
Combining Static Analysis and Testing
for Deadlock Detection ?

Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel

Complutense University of Madrid (UCM), Spain

Abstract. Static deadlock analyzers might be able to verify the absence
of deadlock. However, they are usually not able to detect its presence.
Also, when they detect a potential deadlock cycle, they provide little
(or even no) information on their output. Due to the complex flow of
concurrent programs, the user might not be able to find the source of
the anomalous behaviour from the abstract information computed by
static analysis. This paper proposes the combined use of static analysis
and testing for effective deadlock detection in asynchronous programs.
When the program features a deadlock, our combined use of analysis and
testing provides an effective technique to catch deadlock traces. While
if the program does not have deadlock, but the analyzer inaccurately
spotted it, we might prove deadlock freedom.

1 Introduction

In concurrent programs, deadlocks are one of the most common programming
errors and, thus, a main goal of verification and testing tools is, respectively,
proving deadlock freedom and deadlock detection. We consider an asynchronous
language which allows spawning asynchronous tasks at distributed locations,
with no shared memory among them, and which has two operations for blocking
and non-blocking synchronization with the termination of asynchronous tasks.
In this setting, in order to detect deadlocks, all possible interleavings among
tasks executing at the distributed locations must be considered. Basically, each
time that the processor can be released, any of the available tasks can start its
execution, and all combinations among the tasks must be tried, as any of them
might lead to deadlock.

Static analysis and testing are two different ways of detecting deadlocks. As
static analysis examines all possible execution paths and variable values, it can
reveal deadlocks that could not manifest until weeks or months after releasing
the application. This aspect of static analysis is especially important in security
assurance – security attacks try to exercise an application in unpredictable and
untested ways. However, due to the use of approximations, most static analyses
can only verify the absence of deadlock but not its presence, i.e., they can produce
false positives. Moreover, when a deadlock is found, state-of-the-art analysis tools

? This work was funded partially by the EU project FP7-ICT-610582 ENVISAGE:
Engineering Virtualized Services (http://www.envisage-project.eu), by the Span-
ish MINECO projects TIN2012-38137 and TIN2015-69175-C4-2-R, and by the CM
project S2013/ICE-3006.

[6, 7, 12] provide little (and often no) information on the source of the deadlock.
In particular, for deadlocks that are complex (involve many tasks and locations),
it is essential to know the task interleavings that have occurred and the locations
involved in the deadlock, i.e., provide a concrete deadlock trace that allows the
programmer to identify and fix the problem.

In contrast, testing consists of executing the application for concrete input
values. Since a deadlock can manifest only on specific sequences of task inter-
leavings, in order to apply testing for deadlock detection, the testing process
must systematically explore all task interleavings. The primary advantage of
systematic testing [4, 14] for deadlock detection is that it can provide the de-
tailed deadlock trace. There are two shortcomings though: (1) Although recent
research tries to avoid redundant exploration as much as possible [1, 3–5], the
search space of systematic testing (even without redundancies) can be huge. This
is a threat to the application of testing in concurrent programming. (2) There is
only guarantee of deadlock freedom for finite-state terminating programs (ter-
minating executions with concrete inputs).

This paper proposes a seamless combination of static analysis and testing for
effective deadlock detection as follows: an existing static deadlock analysis [6] is
first used to obtain abstract descriptions of potential deadlock cycles which are
then used to guide a testing tool in order to find associated deadlock traces (or
discard them). In summary, the main contributions of this paper are:

1. We extend a standard semantics for asynchronous programs with information
about the task interleavings made and the status of tasks.

2. We provide a formal characterization of deadlock state which can be checked
along the execution and allows us to early detect deadlocks.

3. We present a new methodology to detect deadlocks which combines testing
and static analysis as follows: the deadlock cycles inferred by static analysis
are used to guide the testing process towards paths that might lead to a
deadlock cycle while discarding deadlock-free paths.

4. We have implemented our methodology in the SYCO system (see Sect. 6) and
performed a thorough experimental evaluation on some classical examples.

