generated in Definition 3. Then, for any complete trace t that starts from an initial state S0 =
⟨⊥, p(⟨x̄⟩, ⟨ȳ⟩), tv0⟩; h0 it holds that pub(v̄) ≥ total(t) where v̄ = α(x̄, tv0, h0).

4. Inference of object lifetime

A GC strategy classifies objects in the heap of a given configuration into two categories: those which are collectible and
those which are not. Different strategies have different criteria to determine when an object is collectible. In this paper we
apply our formalization on the following three GC strategies.

• Reachability-based GC. In this strategy an object is determined to be collectible if it is unreachable, namely, if there is no
variable in the program environment (activation records stack) pointing to it directly or indirectly. This strategy is widely
used in practice. We denote it by Gr .
• Scope-based GC. In this strategy an object is determined to be collectible if it has been created during amethod call and is

unreachable upon exit from that call. We denote this GC strategy by Gs.
• Liveness-based GC. In this strategy an object is determined to be collectible if it is not live (i.e., it is dead), namely, if it is

not accessed or modified from that point on during the execution. We denote this GC strategy by Gl.

Due to the soundness of the translation, the above strategies are equivalent when considered at the level of a Java program
or its corresponding rule-based program [5]. However, in the scope-based strategy we have to distinguish procedure calls
(in the rule-based program) that correspond to method calls (e.g., f, m and g in Fig. 2) from those calls to intermediate
procedures representing loops (e.g, f1 and f2 in Fig. 2).

A common approach to statically over-approximate the above collectible information, is to provide information on the
types (i.e., the class name with allocation site) of collectible objects instead of the actual objects. In this case a type C i

is classified as collectible only if all instances of Ci are collectible. This approximation on types itself is also undecidable.
Therefore, the corresponding analysis might say that a type is not collectible while it is. Note that computing the collectible
information is typically done w.r.t. an entry procedure (such as main in Java). In what follows we introduce two notions of
collectible types and apply them to the above strategies:
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• collectible types for a procedure which approximates the set of types that are created during the execution of a given
procedure and are collectible upon exit from that procedure; and
• collectible types at a program pointwhich approximates the collectible types whenever a given program point is reached.

The distinction between these two notions is crucial, not only for covering more GC strategies as the reader might first
expect (e.g., for scope-based), but also to improve the precision loss introduced by considering collectible types instead
of collectible objects, mainly when dealing with recursive procedures. This point is explained below in further detail once
all notions become clear. In what follows, by applying a GC strategy on a configuration we mean the process of removing all
collectible objects from the corresponding heap. For simplicity, we assume that all collectible objects are collectedwhenever
the corresponding garbage collector is activated. In practice, this can be adjusted to the actual underlying GC strategy. For
ease of notation, we say that a type A is reachable (resp. live) to indicate that there is a reachable (resp. live) object of type A.

Definition 7 (Collectible Types for a Procedure). Let P be a program with an entry procedure p, G be a GC strategy, C i a type,
and q a procedure defined in P . We say that type C i is collectible for q (or upon exit from q) w.r.t. G, if

• the instruction new C i is reachable from q, i.e., the procedure can actually create an object of type C i; and
• for any complete trace t that starts from an initial state ⟨⊥, p(⟨x̄⟩, ⟨ȳ⟩), tv0⟩; h0, if ⟨m, q(⟨x̄⟩, ⟨ȳ⟩) · bc, tvj⟩ · A; hj ❀∗

⟨m, bc, tvk⟩ · A; hk is a sub-trace of t , then applying G on ⟨m, bc, tvk⟩ · A; hk results in a heap which does not have any
object of type C i which was not in heap hj.

The set of all collectible types for q are denoted by C(G, q).

Such set of collectible types can be approximated by first applying points-to analysis [38], and then reachability or heap-
liveness [12] analysis (depending on theGC strategy). The latter analyses use the points-to information to determinewhether
the lifetime of objects of a given type can be proven to be restricted only to the method where they have been created. This
is known as escape analysis [30,9].

Example 8. The following table summarizes the collectible types for the different procedures in Figs. 1 and 2, for the
different GC strategies:

q C(Gr , q) C(Gs, q) C(Gl, q)
m {Long3, Integer4, List2} {Long3, Integer4, List2} {Long3, Integer4, List2}
g ∅ ∅ ∅

f {Long3, Integer4} {Long3, Integer4} {Long3, Integer4}
f1 {Long3} ∅ {Long3}
f2 {Integer4} ∅ {Integer4}
m1 {A, B, C,D, E} {A, B, C,D, E} {A, B, C,D, E}
m2 {C} {C} {C, E}

For procedures f1 and f2, the types Integer4 and Long3 are not collectible when considering the scope-based strategy Gs. This
is because these procedures do not correspond to methods in the corresponding Java program but rather to intermediate
procedures for the loops. In m2, note that E is collectible when considering Gl since there is no execution (starting from the
entry m1) in which such type is used after executing m2.

Definition 9 (Collectible Types at a Program Point). Let P be a programwith an entry procedure p, C i a type, [k, j] a program
point, and G a GC strategy. We say that the type C i is collectible at [k, j]w.r.t. G, if for any complete trace t that starts from an
initial state S0=⟨⊥, p(⟨x̄⟩, ⟨ȳ⟩), tv0⟩; h0 and any state Sl=⟨qk, bkj · bc, tvl⟩·A; hl in t , applying G on Sl results in a heap which
does not have any object of type C i. The set of all collectible types at [k, j]w.r.t. G is denoted C(G, [k, j]).

The set of collectible types at a program point [k, j]w.r.t. a reachability-based GC strategyC(Gr , [k, j])) can be approximated
using points-to analysis [38].

Example 10. The following collectible types information w.r.t. Gr is obtained for the program points in Fig. 2. At a⃝, b⃝, d⃝
and e⃝, the set reachable types is {Tree1}; and at c⃝, f⃝, g⃝, h⃝, i⃝, j⃝, k⃝, l⃝ and m⃝ the set of reachable types is {Tree1, List2}.
Likewise, the reachability information for the program points in Fig. 1 is that at 1⃝ the set of reachable types is {A}, at 2⃝ is
{A, B}, at 3⃝ is {A, C}, and at 4⃝ is {E}. The complementary sets are the unreachable types and therefore collectible w.r.t. Gr .

The set of collectible types at a program point [k, j]w.r.t. a scope-based GC strategyC(Gs, [k, j])) can be approximated using
points-to [38] and escape [30,9] analysis.

Example 11. The following collectible types information w.r.t. Gs is obtained for the program points in Fig. 2. At a⃝, b⃝, c⃝,
d⃝ and e⃝ the types Long3 and Integer4 are collectible. This is because at any configuration that corresponds to one of these
program points, the instances of these types were created in calls to f that have been already completed, and they were
unreachable upon exit from f. Note that, for example, List2 is not collectible at d⃝ (w.r.t. Gs) even though it is unreachable.
This is because the instances created in g were still reachable upon exit from g and became unreachable only when s1 is
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overwritten (output argument of f). For the remaining program points, nothing is collectible. Since f1 and f2 are intermediate
rules and not procedures, the objects created during calls to these methods are not collectible upon exit. Likewise, for the
program points in Fig. 1, we have that type C is collectible at 4⃝. For the remaining program points nothing is collectible.

The set of all collectible types at a program point [k, j]w.r.t. a liveness-based GC strategy C(Gl, [k, j])) can be approximated
by using points-to analysis and a backwards heap-liveness inference similar to [12].

Example 12. The following collectible types information w.r.t. Gl is obtained for the program points in Fig. 2: at a⃝, b⃝, d⃝,
e⃝, g⃝, j⃝, and k⃝ the set of live types is {Tree1}; and at c⃝, f⃝, h⃝ and i⃝ it is {Tree1, List2}. The important point is that, at f⃝,
objects of type List2 are still live since their field data still has to be accessed, but at g⃝ the access has already been performed
and List2 is not live anymore. Similarly, the liveness information obtained for the program points in Fig. 1 is that at 1⃝ the
set of live types is {A} and at 2⃝ is {A, B}, and at 3⃝ and 4⃝ is ∅. The complementary sets are the dead types and therefore
collectible w.r.t. Gl.

The following example demonstrates the need for two different notions of collectible objects.