2 Asynchronous Programs: Syntax and Semantics

We consider a distributed programming model with explicit locations. Each lo-
cation represents a processor with a procedure stack and an unordered buffer
of pending tasks. Initially all processors are idle. When an idle processor’s task
buffer is non-empty, some task is selected for execution. Besides accessing its
own processor’s global storage, each task can post tasks to the buffers of any
processor, including its own, and synchronize with the termination of tasks. The
language uses future variables to check if the execution of an asynchronous task
has finished. An asynchronous call m(z̄) spawned at location x is associated with
a future variable f as follows f = x ! m(z̄). Instructions f.block and f.await allow,
respectively, blocking and non-blocking synchronization with the termination of
m. When a task completes, or when it is awaiting with a non-blocking await

2

(mstep) selectLoc(S) = loc(`,⊥, h,Q),Q 6= ∅, selectTask(`) = tsk(tk ,m, l, s),

S � ρ∅
`·tk
;∗ S′ � ρ

S
`·tk−→ S′

(newloc) tk = tsk(tk ,m, l, pp:x = new D; s), fresh(`′), h′ = newheap(D), l′ = l[x→ `′]

loc(`, tk , h,Q∪ {tk}) � ρ0 ; loc(`, tk , h,Q∪ {tsk(tk ,m, l′, s)}) · loc(`′,⊥, h′, {}) � ρ0

(async) tk = tsk(tk ,m, l, pp:y=x!m1(z); s), l(x)=`1, fresh(tk1), l1=buildLocals(z̄,m1, l)

loc(`, tk , h,Q∪ {tk}) · loc(`1, , ,Q′) � ρ0 ; loc(`, tk , h,Q∪ {tsk(tk ,m, l, s)})·
loc(`1, , ,Q′ ∪ {tsk(tk1,m1, l1, body(m1))}) · fut(y, o1, tk1, ini(m1)) � ρ0

(return)
tk = tsk(tk ,m, l, pp:return; s),ρ1 = return

loc(`, tk , h,Q∪ {tk}) � ρ0 ; loc(`,⊥, h,Q∪ {tsk(tk ,m, l, ε)}) � ρ1

(await1)

tk = tsk(tk ,m, l, pp:y.await; s), tsk(tk1, , , s1) ∈ Loc, s1 = ε

loc(`, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ0 ;

loc(`, tk , h,Q∪ {tsk(tk ,m, l, s)}) · fut(y, , tk1,) � ρ0

(await2)

tk = tsk(tk ,m, l, pp:y.await; s), tsk(tk1, , , s1) ∈ Loc, s1 6= ε,ρ1 = pp:y.await

loc(`, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ0 ;

loc(`,⊥, h,Q∪ {tk}) · fut(y, , tk1,) � ρ1

(block1)

tk = tsk(tk ,m, l, pp:y.block; s), tsk(tk1, , , s1) ∈ Loc, s1 = ε

loc(`, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ0 ;

loc(`, tk , h,Q∪ {tsk(tk ,m, l, s)}) · fut(y, , tk1,) � ρ0

(block2) tk=tsk(tk ,m, l, pp:y.block; s), tsk(tk1, , , s1) ∈ Loc, s1 6= ε,ρ1 = pp:y.block

loc(`, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ0 ; loc(`, tk , h,Q∪ {tk}) · fut(y, , tk1,) � ρ1

Fig. 1. Macro-Step Semantics of Asynchronous Programs

for a task that has not finished yet, its processor becomes idle again, chooses
the next pending task, and so on. The number of distributed locations need
not be known a priori (e.g., locations may be virtual). Syntactically, a location
will therefore be similar to a concurrent object and can be dynamically cre-
ated using the instruction new. The program consists of a set of methods of
the form M ::=T m(T̄ x̄){s}, where statements s take the form s::=s; s | x=e |
if e then s else s | while e do s | return | b=new | f = x ! m(z̄) | f.await | f.block.
For the sake of generality, the syntax of expressions e and types T is left open.

Fig. 1 presents the semantics of the language. The information about ρ
in bold font is part of the extensions for testing in Sec. 4 and should be ig-
nored for now. A state or configuration is a set of locations and future variables
loc0 · · · locn · fut0 · · · futm. A location is a term loc(`, tk , h,Q) where ` is the loca-
tion identifier, tk is the identifier of the active task that holds the location’s lock
or ⊥ if the location’s lock is free, h is its local heap, and Q is the set of tasks
in the location. A future variable is a term fut(id, `, tk ,m) where id is a unique
future variable identifier, ` is the location identifier that executes the task tk
awaiting for the future, and m is the initial program point of tk . A task is a
term tsk(tk ,m, l, s) where tk is a unique task identifier, m is the method name
executing in the task, l is a mapping from local variables to their values, and s is
the sequence of instructions to be executed or ε if the task has terminated. We

3

assume that the execution starts from a main method without parameters. The
initial state is St={loc(0, 0, ⊥, {tsk(0,main, l, body(main))} with an initial loca-
tion with identifier 0 executing task 0. Here, l maps local variables to their initial
values (null in case of reference variables) and ⊥ is the empty heap. body(m) is
the sequence of instructions in method m, and we can know the program point
pp where an instruction s is in the program as follows pp:s.

As locations do not share their states, the semantics can be presented as a
macro-step semantics [14] (defined by means of the transition “−→”) in which
the evaluation of all statements of a task takes place serially (without interleaving
with any other task) until it gets to an await or return instruction. In this case, we
apply rule mstep to select an available task from a location, namely we apply the
function selectLoc(S) to select non-deterministically one active location in the
state (i.e., a location with a non-empty queue) and selectTask(`) to select non-
deterministically one task of `’s queue. The transition ; defines the evaluation
within a given location. newloc creates a new location without tasks, with a
fresh identifier and heap. async spawns a new task (the initial state is created
by buildLocals) with a fresh task identifier tk1, and it adds a new future to the
state. ini(m) refers to the first program point of method m. We assume ` 6= `1,
but the case ` = `1 is analogous, the new task tk1 is added to Q of `. The
rules for sequential execution are standard and are thus omitted. Await1: If the
future variable we are awaiting for points to a finished task, the await can be
completed. The finished task t1 is only looked up but it does not disappear from
the state as its status may be needed later on. Await2: Otherwise, the task yields
the lock so that any other task of the same location can take it. Return: When
return is executed, the lock is released and will never be taken again by that
task. Consequently, that task is finished (marked by adding the instruction ε).
Block2: A y.block instruction waits for the future variable but without yielding
the lock. Then, when the future is ready, Block1 allows continuing the execution.

In what follows, a derivation or execution E ≡ St0 −→ · · · −→ Stn is a
sequence of macro-steps (applications of rule mstep). The derivation is complete
if St0 is the initial state and @ Stn+1 6= Stn such that Stn−→ Stn+1. Since the
execution is non-deterministic, multiple derivations are possible from a state.
Given a state St, exec(St) denotes the set of all possible derivations starting at
St. We sometimes label transitions with `·tk , the name of the location ` and task
tk selected (in rule mstep) or evaluated in the step (in the transition ;). The
systematic exploration of exec(St) thus corresponds to the standard systematic
testing setting with no reduction of any kind.

3 Motivating Example

Our running example is a simple version of the classical sleeping barber problem
where a barber sleeps until a client arrives and takes a chair, and the client wakes
up the barber to get a haircut. Our implementation in Fig. 2 has a main method
shown on the left and three classes Ba, Ch and Cl implementing the barber, chair
and client, respectively. The main creates three locations barber, client and chair

and spawns two asynchronous tasks to start the wakeup task in the client and

4

1 main() {
2 Ba barber = new Ba();
3 Cl client = new Cl();
4 Ch chair = new Ch();
5 client!wakeup(barber,chair);
6 barber!sleeps(client,chair);
7 }
8 class Ba{
9 Unit sleeps(Cl cl, Ch ch){