Example 13. Consider the following recursive Java program:

voidm(int n) {
if (n <= 0) return;
A x= new A(n);
x= new B(x.f());
m(n−1);
m(n−1);
System.out.println(x.f());

}

Its peakmemory consumption w.r.t. strategy Gr is n∗ s(B)+ s(A). This means that we only need space for one object of type
A and n objects of type B. In order to infer this boundwe need to automatically prove the following conditions: (1) the object
of type A becomes unreachable when variable x is overwritten; and (2) all objects of type B that are created during the first
recursive call m(n − 1) are unreachable upon exit from this call. The first condition is easy to infer, however, the second
is not straightforward. This is because not all objects of type B are unreachable upon exit from m(n − 1), the one created
in the current scope is still reachable till the end of the method. Since we do not distinguish between objects of the same
type it is not correct that type B is collectible after the first recursive call. In order to overcome this limitation we introduced
the above two notions of collectible types. We will come back to this program in Example 16, once the above notions are
formally defined, in order to show how our techniques handle such programs.

The notion of collectible types (both for procedures and program points) as defined above is context-insensitive, i.e.,
for a type to be collectible it must be collectible in all calling contexts. Obtaining context-sensitive information would
require using context-sensitive [38] or object-sensitive [27] points-to analysis. This could be essential when dealing with
programswith object-oriented features such as the factory pattern. Note that using suchpoints-to analysiswould not require
substantial changes in the underlying technical details of our approach. Themost important change is tomodify the analysis
such that it gives different names to objects of the same type that are created in a different context. This can be done in a
similar manner to what we do with allocation sites in order to distinguish objects of the same type that are created at
different program points. Incorporating such analysis in our approach is left for future work.

5. Heap space analysis

Let us first explain the intuition behind the analysis. Suppose that n1 is the actual memory usage at some program point,
and that n2 is the amount of memory that corresponds to objects that can be freed by the garbage collector at that point.
Then, obviously n1−n2 is the current memory usage after freeing the memory that corresponds to those collectible objects.
In order to obtain an UB for n1−n2, one can obtain an UB for n1 and a lower bound for n2. In our context, we have a symbolic
UB e1 for n1. However, the information about collectible classes is an over-approximation. Hence, it cannot be used to obtain
a lower bound on n2. The main idea is that, since the collectible classes sets in Section 4 provide the information that all
instances of specific classes at that program point can be freed and, given that e1 is a symbolic UB, we can obtain a sound
UB for n1 − n2 by replacing in e1 all occurrences of s(C) by 0 for all C which are in the set of collectible classes.

Example 14. Let us assume that nat(l) ∗ s(Long3)+nat(n) ∗ s(Integer4) + nat(l) ∗ s(A) is an UB on the total memory
consumption of method f of Fig. 2 (note that we added nat(l) ∗ s(A) just for the sake of explaining the idea). In Example 8,
we have seen that objects of type Long3 and Integer4 do not escape from f, thus syntactically replacing each s(Long3) and
s(Integer4) by 0 results in nat(l) ∗ s(A), which is an UB on the amount of the memory still in use upon exit from f.

By relying on this basic idea, we will estimate the active memory at each program point and then choose the maximum
among them.
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5.1. Inference of active memory

We start by computing an UB on the active memory associated to an expression e1 + · · · + en, where each ei is either
a call to a procedure q(x̄) or an expression of the form s(Ci). Such expression corresponds to the memory consumption of
executing a sequence of instructions (from left to right), where s(Ci) is the memory consumed by an instruction that creates
an object of type C i and q(x̄) that of calling a procedure. The active memory for such expression is thememory that has been
created during the corresponding execution and cannot be garbage collected at the end of the execution. In what follows,
given a cost expression e and a set of types X , we denote by e|X the cost expression that results from replacing each s(Ci) in
e by 0 if C i

∈ X .

Definition 15 (Active Memory). Given an expression e ≡ e1+· · ·+ en, the active memory of e at a program point [k, j]w.r.t.
a GC strategy G, denoted A(e, [k, j], G), is defined as follows: first obtain e′ by replacing each ei ≡ q(x̄) by qub(x̄)|C(G,q) and
then A(e, [k, j], G) = e′|C(G,[k,j]).

The intuition behind this definition is that, in order to eliminate the collectible types from e1 + · · · + en, we first eliminate
those that do not escape from procedure calls (i.e., when ei ≡ q(x̄)) and, in a second phase, those that are collectible at the
corresponding program point. This two phase elimination, as defined in Definition 15, is fundamental as we have explained
in Example 13.

Example 16. Let us see the importance of the two phase elimination by reconsidering the program of Example 13 w.r.t. Gr .
We want to compute the active memory at the program point immediately after the first recursive call. Let us denote this
program point by 1⃝. First note that (1) the total memory UB for m is mub(n) = (s(A) + s(B)) ∗ (2nat(n)

− 1); (2) objects
of type A and B are collectible upon exit from m, i.e., C(Gr ,m) = {A, B}; (3) at 1⃝ there is a reachable object of type B but
all those of type A are unreachable, i.e., C(Gr , 1⃝) = {A}; and (4) the total memory at 1⃝ is e = s(A) + s(B) + m(n − 1).
According to Definition 15, A(e, 1⃝, Gr) is computed in two steps:

1. In the first step we compute e′ by replacing m(n− 1) in e by mub(n− 1)|C(Gr ,m). Note that mub(n− 1)|C(Gr ,m) = 0, since
both A and B are in C(Gr ,m), and thus e′ = s(A)+ s(B).

2. In the second step we compute e′|C(Gr , 1⃝), which results in s(B) since A is collectible at 1⃝.

Thus,A(e, 4⃝, Gr) = s(B). Now let us see what we get if we computeA(e, 1⃝, Gr) only in one phase, i.e., we generate e′ from
e replacingm(n−1) bymub(n−1), without removing those objects that are collectible upon exit fromm, and then compute
e′|C(Gr , 1⃝): we first get e′ = s(A)+ s(B)+ (s(A)+ s(B)) ∗ (2nat(n)

− 1), and then e′|C(Gr , 1⃝) = s(B)) ∗ 2nat(n−1), which is much
more imprecise thanwhat we get with the two phase elimination approach. This is because, when computing e′|C(Gr , 1⃝), we
cannot distinguish between the single reachable object of type B (that comes from e) and those unreachable objects of type
B that come frommub(n− 1), and thus, for soundness, we would not eliminate any of them.

Example 17. The total memory consumption at program point 4⃝ is described by the expression e = s(A)+ s(B)+m2(a).
The total memory UB for m2, as computed in Example 5, is mub

2 (a) = s(C) + s(E). Using the collectible information of
Examples 8 and 10–12, we obtain A(e, 4⃝, Gr) = s(E), A(e, 4⃝, Gs) = s(A) + s(B) + s(E), and A(e, 4⃝, Gl) = 0. Note that
type A is not eliminated from e when considering Gs. This is because it has been created in the same method as program
point 4⃝. Therefore, according to this GC strategy, it can be collected only upon exit fromm1. Also, s(E) is eliminated from e
when considering Gl because, even if it is reachable through variable a, it is never accessed or modified afterwards.

5.2. Peak heap space cost relations

The main idea behind our heap space analysis is to produce disjunctive equations which capture the active memory at
the program points where we know that thememory usage can change, i.e., at thememory allocation instructions. Since the
RR generated in Definition 3 allow us to identify exactly these points by means of their associated s constants, we generate
the parametric peak heap consumption equations from them.

Definition 18 (Peak Heap Space Equations). Given a total memory allocation equation ‘‘p(x̄) = e1 + · · · + en, ϕ’’ and a GC
strategy G, the corresponding peak heap space equation is defined as: p̂(x̄) = max(f1, . . . , fn), ϕ, where each fi is defined as
fi = A(e1 + · · · + ei−1, [k, j], G)+Oei such that [k, j] is the program point that corresponds to ei and êi is equal to s(Cj)when
ei ≡ s(Cj) and to q̂(x̄) when ei ≡ q(x̄).