10 Fut f=ch!taken(cl);
11 f.block;}
12 Unit cuts(){}
13 }

14 class Ch{
15 Unit taken(Cl cl){
16 Fut f=cl!sits();
17 f.await;}
18 Unit isClean(){}
19 }
20 class Cl{
21 Unit wakeup(Ba b, Ch ch){
22 Fut f=b!cuts();
23 ch!isClean();
24 f.block;}
25 Unit sits(){}
26 }

ba.spcl.wk

ch.tkcl.wkba.sp

ch.tk cl.st

ba.cut

cl.wk

62

1

9733

8

5

4

ch.tk

10 11

Fig. 2. Classical Sleeping Barber Problem (left) and Execution Tree (right)

sleeps in the barber, both tasks can run in parallel. The execution of sleeps spawns
an asynchronous task on the chair to represent the fact that the client takes the
chair, and then blocks at line 11 (L11 for short) until the chair is taken. The task
taken first adds the task sits on the client, and then awaits on its termination at
L17 without blocking, so that another task on the location chair can execute. On
the other hand, the execution of wakeup in the client spawns an asynchronous
task cuts on the barber and one on the chair, isClean, to check if the chair is
clean. The execution of the client blocks until cuts has finished. We assume that
all methods have an implicit return at the end.

Fig. 2 summarizes the systematic testing tree of the main method by showing
some of the macro-steps taken. Derivations that contain a dotted node are not
deadlock, while those with a gray node are deadlock. A main motivation of our
work is to detect as early as possible that the dotted derivations will not lead
us to deadlock and prune them. Let us see two selected derivations in detail. In
the derivation ending at node 5, the first macro-step executes cl.wakeup and then
ba.cuts. Now, it is clear that the location cl will not deadlock, since the block

at L24 will succeed and the other two locations will be also able to complete
their tasks, namely the await at L17 of location ch can finish because the client is
certainly not blocked, and also the block at L11 will succeed because the task in
taken will eventually finish as its location is not blocked. However, in the branch
of node 4, we first select wakeup (and block client), then we select sleeps (and
block barber), and then select taken that will remain in the await at L17 and
will never succeed since it is awaiting for the termination of a task of a blocked
location. Thus, we have a deadlock. Let us outline five states of this derivation:

St1 ≡ loc(ini, ..)·loc(cl, .., {tsk(1, wk, ..)})·loc(ba, .., {tsk(2, sp, ..)})·loc(ch, ..)
cl,1−→

St2 ≡ loc(cl, .., {tsk(1, wk, f0.block)})·loc(ba, .., {tsk(3, cut, ..), ..})·fut(f0, ba, 3, 12)·.. ba,2−→
St3 ≡ loc(ba, .., {tsk(2, sp, f1.block)})·loc(ch, .., {tsk(5, tk, ..), ..})·fut(f1, ch, 5, 15)·.. ch,5−→
St4 ≡ loc(ch, .., {tsk(5, tk, f2.await), ..})·loc(cl, .., {tsk(6, st, ..), ..})·fut(f2, cl, 6, 25)·..
ch,4−→ St′4 ≡ loc(ch, ..{tsk(4, isClean, ε), ..})·..

5

(mstep2)

selectLoc(S) = loc(`,⊥, h,Q),Q 6= ∅, selectTask(`) = tsk(tk ,m, l, pp : s),

checkC(S, table), S � ρ0
`·tk
;∗ S′ � ρ, S 6= S′,not(deadlock(S′))

clock(n), table ′ = table ∪ t`,tk,pp 7→ 〈n, ρ〉
(S, table)

`·tk−→ (S′, table ′)
Fig. 3. mstep2 rule for combined testing and analysis

The first state is obtained after executing the main where we have the initial
location ini, three locations created at L2, L3 and L4, and two tasks at L5 and
L6 added to the queues. Note that each location and task is assigned a unique
identifier (we use numbers as identifiers for tasks and short names as identifiers
for locations). In the next state, the task wakeup has been selected and fully
executed (we have shortened the name of the methods, e.g., wk for wakeup).
Observe at St2 the addition of the future variable created at L22. In St3 we
have executed task sleeps in the barber and added a new future term. In St4 we
execute task taken in the chair (this state is already deadlock as we will see in
Sec. 4.2), however location chair can keep on executing an available task isClean

generating St′4. From now on, we use the location and task names instead of
numeric identifiers for clarity.

4 Testing for Deadlock Detection

The goal of this section is to present a framework for early detection of deadlocks
during systematic testing. This is done by enhancing our standard semantics with
information which allows us to easily detect dependencies among tasks, i.e., when
a task is awaiting for the termination of another one. These dependencies are
necessary to detect in a second step deadlock states.