An important point in the above definition is that, when computing the active memory of e1+· · ·+ ei−1, procedure calls are
replaced by their escapedmemory UBs and hence the result is a symbolic cost expression. In contrast, we have that êi, when
ei is a call, will be defined by corresponding peak heap space equationswhen applyingDefinition 18 to the equations defining
ei. As mentioned in Section 3, it is crucial for the above definition to maintain the order (and program point information) in
the expressions of the rhs of the total allocation equations in order to be able to apply the program point collectible classes
information into them.
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Example 19. Consider again the total memory equations of Example 5 for the program in Fig. 1. According to Definition 18,
the following peak heap space equations are obtained for a generic GC strategy G:

m̂1 =max(s(A),
A(s(A), 1⃝, G)+ s(B),
A(s(A)+ s(B), 2⃝, G)+ m̂2(a),
A(s(A)+ s(B)+mub

2 (a), 4⃝, G)+ s(D))
m̂2(a) =max(s(C), A(s(C), 3⃝, G)+ s(E)).

The disjunctive information is handled in the solver by replacing the max operator by non-deterministic equations and
finding an UB using [1]. Below, we show to the left (resp. right) the non-deterministic equations for the reachability-
based strategy Gr before (resp. after) the elimination of the unreachable classes computed in Example 10. The notation
s(C) indicates setting s(C) to zero every C that belongs to collectible classes:

m̂1=s(A)
m̂1=A(s(A), 1⃝, Gr)+ s(B) = s(A)+ s(B)
m̂1=A(s(A)+ s(B), 2⃝, Gr)+ m̂2(a) = s(A)+ s(B)+ m̂2(a)
m̂1=A(s(A)+ s(B)+mub

2 (a), 4⃝, Gr)+ s(D)= s(A)+ s(B)+ s(C)+ s(E)+ s(D)
m̂2(a)=s(C)
m̂2(a)=A(s(C), 3⃝, Gr)+ s(E) = s(C)+ s(E).

The UBs obtained from these equations using [1] are:

m̂ub
2 (a) = s(C)+ s(E)
m̂ub

1 = s(E)+max(s(A)+ s(B)+ s(C), s(D)).

This UB is still not as good as R of Fig. 1. This is because we need the partial evaluation transformation that will be explained
in the next section. If we consider the scope-based GC strategy Gs we obtain equations as the case of Gr except for the fourth
equation which becomes:

m̂1 = A(s(A)+ s(B)+mub
2 (a), 4⃝, Gs)+ s(D) = s(A)+ s(B)+ s(C)+ s(E)+ s(D).

Unlike the case of reachability, here types s(A) and s(B) are not collected since they are created in m1. The UB obtained for
m2 is equal to the one of case Gr and, form1, it is:

m̂ub
1 = s(A)+ s(B)+ s(E)+max(s(C), s(D))

which is exactly S of Fig. 1. Regarding the case of the liveness-based strategy Gl, we obtain also the same equation as the
case of Gr except for the fourth and sixth equations which are as follows:

m̂1=A(s(A)+ s(B)+mub
2 (a), 4⃝, Gl)+ s(D) = s(A)+ s(B)+ s(C)+ s(E)+ s(D)

m̂2(a)=A(s(C), 3⃝, Gl)+ s(E) = s(C)+ s(E).

In contrast to the case of Gr and Gs, in the equation of m1 we eliminate type E since it becomes dead at program point 4⃝,
and, in the equation of m2 we eliminate C since it is already dead when reaching program point 3⃝. The UBs obtained from
these equations are:

m̂ub
2 (a) = max(s(C), s(E))

m̂ub
1 = max(s(A)+ s(B)+ s(C), s(A)+ s(B)+ s(E), s(D)).

Again, this UB is less precise than L of Fig. 1, a partial evaluation transformation is needed in order to obtain the same one.
In summary, we get the following UBs for the peak memory consumption of m1 w.r.t scope-based, reachability-based and
liveness-based GC strategies:

S = s(A)+ s(B)+ s(E)+max(s(C), s(D))
R = s(E)+max(s(A)+ s(B)+ s(C), s(D))
L = max(s(A)+ s(B)+ s(C), s(A)+ s(B)+ s(C)+ s(E), s(D)).

Recall that R and L are still not as precise as those of Fig. 1.

Informally, the following soundness theorem ensures that our analysis correctly approximates the peak of a procedure’s
execution for any GC scheme G in the two scenarios explained in Section 1.2.

Theorem 20 (Soundness). Let P be a program with an entry procedure p, G be the GC strategy, and p̂ub(x̄) an UB for the
corresponding peak heap space equations generated in Definition 18. Assuming that we start the execution from an initial state
S0 = ⟨⊥, p(⟨x̄⟩, ⟨ȳ⟩), tv0⟩; h0 then, for any complete trace t, it holds p̂ub(v̄) ≥ peak(t) where v̄ = α(x̄, tv0, h0) if one of the
conditions hold:

(i) G is applied as soon as objects become collectible; or
(ii) the heap size is fixed to p̂ub(v̄) and G is applied when we reach this limit.
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Example 21. By applying Definition 18 to the first peak heap space equation generated for m in Example 4, and splitting
the max operator, we obtain

m̂(n) = max(s(Tree1),
= A(s(Tree1), b⃝, G)+ ĝ(n),
= A(s(Tree1)+ gub(n), c⃝, G)+ f̂ (n, s1),
= A(s(Tree1)+ gub(n)+ f ub(n, s1), d⃝, G)+ m̂(s2),
= A(s(Tree1)+ gub(n)+ f ub(n, s1)+mub(s2), e⃝, G)+ m̂(s3))

m̂(n) = 0
f̂ (n, l) = max(f̂1(n, r), A(f ub1 (n, r), g⃝, G)+ f̂2(l, r ′))
f̂1(i, r) = max(s(Long3), A(s(Long3), i⃝, G)+ f̂1(i′, r ′))
f̂1(i, r) = 0
f̂2(l, r) = max(s(Integer4), A(s(Integer4), i⃝, G)+ f̂2(l′, r ′))
f̂2(l, r) = 0
ĝ(n) = max(ĝ(s0), A(gub(s0), i⃝, G)+ s(List2))
ĝ(n) = 0.

These equations can be specialized to a specific garbage collection strategy, as we have done in Example 19, using the total
UBs of Example 5 and the collectible information from Examples 8 and 10–12. After solving the resulting equations we get
the following UBs for the cases of Gr and Gl:

m̂ub(n) =(2nat(n)
− 1) ∗ s(Tree1)+max(s(Long3),s(Integer4))+ nat(n) ∗ s(List2)

f̂ ub(n) =max(s(Long3), s(Integer4))
f̂ ub1 (l, r)=s(Long3)
f̂ ub2 (i, r)=s(Integer4)
ĝub(n) =nat(n) ∗ s(List2).

and for the case of Gs the peak consumption is equal to the total allocation bound of Example 5 except for m which is:

m̂ub(n)=(2nat(n)
− 1) ∗ (s(Tree1)+ nat(n) ∗ s(List2))+ nat(n) ∗max(s(Long3),s(Integer4)).

The difference between Gs and an ideal GC is that, in the latter, the memory required by g is accumulated only once to the
memory requirement of m, while scope-based GC requires space for allocating g an exponential number of times. This is
because the List2 objects are created in g and become unreachable (resp. dead) in a different scope m (resp. f).

The above example illustrates the power of our method in the kind of upper bounds we infer: we capture exponential,
logarithmic and polynomial memory bounds. This improves over type-based memory usage analyses [21] which are often
restricted to linear upper bounds.

6. A partial evaluation transformation of recurrence relations

The technique in Section 5 obtains precise UBswhen objects become collectible in the same rule in which they have been
created. However, if an object becomes collectible in another rule (e.g., of a called method), the effect of removing it might
be delayed until it becomes visible in the rule in which they have been created, which might result in a loss of precision.
This happens in the program of Fig. 1, when reaching program point 3⃝ in m2, the object to which the variable ‘‘a’’ refers is
dead, and the object to which ‘‘a.f’’ refers is both dead and unreachable. However, the equations that we generate for m1 in
Example 19 (both for Gl and Gr ) do not take advantage of this information but rather, they use the information that such
objects are dead and unreachable at 4⃝, i.e., only upon exit from m2. This prevents us from obtaining the precise UBs R and
L in Fig. 1.

The well-known technique of partial evaluation [22] (PE for short) gives us a leeway to solve this accuracy problem. PE
is an automatic program transformation technique whose goal is to specialize programs by propagating static information
by means of unfolding. In our context, the notion of unfolding corresponds to the intuition of replacing a call to a relation
by the definition of the corresponding relation, and therefore merging the corresponding rules into the same equation and
makingmore program points visible. Observe that there is no static data w.r.t. the program is going to be specialized. Hence,
we apply a very simple form of partial evaluation whose main component is the unfolding operator.

Example 22. Let us consider again the program depicted in Fig. 1, and the GC strategy Gl. Note that the objects to which
the variable a and the field a.f point (i.e., those of type A and B), which are created in m1, become dead at program point
3⃝. In particular, they become dead before creating the object of type E. This means that, in order to get the optimal
peak memory consumption w.r.t. Gl, one should take into account that those objects are collected before creating E, and
not just accumulating s(E) to the current consumption. This would allow stating that the consumption after creating E is
max(s(A)+ s(B), s(E)) instead of s(A)+ s(B)+ s(E).
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With the techniques developed so far, this is not possible because of the following reasons: (1) when generating the
equations of m1, we do not look into the program points of m2, but only on what happens upon exit fromm2; and (2) when
generating the equations of m2, since the analysis is modular, we do not consider the caller and thus we cannot collect A
and B before creating E, we even do not know how many objects of type A and Bwe have at that point.

As we have explained above, one way to solve this problem is to unfold m2 inside m1. This makes them belong to the
same rule. Thus, when generating the equations of m1 we can take into account that A and B are collected before creating
E, since the program point 3⃝ now belongs to the same rule in which A and B are created. It is important to note that this
unfolding is not applied to the source program, but rather to the equations generated for the total consumption since they
are the ones used to generate the peak consumption equations. In what follows we develop the details of this approach for
the program of Fig. 1.

Consider the total memory allocation equations of m1 and m2 of Example 4. Unfolding the call to m2 into its calling
context results in the following equation:

m1 = s(A)+ 1⃝s(B)+ 2⃝s(C)+ 3⃝s(E)+ 4⃝s(D).

From it, by applying Definition 18 and splitting the max into several equations, we obtain the following equations

m̂1=s(A), =s(A)
m̂1=A(s(A), 1⃝, Gr)+ s(B) =s(A)+ s(B)
m̂1=A(s(A)+ s(B), 2⃝, Gr)+ s(C) =s(A)+ s(B)+ s(C)
m̂1=A(s(A)+ s(B)+ s(C), 3⃝, Gr)+ s(E) =s(A)+ s(B)+ s(C)+ s(E)
m̂1=A(s(A)+ s(B)+ s(C)+ s(E), 4⃝, Gr)+ s(D)=s(A)+ s(B)+ s(C)+ s(E)+ s(D).

Solving this equation results exactly in the optimal UB R of Fig. 1. The key point is to incorporate the reachability information
at program point 3⃝ in the equation of m1. We could not do it in Example 19 since it was in a different rule. Similarly, for Gl
we obtain the following equations:

m̂1=s(A), =s(A)
m̂1=A(s(A), 1⃝, Gl)+ s(B) =s(A)+s(B)
m̂1=A(s(A)+s(B), 2⃝, Gl)+ s(C) =s(A)+s(B)+s(C)
m̂1=A(s(A)+ s(B)+ s(C), 3⃝, Gl)+ s(E) =s(A)+s(B)+s(C)+ s(E)
m̂1=A(s(A)+ s(B)+ s(C)+ s(E), 4⃝, Gl)+ s(D)=s(A)+s(B)+s(C)+s(E)+ s(D).

Solving this equation results exactly in the optimal UB L of Fig. 1. Note that UBs of Fig. 1 are optimal, i.e., they describe the
exact peak memory consumption w.r.t. the corresponding GC strategy.

The unfolding process could be defined on the programming language, however, defining it on theRRhas themain advantage
of beingmuch simpler. This is because RR aremade up only of constants s(C), calls to other equations and linear constraints.
This kind of unfolding is basically the same as that of clauses in constraint logic programming [16] and that of the UB solver
of [1].

Definition 23 (Unfolding Step). Let E be the recurrence equation ‘‘p(x̄) = b1 + · · · + bi−1 + q(x̄i)+ bi+1 + · · · + bn, ϕ’’, and
E ′ a renamed apart equation q(ȳ) = c1 + · · · + cm, ϕ′’’ defining q such that vars(E)∩ vars(E ′) = ∅. Then, the unfolding of E
w.r.t. q(x̄i) and E ′ is ‘‘p(x̄) = b1 + · · · + bi−1 + c1 + · · · + cm + bi+1 + · · · + bn, ϕ ∧ ϕ′ ∧ {x̄i = ȳ}’’.

The unfolding step basically generates a new equation by: substituting the (renamed apart) definition of q in its calling site,
joining the constraints of both p and q (ϕ ∧ ϕ′), and unifying the variables of the caller and the variables of the renamed
apart definition ({x̄i = ȳ}). When the call we want to unfold is defined by several equations, the above operation is repeated
for each of them, possibly generating several equations. When ϕ′ ∧ ϕ ∧ {x̄i = ȳ} is unsatisfiable, no equation is generated
since this does not correspond to a valid execution.

Note that when we unfold an equation, we lose the scope in which the corresponding objects were created. This in turn
might result in a loss of precisionwhen eliminating the collectible information for a procedure. Fortunately, this can be easily
solved by symbolically keeping the scope boundaries in order to know where the objects come from (since our bounds are
symbolic it is possible to do so). We can then slightly modify Definition 15 to handle this syntax. For example, the unfolded
rule for m1 would be:

m1 = s(A)+ 1⃝s(B)+ 2⃝m2[s(C)+ 3⃝s(E)] + 4⃝s(D)

wherem2[· · · ] is used to syntactically keep the scope boundaries of the unfolded procedure. For simplicity, in what follows
we ignore this extension.

Performing an unfolding step solves this precision problem when the object is created in a procedure p and becomes
collectible in the unfolded procedure q which is called from p. However, there are scenarios where more steps are required.
For example, an object might become collectible not during an immediate call but rather in a transitive one. Even more, an
object can be created and become collectible in procedures that do not have a caller/callee relation. In general, unfolding
steps should be applied repetitively until the program points that correspond to the creation and collection of an object are
as close as possible in the equations. This process in the presence of recursive relations (coming from loops) might be non-
terminating. Fortunately, the problem has been well studied in the PE field and we can adopt any terminating strategy [24].
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For instance, in [1], the strategy is to leave one relation per recursive strongly connected component (SCC) and unfold the
remaining ones. Note that the purpose of unfolding recursive relations is to transformmutual recursion into direct recursion,
when possible, by eliminating all relations but one in the given SCC. In order to take more advantage of collectible classes,
it is even possible to unfold a recursive SCC into other SCCs, which corresponds to loop unrolling. In PE terminology, a
binding-time analysis is an analysis which is used to infer a set of predicates which cannot be unfolded, either because it
could endanger termination or because it would not be profitable (e.g., it would not make the points of interest closer in
the rules). The set of predicates resulting from such analysis is a binding-time annotation (BT) Our definition of partially
evaluated equations can be used with any BT which ensures termination.

Definition 24 (Partially Evaluated RR). Given a set of RRs and a BT, the partially evaluated RRs are obtained by iteratively
unfolding (Definition 23) all calls in the rhs of the equations that do not belong to the set of predicates in BTw.r.t. its defining
equations.

Once the RR have been partially evaluated, we apply Definition 18 to them in order to generate the corresponding peak heap
space equations.

Example 25. For the simple example of Fig. 1, if the BT includes only m1, we obtain the RR in Example 22 and the optimal
R and L UBs of Fig. 1.

Theorem 26 (Soundness). Let P be a program with an entry procedure p, G the used GC technique, and p̂ub(x̄) an UB for the
corresponding peak heap space equations generated in Definition 18 after PE. Assuming that we start the execution from an initial
state S0 = ⟨⊥, p(⟨x̄⟩, ⟨ȳ⟩), tv0⟩; h0 then, for any complete trace t, p̂ub(v̄) ≥ peak(t) under the same conditions as in Theorem 20
where v̄ = α(x̄, tv0, h0).

The key differencewith the PE of our previouswork [1] is thatwe apply PE previously to the generation of the peak heap space
RR, while [1] uses PE only to solve them. This is an essential difference since we would not be able to obtain the propagation
of collectible information that we need to obtain peak heap space bounds by using PE like [1]. As other differences, we can
apply PE with any terminating BT while [1] requires checking further conditions on the associated graph.