4.1 An Enhanced Semantics for Deadlock Detection

In the following we define the interleavings table whose role is twofold: (1) It
stores all decisions about task interleavings made during the execution. This
way, at the end of a concrete execution, the exact ordering of the performed
macro-steps can be observed. (2) It will be used to detect deadlocks as early as
possible, and, also to detect states from which a deadlock cannot occur, therefore
allowing to prune the execution tree when we are looking for deadlocks. The
interleavings table is a mapping with entries of the form t`,tk ,pp 7→ 〈n, ρ〉, where:

– t`,tk ,pp is a macro-step identifier, or time identifier, that includes: the identi-
fiers of the location ` and task tk that have been selected in the macro-step,
and the program point pp of the first instruction that will be executed;

– n is an integer representing the time when the macro-step starts executing;
– ρ is the status of the task after the macro-step and it can take three values

as it can be seen in Fig. 1: block or await when executing these instructions on
a future variable that is not ready (we also annotate in ρ the information on
the associated future); return that allows us to know that the task finished.

We use a function clock(n) to represent a clock that starts at 0, is increased
by one in every execution of clock, and returns the current value n. The initial
entry is t0,0,1 7→ 〈0, ρ0〉, 0 being the identifier for the initial location and task,

6

and 1 the first program point of main. The clock also assigns the value 0 as the
first element in the tuple and a fresh variable in the the second element ρ0. The
next macro-step will be assigned clock value 1, next 2, and so on. As notation,
we define the relation t ∈ table if there exists an entry t 7→ 〈n, ρ〉 ∈ table, and the
function status(t , table) which returns the status ρt such that t 7→ 〈n, ρt〉 ∈ table.
The semantics is extended by changing rule mstep as in Fig. 3. The function
deadlock will be defined in Thm. 1 to stop derivations as soon as deadlock is
detected. Function checkC should be ignored for now, it will be defined in Sec. 5.2.
Essentially, there are two new aspects: (1) The state is extended with the status
ρ, namely all rules include a status ρ attached to the state using the symbol
�. The status is showed in bold font in Fig. 1 and can get a value in rules
block2, await2 and return. The initial value ρ0 is a fresh variable. (2) The state
for the macrostep is extended with the interleavings table table, and a new entry
t`,tk ,pp 7→ 〈n, ρ〉 is added to table in every macrostep if there has been progress
in the execution, i.e., S′ 6= S, n being the current clock time.

Example 1. The interleavings table below (left) is computed for the derivation
in Sec. 3. It has as many entries as macro-steps in the derivation. We can observe
that subsequent time values are assigned to each time identifier so that we can
then know the order of execution. The right column shows the future variables
in the state that store the location and task they are bound to.

St1 tini,main,1 7→ 〈0, return〉 ∅
St2 tcl,wakeup,21 7→ 〈1, 24:f0.block〉 fut(f0, ba, cuts, 12)
St3 tba,sleeps,9 7→ 〈2, 11:f1.block〉 fut(f1, ch, taken, 15)
St4 tch,taken,15 7→ 〈3, 17:f2.await〉 fut(f2, cl, sits, 25)

4.2 Formal Characterization of Deadlock State

Our semantics can easily be extended to detect deadlock just by redefining func-
tion selectLoc so that only locations that can proceed are selected. If, at a given
state, no location is selected but there is at least a location with a non-empty
queue then there is a deadlock. However, deadlocks can be detected earlier. We
present the notion of deadlock state which characterizes states that contain a
deadlock chain in which one or more tasks are waiting for each other’s termina-
tion and none of them can make any progress. Note that, from a deadlock state,
there might be tasks that keep on progressing until the deadlock is finally made
explicit. Even more, if one of those tasks runs into an infinite loop, the deadlock
will not be captured using this naive extension. The early detection of deadlocks
is crucial to reduce state exploration as our experiments show in Sec. 6.