7. Experimental evaluation

We have implemented our technique in COSTA [4], a cost and termination analyzer for Java bytecode. Our
implementation can be tried out through its web interface at http://costa.ls.fi.upm.es by selecting the memory cost model.
The system allows selecting the GC strategy among this set of options: none, scope, reachability and liveness, which
respectively correspond to the total memory consumption and the peak consumption with Gs, Gr or Gl. Our reachability
analysis is based on the context-insensitive points-to analysis of [38], and the heap liveness analysis is similar to the region-
based liveness of [12]. The PE transformation leaves one relation per SCC as explained in Section 6, and the obtained CRs are
solved using the PUBS CRs solver [1].

We assess the practicality of our proposal on the standardized set of benchmarks in the JOlden suite [11]. Indeed, the
benchmarks used in the experiments have been slightly modified w.r.t. the original versions in order to avoid programming
patterns like enumerators that require field-sensitive analysis which makes the overall cost analysis around twice more
expensive (see [2]). Also, in few methods whose cost depends on the size of an array which is a field of an object, we had
to explicitly pass such array as method argument. This is because the size abstraction used in COSTA, path-length, would
lose this information. A more accurate size abstraction like the one used in [29] could handle these cases automatically. The
modified benchmarks are available from the COSTA website above.

The JOlden benchmark suite was first used in [13] in the context of memory usage verification for a different purpose,
namely for checkingmemory adequacyw.r.t. given specifications, but there is no inference of UBs as our analysis does. It has
been also used in [10] for our same purpose, i.e., the inference of peak consumption. However, since [10] does not deal with
memory-consuming recursive methods, the process is not fully automatic in their case and they have to provide manual
annotations. Also, they require invariants which sometimes have to be manually provided. In contrast, our tool is able to
infer accurate peak heap UBs in a fully automatic way, including logarithmic and exponential complexities.

Table 1 shows the UBs obtained by COSTA on a set of selected methods of the JOlden suite. The symbol ‘‘=’’ in Table 1
indicates that the corresponding UB is the same as the one in the cell to its left. Each row in the table corresponds to the
results of one method. The first column indicates the package and class to which the method belongs and its name in the
syntax ‘‘package/class.method’’ (with some abbreviations due to space limitations). For each method, we infer the total
allocation UB (column UT) and the peak heap consumption using the different GC strategies (column US for Gs, UR for Gr ,
and UL for Gl). The parameters in the UBs are abbreviations of the original variable or field names they represent, or t, that
represents the this object. Note that UT ≥ US ≥ UR ≥ UL holds since (i) the total consumption is clearly larger than the
peak consumption under any GC strategy; and (ii) clearly Gl is more general than Gr which is more general than Gs. We
have considered all methods that consume memory that are invoked within the method main of the main class of each
package in the JOlden. In general, this requires the analysis of the majority of the methods in the corresponding package.
Method parseCmdLine is common in most packages and therefore it has only been considered once (last row). We have
preferred to analyze the invoked methods within the main’s instead of analyzing the main’s themselves because: (1) In

http://costa.ls.fi.upm.es
http://costa.ls.fi.upm.es
http://costa.ls.fi.upm.es
http://costa.ls.fi.upm.es
http://costa.ls.fi.upm.es
http://costa.ls.fi.upm.es
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Table 1
Total, scope, reachability and liveness upper bounds by COSTA on the JOlden.

Method UT US UR UL

bh/Tree.<init> 4 = = =
bh/Tree.createTestData 24*nat(nbody) + 32 = = =
bh/Tree.stepSystem not available = = =
bh/MathVector.toString 8 = 2 =
bi/Value.createTree 3*nat(size-1) = = =
bi/Value.inOrder 4*2nat(t-1) - 2 2*nat(t-1) + 2 2 2

em3d/BiGraph.create
2*nat(nN-1)*nat(nD) + 2*nat(nN) = = =
+ 14*nat(nN-1) + 2*nat(nD) + 19

em3d/Em3d.compute 4*nat(numIter) = = =
em3d/BiGraph.toString 4*nat(t-1) + 2 = 4 =
hth/Village.createVill 26/3*(4nat(level) - 1) = = =
hth/Village.simulate not available = = =
hth/Village.getResults 28/3*4nat(t)-1 - 7/3 = = =

mst/Graph.<init>
4*nat(nv)2 + nat(nv)*nat(nv/4) = = =
+ 6*nat(nv)

mst/MST.computeMST 4*nat(nv-1) = 4+2*nat(nv-1) 2

per/QTN.createTree 28/3*4nat(levels) - 7/3 = = =

pow/Root.<init>
nat(nf)*(6*nat(nl)*nat(nb)*nat(nlv) + = = =
9*nat(nl)*nat(nb) + 6*nat(nl)*nat(nlv)
+ 6*nat(nb)*nat(nlv) + 22*nat(nl) +
9*nat(nb) + 6*nat(nlv) + 23) + 4

pow/Root.toString 2 = = =

pow/Lateral.compute
8*nat(t-3)2*nat(nl) +

8 = =
16*nat(t-3)*nat(nl) + 8*nat(nl)

tadd/TreeNode.<init> 10*2nat(levels-1) - 6 = = =
tsp/Tree.buildTree 13*nat(2*n - 1) 7*nat(2*n - 1) = =
tsp/Tree.printVO 2*nat(t-1) + 4 = 4 =
vor/Vertex.createPs 5*nat(2*n - 1) = = =
vor/Vertex.buildDelTr not available = = =
vor/Edge.outputVorDiag not available = = =
vor/Vertex.print 4*2nat(t-1) - 2 2*nat(t-1) + 2 2 2
parseCmdLine nat(args) + 4 = = 4

many cases we obtain more interesting and useful UBs which are fully parametric. The main instead performs some calls
with constant values thus producing less interesting UBs. For instance, this is the case of the call to Root.<init> within
pow.Power.main. Method Root.<init> has four parameters all of which influence its memory consumption (see the
UB in Table 1). However this parametricity is lost when analyzing pow.Power.main since the call to Root.<init> is
performedwith constant values (thus obtaining a constantUB for it). (2) Thisway it is clearer to understand the obtainedUBs.
Otherwise, expressions possibly involving parameters of different methods are all mixed in the same UB. (3) As mentioned
below, there are some methods that COSTA cannot handle due to limitations unrelated to our analysis. This way we can
concentrate on those methods which can be handled.

It can be observed that the obtained UBs are all numerical. This is done by substituting the symbolic expressions s(C)
by some numeric measure. In particular, for objects we consider the number of fields C has, and for arrays we consider
their sizes. This way the CRs solver of COSTA can perform mathematical simplifications and therefore we can get readable
UBs. In addition to this measure, COSTA allows counting the number of objects and/or arrays, and number of bytes, as
well as obtaining symbolic UBs with the concrete s(C) expressions. For instance, the symbolic UB for the total memory
consumption of method tsp/Tree.buildTree is (2*nat(n)-1)*(s(Tree) + 2*s(Random)). Since class Tree has 7
fields and Random has 3, the expression is simplified to 13*nat(2*n - 1). Let us observe that the symbolic UB for the peak
consumption with Gs does not include the Random objects and therefore we have 7*nat(2*n - 1). The UB obtained by
the solver of COSTA is less precise than the one shown in the table. Only in this case, we havemanually solved the equations
in order to illustrate the real gains we can achieve. Obtaining this solution automatically requires more sophisticated
techniques for solving recurrences.

Out of the twenty-sixmethods that have been considered, which in turn required the analysis of more than two-hundred
methods, there are four methods for which COSTA cannot produce an UB. Method bh/Tree.stepSystem contains a
loop whose termination condition does not depend on the size of the data structure, but rather on the particular value
stored at certain locations within the data structure. In general, it is complicated to bound the number of iterations of
this kind of loop. A similar behavior also occurs in vor/Vertex.buildDelTr and vor/Edge.outputVorDiag. In
hth.Village.simulate, COSTA fails to estimate the path-length of the traversed data structure since it passes through
fields of type array. The reason for this failure is that arrays are abstracted to their length (number of elements), and therefore
once we pass through an array we lose the corresponding path-length information. This is easily solvable by maintaining
an additional abstraction for arrays which approximates their path-length. It should be noted that, in these four cases, the
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Table 2
Analysis times of COSTA on the benchmarks of Table 1.