We first introduce the auxiliary notion of waiting interval which captures the
period in which a task is waiting for another one to terminate. In particular, it
is defined as a tuple (tstop, tasync, tresume) where tstop is the macro-step at which
the location stops executing a task due to some block/await instruction, tasync is
the macro-step at which the task that is being awaited is selected for execution,
and, tresume is the macro-step at which the task will resume its execution. tstop,
tasync and tresume are time identifiers as defined in Sec. 4.1. tresume will also be
written as next(tstop). When the task stops at tstop due to a block instruction,

7

we call it blocking interval, as the location remains blocked between tstop and
next(tstop) until the awaited task, selected in tasync, has already finished. The
execution of a task can have several points at which macro-steps are performed
(e.g., if it contains several await or block the processor may be lost several times).
For this reason, we define the set of successor macro-steps of the same task from a
macro-step: suc(t`,tk ,pp0

, table) = {t`,tk ,ppi
: t`,tk ,ppi

∈ table, t`,tk ,ppi
≥ t`,tk ,pp0

}.

Definition 1 (Waiting/Blocking Intervals). Let St = (S, table) be a state,
I = (tstop, tasync, tresume) is a waiting interval of St, written as I ∈ St, iff:
1. ∃ tstop = t`,tk0,pp0 ∈ table, ρstop = status(tstop) ∈ {pp1 : x.await, pp1:x.block},
2. tresume ≡ t`,tk0,pp1

, fut(x, `x, tkx, pp(M)) ∈ S,
3. tasync ≡ t`x,tkx,pp(M),@ t ∈ suc(tasync, table) with status(t) = return.

If ρstop = x.block, then I is blocking.

In condition 3, we can see that if the task starting at tasync has finished, then
it is not a waiting interval. This is known by checking that this task has not
reached return, i.e., @ t ∈ suc(tasync, table) such that status(t) = return. In
condition 1, we see that in ρstop we have the name of the future we are awaiting
(whose corresponding information is stored in fut, condition 2). In order to
define tresume in condition 2, we search for the same task tk0 and same location
` that executes the task starting at program point pp1 of the await/block, since
this is the point that the macro-step rule uses to define the macro-step identifier
t`,tk0,pp1

associated to the resumption of the waiting task.

Example 2. Let us consider again the derivation in Sec. 3. We have the fol-
lowing blocking interval (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24) ∈ St2 with St2 ≡
(S2, table2), since tcl,wakeup,21 ∈ table2, status(tcl,wakeup,21, table2) = [24:f.block],
(f, ba, cuts, 12) ∈ St2 and tba,cuts,12 6∈ table2. This blocking interval captures the
fact that the task at tcl,wakeup,21 is blocked waiting for task cuts to terminate.
Similarly, we have the following two intervals in St4: (tba,sleeps,9, tch,taken,15,
tba,sleeps,11) and (tch,taken,15, tcl,sits,25, tch,taken,17).

The following notion of deadlock chain relies on the waiting/blocking intervals
of Def. 1 in order to characterize chains of calls in which intuitively each task is
waiting for the next one to terminate until the last one which is waiting on the
termination of a task executing on the initial location (that is blocked). Given
a time identifier t, we use loc(t) to obtain its associated location identifier.

Definition 2 (Deadlock Chain). Let St = (S, table) be a state. A chain of
time identifiers t0, ..., tn is a deadlock chain in St, written as dc(t0, ..., tn) iff ∀ti ∈
{t0, ..., tn−1} s.t. (ti, t

′
i+1, next(ti))∈St one of the following conditions holds:

1. ti+1 ∈ suc(t′i+1, table), or
2. loc(t′i+1) = loc(ti+1) and (ti+1, , next(ti+1)) is blocking.

and for tn, we have that tn+1 ≡ t0, and condition 2 holds.

Let us explain the two conditions in the above definition: In condition (1), we
check that when a task ti is waiting for another task to terminate, the waiting
interval contains the initial time t′i+1 in which the task will be selected. However,
we look for any waiting interval for this task ti+1 (thus we check that ti+1 is a

8

successor of time t′i+1). As in Def. 2, this is because such task may have started
its execution and then suspended due to a subsequent await/block instruction.
Abusing terminology, we use the time identifier to refer to the task executing. In
condition (2), we capture deadlock chains which occur when a task ti is waiting
on the termination of another task t′i+1 which executes on a location loc(t′i+1)
which is blocked. The fact that is blocked is captured by checking that there is
a blocking interval from a task ti+1 executing on this location. Finally, note the
circularity of the chain, since we require that tn+1 ≡ t0.