Method TT TS TR TL

bh/Tree.<init> 0.110 0.112 (0.010) 0.112 (0.013) 0.117 (0.014)
bh/Tree.createTestData 9.104 9.145 (0.241) 27.945 (0.340) 27.832 (0.340)
bh/Tree.stepSystem - - - -
bh/MathVector.toString 0.283 0.286 (0.009) 0.317 (0.012) 0.317 (0.012)
bi/Value.createTree 0.190 0.193 (0.033) 0.246 (0.035) 0.246 (0.034)
bi/Value.inOrder 0.248 0.255 (0.011) 0.460 (0.013) 0.465 (0.013)
em3d/BiGraph.create 0.449 0.458 (0.042) 0.477 (0.051) 0.476 (0.049)
em3d/Em3d.compute 0.420 0.424 (0.020) 0.496 (0.029) 0.496 (0.028)
em3d/BiGraph.toString 0.287 0.287 (0.018) 0.341 (0.023) 0.342 (0.024)
hth/Village.createVill 0.697 0.704 (0.082) 1.040 (0.111) 1.043 (0.110)
hth/Village.simulate - - - -
hth/Village.getResults 1.551 1.627 (0.035) 4.506 (0.037) 4.517 (0.037)
mst/Graph.<init> 1.604 1.615 (0.071) 1.897 (0.098) 1.931 (0.100)
mst/MST.computeMST 3.557 3.564 (0.072) 9.195 (0.118) 9.198 (0.115)
per/QTN.createTree 2.439 2.448 (0.095) 5.803 (0.141) 5.727 (0.141)
pow/Root.<init> 0.755 0.757 (0.139) 0.848 (0.204) 0.840 (0.200)
pow/Root.toString 1.962 2.049 (0.115) 2.479 (0.154) 2.530 (0.158)
pow/Lateral.compute 0.170 0.176 (0.009) 0.175 (0.012) 0.177 (0.012)
tadd/TreeNode.<init> 0.132 0.133 (0.021) 0.139 (0.019) 0.138 (0.019)
tsp/Tree.buildTree 10.586 10.590 (0.083) 15.186 (0.101) 15.142 (0.103)
tsp/Tree.printVO 1.473 1.477 (0.045) 2.404 (0.040) 2.411 (0.039)
vor/Vertex.createPs 0.363 0.364 (0.047) 0.588 (0.055) 0.587 (0.055)
vor/Vertex.buildDelTr - - - -
vor/Edge.outputVorDiag - - - -
vor/Vertex.print 0.461 0.464 (0.014) 1.630 (0.017) 1.629 (0.017)
parseCmdLine 0.665 0.667 (0.025) 0.928 (0.033) 0.879 (0.033)

limitations are not related to the analysis presented in this paper but to external components which can be independently
improved.

In order to assess the precision of our analysis we have calculated manually closed-form UBs of the worst-case cost for
all methods (except for those in which COSTA fails) for the different GC strategies. The main conclusion is that the results
obtained by our analysis are very accurate. Out of a total of 88 configurations (4 configurations for each of the 22 methods),
COSTA is fully precise, i.e., it infers exactly the same UB manually, in 83 configurations. In the other 5 cases, the source of
imprecision is not related to our analysis but rather to external components (like the CRs solver used to obtain a closed-form
UB from our equations, or the path-length abstraction) as we explain below:

• Total allocation for method pow/Lateral.compute. The UB obtained manually is Σ t−3
i=1 i*nlv*8, whereas COSTA

obtains the UB 8*nat(t-3)2*nat(nlv) + 16*nat(t-3) * nat(nlv) + 8*nat(nlv). The imprecision is due to the
path-length abstraction [32] used in the underlying size analysis of COSTA.
• Method tsp/Tree.printVO. For both total allocation and heap consumption w.r.t. Gs, the manually obtained UB is
2*nat(t-1) + 2, whereas COSTA obtains the UB 2*nat(t-1) + 4. The imprecision is negligible, it is due to way the
CRs solver handles base-cases.
• Total allocation for method tadd/TreeNode.<init>. The manually obtained UB is 6*2nat(levels-1), whereas

COSTA obtains 10*2nat(levels-1) - 6. The imprecision is again due to the CRs solver, i.e., the generated equations
precisely capture the memory consumption, however, the CRs solver fails to obtain the exact UB.
• Total allocation for method vor/Vertex.print. The UB obtained manually is 2*2nat(t-1), whereas COSTA obtains
4*2nat(t-1) - 2. The imprecision is again due to the CRs solver (as in the above case).

Note that, the fact that inmany cases there are no variations between the total and the peak consumption is because in those
cases there are no temporary objects. This is the case of most methods whose purpose is to initialize the data structures that
are later used by the benchmarks, namely all constructors (named <init>) and all methods whose name includes the word
‘‘create’’ or ‘‘build’’.

A final interesting point to observe is that the majority of main methods start by invoking method parseCmdLine.
Let E be the UB of the memory consumed by the rest of the calls. Then, the total memory consumption of method main
is ‘‘nat(args) + 4 + E’’. Since the objects created inside parseCmdLine do not escape from their scope, the peak
consumption inferred by COSTA w.r.t. Gs is ‘‘max(nat(args) + 4, E)’’. Interestingly, if we consider the Gl strategy the
peak consumption is simply ‘‘E’’, i.e., it does not depend anymore on parameter args.

Table 2 shows the total runtimes of COSTA for inferring the UBs of Table 1. The experiments have been performed on
a MacBook Air with 1.6 GHz dual-core Intel Core i5 processor and 4 GB memory. All runtimes that appear in the table are
in seconds, and they are calculated as the average runtime of 5 executions of the corresponding benchmark. Columns TT,
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TS, TR and TL show, respectively, the total runtime taken by COSTA for inferring the total allocation UB, and the peak heap
consumption UB using the GC strategies Gs, Gr , and Gl. Columns TS, TR and TL include also in parenthesis the runtime for
inferring the corresponding collectible types, which is done by using escape, reachability and liveness analysis respectively.
Clearly, the later runtimes are negligible when compared to the total runtime. Note that total runtime in each column
includes the runtime of several static analyses and program transformations [4] applied by COSTA, e.g., transforming the
bytecode to the intermediate representation, size analysis, etc.

There are 4 benchmarks in which the runtimes in columns TS, TR and TL are significantly higher than the one in column
UT. This is because in these cases the number of peak heap space equations is much larger than the number of total heap
space equations. Recall that according to Definition 18 every total heap space equation induces several peak heap space
equations, depending on the number of calls and memory allocation instructions in the corresponding rule. For the case
of Gs, Definition 18 is optimized in the implementation to consider only program points that correspond memory can be
reclaimed only upon exit from methods. This way we generate less equations than in the case of Gr and Gl. This is why the
TS is smaller that TR and TL.

8. Related work

There has been much work on analyzing program cost or resource complexities, but the majority of it is on time analysis
(see, e.g., [39]). Analysis of live heap space is different because it involves explicit analysis of all program states. Most of
the work of memory estimation has been studied for functional languages. The work in [20] statically infers, by typing
derivations and linear programming, linear expressions that depend on functional parameters while we are able to compute
non-linear bounds (exponential, logarithmic, polynomial). The technique is developed for functional programs with an
explicit deallocation mechanism while our technique is meant for imperative bytecode programs which are better suited
for an automatic memory manager.

The techniques proposed by Unnikrishnan et al. [35,34] consist in, given a function, constructing a new function that
symbolically mimics the memory consumption of the former. Although these functions resemble our cost equations,
their computed function has to be executed over a concrete valuation of parameters to obtain a memory bound for that
assignment. Unlike our closed-form UBs, the evaluation of that function might not terminate, even if the original program
does. Other differences with the work by Unnikrishnan et al. are that their analysis is developed for a functional language by
relying on reference counts for the functional data constructed, which basically count the number of pointers to data and that
they focus on particular aspects of functional languages such as tail call optimizations. Moreover, the problem of inferring
the peak heap space is different from memory prediction in functional languages since, due to the absence of mutable data
structures, GC can be modeled in a scope-based fashion where the scopes are determined by the corresponding function
definitions.

For imperative object-oriented languages, related techniques have been recently proposed. For an assembly language,
[14] infers memory resource bounds (both stack usage and heap usage) for low-level programs (assembly). The approach
is limited to linear bounds, they rely on explicit disposal commands rather than on automatic memory management. In
their system, dispose commands can be automatically generated only if alias annotations are provided, which is similar to
our reliance on types. For a Java-like language, the approach of [10] infers UBs of the peak consumption by relying on an
automatic memory manager as we do. They do not deal with recursive methods and are restricted to polynomial bounds.
Besides, our approach is not tied to a particular GC model and computes accurate bounds for exponential, logarithmic,
etc. complexities (unlike [10,14]) and it is fully automatic (unlike [21]). Other approaches to resource usage analysis are
developed to measure other types of resources, namely [18] predicts number of instructions, [3] is generic in the definition
of cost model but neither of them supports peak memory consumption, since the underlying techniques are developed to
measure accumulative resources, while memory usage is a resource that increases and decreases along the execution. Other
work, such as [13], provides a framework for checking that the memory usage conforms to user-supplied specifications.
User-supplied specifications may be hard to provide and are likely to be impractical for bytecode programs.

There are a number of improvements and extensions that can be incorporated in order to increase precision our heap
space analysis, but which do not require any modification to the formal framework. An important extension is to consider
a field-sensitive analysis. When data is stored in the heap, such as in object fields (numeric or references), keeping track of
their value during static analysis becomes rather complex and computationally expensive. Analyses which keep track (resp.
do not keep track) of object fields are referred to as field-sensitive (resp. field-insensitive). A resource analysis can be made
field-sensitive by applying techniques as those developed in [17,28,26,2].

Another source is imprecision iswhen programs traverse cyclic data structures. The problem ismainly due to the difficulty
in bounding the number of loop iterations. Consider the loop while(x.data != e) x = x.next; and assume that x points to a
cyclic linked list. In order to bound the number of iterations, one needs to (1) verify that there is an element equal to e in x;
(2) verify that the loop will eventually visit all the elements; and (3) bound the number of elements in the data structure.
The difficulty lies in verifying (1) and (2), since they require under-approximations. Also, there is imprecision due to the
over-approximation applied by the analyses which infer sharing, acyclicity, and constancy information (e.g., the analysis
can infer that a variable might point to a cyclic data-structure while in practice it does not). One can develop more precise
analyses for inferring such properties and overcome precision problems at the price of performance.
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9. Conclusions and future work

We have presented a general approach to automatic and accurate live heap space analysis for garbage-collected
languages. As a first contribution, we propose how to obtain accurate bounds on the active memory at a program point,
by combining the total allocation performed up to this point together with information inferred on the object lifetimes,
i.e., an approximation of the set of objects which can be garbage collected at that point. Then, we introduce a novel form
of peak consumption cost relation which uses the computed active memory bounds and precisely captures the actual heap
consumption of programs’ execution for garbage-collected languages. Such cost relations can be converted into closed-form
UBs by relying on existing UB solvers [1]. For the sake of concreteness, our analysis has been developed for object-oriented
bytecode, though the same techniques can be applied to other languages with garbage collection.

Finally, the memory consumption for executing a program typically include both the heap and the frame stack usage.
This paper focuses on the heap space because estimating the maximal height of the frames stack from our heap analysis
is straightforward. In particular, given a rule r ≡ p(⟨x̄⟩, ⟨ȳ⟩) ← g, b1, . . . , bn, where bi1 . . . bik are the calls in r , with
1 ≤ i1 ≤ · · · ≤ ik ≤ n and bij = qij (⟨x̄ij⟩, ⟨ȳij⟩), its corresponding equation would be

p(x̄) = max(1+ qi1(x̄ij), . . . , 1+ qi1(x̄ik)) ϕr

which takes the maximal height from all possible call chains. Each ‘‘1’’ corresponds to a single frame created for the
corresponding call. Note that in this setting, tail call optimization can be also supported, by using an analysis that detects
calls in tail position, and then replaces their corresponding 1’s by 0’s. This is a subject for future work.
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Appendix. Proofs of theorems

We start by defining an operational semantics for the CRs. This semantics is later used to: (1) formally define themeaning
of an upper bound for a CR; and (2) base the proofs on relating program traces to CRs traces.

A CRs state is a pair ⟨b1 · · · bn, e⟩. The first component consists of the expressions b1 · · · bn that have to be evaluated.
Each bi is either a call of the form p(v̄) where v̄ are integer values, or a cost expression that does not involve free variables
(arithmetic expression over terms of the form s(C)). The second component e is a cost expression that refers to the cost
accumulated so far. Note that e does not have variables, i.e., vars(e) = ∅. The operational semantics consists of the following
two rules:

(1)
p(x̄) = b1 + · · · + bn, ϕ ∈ P, σ |= x̄ = v̄ ∧ ϕ

⟨p(v̄) · bb, e⟩ → ⟨b1σ · · · bnσ · bb, e⟩
(2)

e′ is a cost expression

⟨e′ · bb, e⟩ → ⟨bb, e+ e′⟩

Rule (1) is for the case of evaluating a call to a CR. It first looks for a matching equation and a satisfying assignment σ for the
constraint x̄ = v̄ ∧ ϕ (i.e, choosing values for all variables in the constraint such it is satisfied), and then adds the ground
instances of all b1, . . . , bn to the sequence of expressions to be evaluated (the ground instance of bi is biσ , which replaces
the variables in bi by their values from σ ). Rule (2) is for the case of accumulating a (ground) cost expression, which simply
adds it to the total cost. An execution in this setting starts from an initial state ⟨p(v̄), 0⟩, and, if it terminates, it ends in a final
state ⟨ϵ, e⟩. We use→∗ for the transitive relation of→. We refer to such execution as CR traces. Note that in the first rule,
choosing an equation and a satisfying assignment are non-deterministic choices. Therefore, for an initial state ⟨p(v̄), 0⟩we
might have many CR traces (possibly infinite).

Definition 27 (Upper Bound). A closed-form function pub(x̄) is an upper bound for a CR p, if for any ⟨p(v̄), 0⟩ →∗ ⟨bb, e⟩ it
holds that pub(v̄) ≥ e.

Proof of Theorem 6. The first theorem is an immediate consequence of the correctness of the cost analysis framework
of [3], for the memory consumption cost model M of Definition 3. In what follows we describe what the correctness
of [3] guarantees. These guarantees are also used later in the proofs of the other theorems. As notation, given a heap h, we
denote by |h| the cost expression that describes the contents of the heap h, excluding those that were already in the initial
configuration’s heap, e.g., an expression of the form 10∗s(C1)+16∗s(D2)where C1 and D2 are types (a class annotatedwith
allocation site). Recall that we have assumed that objects in the initial heap are not collectible during the execution. �
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Lemma 28 (Guarantees of [3]). Let P be a program with an entry procedure p, and t ≡ S0 ❀∗ Sn a (possibly incomplete) trace
such that S0 ≡ ⟨⊥, p(⟨x̄⟩, ⟨ȳ⟩), tv0⟩; h0. Let 0 < i1 < · · · < ik ≤ n be k indexes of all states in t in which the next instruction to
be executed is a memory allocation instruction, i.e., Sij ≡ ⟨qij , new Cij · bc ij , tvij⟩ · Aij; hij . Then, using the total memory allocation
CR of P, as defined in Definition 3, we can construct a CR trace tα ≡ R0 →

∗ Rn′ where k ≤ n′ ≤ n such that:

1. R0 ≡ ⟨p(v̄), 0⟩ such that v̄ = α(x̄, tv0, h0);
2. There exists exactly k CR states of the form ⟨s(C) · bb, e⟩ in tα with indexes 0 < r1 < · · · < rk ≤ n′ such that: Rrj ≡

⟨s(Crj) · bb, erj⟩, Crj ≡ Cij where Cij is the class in ‘‘new Cij ’’ from state Sij , and erj = |hij |. Moreover, the program point
associated with s(Crj) in the CR is the program point that corresponds to the instructions new Cij .

Intuitively, given a program trace t with an initial state S0 ≡ ⟨⊥, p(⟨x̄⟩, ⟨ȳ⟩), tv0⟩; h0, then it is guaranteed that its total
memory consumption behavior can be simulated using the corresponding total memory allocation CRs starting from
R0 ≡ ⟨p(v̄), 0⟩ with v̄ = α(x̄, tv0, h0). This clearly implies that an upper bound, as defined in Definition 27, for the CR p
is also an upper bound on the total memory consumption of the program when starting from S0.

Proof of Theorem 20. In what follows we assume that we have a sound set of collectible types for all program points and
methods of P . We use existing techniques to infer them before starting our analysis, and therefore proving their soundness
is out of the scope of this article. We start with the proof of the theorem for condition (i), namely, when ‘‘objects are collected
as soon as they become collectible’’. This is equivalent to applying G in each execution step, i.e, if we are in a state Si, we apply
G on the heap of Si, and then we execute the instruction that leads to Si+1. The proof is done in several steps as follows:

1. We define a G-aware CR semantics such that for a given program trace t , where G is applied in every execution step,
peak(t) is approximated by a G-aware CR trace using only the total allocation equations; and

2. We show that the G-aware CR traces, using the total allocation equations, are isomorphic to those of the CR traces, using
the peak equations.

Point (2) implies that an upper bound for the entry procedure p, when considering the peak equations, is also an upper bound
for any G-aware CR trace. Then, using point (1), we conclude that it is also an upper bound for peak(t), which is exactly what
want to prove.

The results of Lemma 28, which guarantees that the total memory consumption of t can be simulated using the total
allocation equations, implies that the peak consumption can also be simulated at the level of the corresponding tα (of
Lemma 28). Simulating G at the level of tα means: at some program points of interest, we remove collectible types (which
are sound) from the cost expression that is accumulated so far, and then we move to the next state. In what follows we
provide a possible way of simulating G at the level of the total equation.

Given a program P with an entry p, its total allocation equations S, and a closed-form upper bound function qub(x̄) for
each CR q ∈ S, we define the G-aware CR semantics by means of the following rules:

(G−1)
q(x̄) = b1 + · · · + bn, ϕ ∈ P, σ |= x̄ = v̄ ∧ ϕ,

1 ≤ j ≤ n, e′ = A(b1 + · · · + bj−1, [k, j− 1], G)σ

⟨q(v̄), e⟩ →G ⟨e′ · bjσ , e⟩

(G−2)
e′ is a cost expression

⟨e′ · bb, e⟩ → ⟨bb, e+ e′⟩
.

First observe that in order to compute the peak consumption of t , it is enough to consider only the size of the heaps in
the states of t in which the memory increases, i.e., those states that allocate memory. The G-aware CR semantics aims
at simulating all execution paths up to those states. The idea of the G-aware CR semantics is that when executing a call
q(v̄) we have to consider all execution paths that lead to a cost expression s(C) that corresponds to a ‘‘new C’’ instruction.
Rule (G−1) considers all such possibilities as follows: for each 1 ≤ j ≤ n, it assumes that b1, . . . , bj−1 has been executed
and therefore it accumulates its cost e′ and continues with bj. Note that b1, . . . , bj−1 are not executed, but rather we use
the pre-computed (sound) closed-form upper bounds on their total memory allocation, which is an over approximation of
their real execution. Moreover, instead of accumulating the total cost of b1, . . . , bj−1, it accumulates only the memory that
has been created during their execution and is still active at that program point, i.e., A(b1 + · · · + bj−1, j⃝, G). Note that
A(b1 + · · · + bj−1, j⃝, G) is sound due to the soundness of the total allocation upper bounds and that of the collectible sets.
Intuitively, any prefix of t that ends in a state Si, has a corresponding G-aware CR trace ⟨p(v̄), 0⟩ →∗G ⟨s(Ci), ei⟩ such that
ei ≥ |hi| where hi is the heap of state Si and v̄ = α(x̄, tv0, h0). Then, max({s(Ci) + ei | ⟨p(v̄), 0⟩ →∗G ⟨s(Ci), ei⟩) is an upper
bound for peak(t). �

Lemma 29. Let P be a program with an entry procedure p, G a GC strategy, and t ≡ S0 ❀∗ Sn a (possibly incomplete) trace such
that S0 ≡ ⟨⊥, p(⟨x̄⟩, ⟨ȳ⟩), tv0⟩; h0, where G is applied in every state. Then, for any Si = ⟨qi, new Ci · bc i, tvi⟩ · A; hi, there exists
a G-aware CR trace ⟨p(v̄, 0⟩ →∗G ⟨s(Ci), e⟩ such that e ≥ |hi| where v̄ = α(x̄, tv0, h0).

Now we move to step 2, which relates the G-aware CR traces that use the total allocation equations, to those CR traces that
use the peak consumption equations.
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Lemma 30. Let S1 be a total allocation CRs of a program P, and S2 its corresponding peak CRs. Then, R0 →
∗
G Rn is a G-aware CR

trace using S1, iff R̂0 →
∗ R̂n is a CR trace using S2, where R̂i is obtained from Ri by replacing each call q(v̄) by q̂(v̄).

In order to prove this lemma, we show that from two isomorphic G-aware CR state ⟨p(v̄), e⟩ and CR state ⟨p̂(v̄), e⟩, we
can move to isomorphic states ⟨e′ · q(v̄′), e⟩ and ⟨e′ · q̂(v̄′), e⟩ using the corresponding semantics. Consider one G-aware CR
execution step starting from ⟨p(v̄), e⟩. Rule (G−1) first chooses an equation ‘‘p(x̄) = b1 + · · · + bn, ϕ’’ (which has a unique
id k) and an assignment σ |= x̄ = v̄ ∧ ϕ, and then non-deterministically (on the value of j) moves to one of the following
states:

⟨b1σ , e⟩
⟨A(b1, [k, 1], G)σ · b2σ , e⟩

...
⟨A(b1 + · · · + bn−1, [k, n− 1], G)σ · bnσ , e⟩.

Nowwe consider one CR execution step of ⟨p̂(v̄), e⟩. First recall that, when generating the peak equations, a total allocation
equation ‘‘p(x̄) = b1+· · ·+ bn, ϕ’’ (with id k), is translated to the following set of peak equations (after unfolding the max):

p̂(x̄) = b̂1 , ϕ

p̂(x̄) = A(b1, [k, 1], G)+ b̂2 , ϕ
...

p̂(x̄) = A(b1 + · · · + bn−1, [k, n− 1], G)+ b̂n , ϕ.

In order to execute ⟨p̂(v̄), e⟩, Rule (1) can match p̂(v̄) with any of the above rules using the same assignment σ as above,
because we use the same constraint x̄ = v̄ ∧ ϕ, and then moves to one of the following CR states:

⟨b̂1σ , e⟩
⟨A(b1, [k, 1], G)σ · b̂2σ , e⟩

...

⟨A(b1 + · · · + bn−1, [k, n− 1], G)σ · b̂nσ , e⟩

which are isomorphic to those of ⟨p(v̄), e⟩. Note that Rules (G−2) and (2) are identical, and therefore we do not need to
show anything for them. This completes the proof of the theorem for condition (i).

Now we move to the proof of the theorem for condition (ii). We start by the following observation which together with
the proof for condition (i) implies the correctness of the theorem for condition (ii).

Observation 1. The collectible property is monotonic, i.e., once an object becomes collectible it will remain collectible in any
future state (until it gets collected).

This observation is due to the fact, for example, that it is not possible to make unreachable (resp. dead) objects reachable
(resp. alive). The formal definition ofG (i.e., the collectible objects or types) should be carefully stated to satisfy this condition.
Those defined in Section 4 clearly satisfy this condition since they are based on reachability and liveness. The proof of the
Theorem for condition (ii) follows from its proof for condition (i) and Observation 1 as follows:

1. The proof for condition (i) guarantees that we can execute the program within the limit of p̂ub(v̄) memory if we apply G
at each state (i.e., as soon as objects become collectible).

2. Observation 1 guarantees that we can delay the application of G to a later point without the risk of not collecting
something that we would have been collected if we had applied G earlier.

3. The above twopoints imply that delayingGuntilwe are about to exceed p̂ub(v̄) is safe. If not, then either theObservation 1
is not correct, or it was not possible to execute the program within the limit of p̂ub(v̄) memory.

Note that we can exceed p̂ub(v̄) only when allocating new memory.

Proof of Theorem 26. The correctness of this theorem stems from the fact that Lemma 28 holds also if we use the partially
evaluated total allocation equations. This is because of the correctness of PE [22,24], which only unfolds calls to equations
by their definitions exactly as the CR operational semantics does in Rule (1) when calling such equation. Then, the rest of
the proof is identical to that of Theorem 20, which is based on the correctness of Lemma 28. �
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