Theorem 1 (Deadlock state). A state St is deadlock, written deadlock(S), if
and only if there is a deadlock chain in St.

Derivations ending in a deadlock state are considered complete derivations. We
prove that our definition of deadlock is equivalent to the standard definition of
deadlock in [6] (proof can be found in [16]).

Example 3. Following Ex. 1, St4 is a deadlock state since there exists a deadlock
chain dc(tcl,wakeup,21, tba,sleeps,9, tch,taken,15). For the second element in the chain
tba,sleeps,9, condition 1 holds as (tba,sleeps,9, tch,taken,15, tba,sleeps,11) ∈ St4 and
tch,taken,15 ∈ suc(tch,taken,15, table4). For the first element tcl,wakeup,21, condition
2 holds since (tcl,wakeup,21, tba,cuts,12, tcl,wakeup,24)∈St4 and (tba,sleeps,9, tch,taken,15,
tba,sleeps,11) is blocking. Condition 2 holds analogously for tch,taken,15.

5 Combining Static Deadlock Analysis and Testing
This section proposes a deadlock detection methodology that combines static
analysis and systematic testing as follows. First, a state-of-the-art deadlock anal-
ysis is run, in particular that of [6], which provides a set of abstractions of po-
tential deadlock cycles. If the set is empty, then the program is deadlock-free.
Otherwise, using the inferred set of deadlock cycles, we systematically test the
program using a novel technique to guide the exploration towards paths that
might lead to deadlock cycles. The goals of this process are: (1) finding concrete
deadlock traces associated to the feasible cycles, and, (2) discarding unfeasible
deadlock cycles, and in case all cycles are discarded, ensure deadlock freedom
for the considered input or, in our case, for the main method under test. As our
experiments show in Section 6, our technique allows reducing significantly the
search space compared to the full systematic exploration.

5.1 Deadlock Analysis and Abstract Deadlock Cycles

The deadlock analysis of [6] returns a set of abstract deadlock cycles of the

form e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ ...
pn:tkn−−−−→ e1, where p1, . . . , pn are program points,

tk1, . . . , tkn are task abstractions, and nodes e1, . . . , en are either location abstrac-
tions or task abstractions. Three kinds of arrows can be distinguished, namely,
task-task (a task is awaiting for the termination of another one), task-location
(a task is awaiting for a location to be idle) and location-task (the location is
blocked due the task). Location-location arrows cannot happen. The abstrac-
tions for tasks and locations can be performed at different levels of accuracy

9

during the analysis: the simple abstraction that we will use for our formalization
abstracts each concrete location ` by the program point at which it is created
`pp, and each task by the method name executing. They are abstractions since
there could be many locations created at the same program point and many
tasks executing the same method. Both the analysis and the semantics can be
made object-sensitive by keeping the k ancestor abstract locations (where k is
a parameter of the analysis). For the sake of simplicity of the presentation, we
assume k = 0 in the formalization (our implementation uses k = 1).

Example 4. In our working example there are three abstract locations, `2, `3 and
`4, corresponding to locations barber, client and chair, created at lines 2, 3 and
4; and six abstract tasks, sleeps, cuts, wakeup, sits, taken and isClean. The

following cycle is inferred by the deadlock analysis: `2
11:sleeps−−−−−−→ taken

17:taken−−−−−→
sits

25:sits−−−−→ `3
24:wakeup−−−−−−−→ cuts

12:cuts−−−−→ `2. The first arrow captures that the location
created at L2 is blocked waiting for the termination of task taken because of the
synchronization at L11 of task sleeps. Observe that cycles contain dependencies
also between tasks, like the second arrow, where we capture that taken is waiting
for sits. Also, a dependency between a task (e.g., sits) and a location (e.g., `3)
captures that the task is trying to execute on that (possibly) blocked location.
Abstract deadlock cycles can be provided by the analyzer to the user. But, as
it can observed, it is complex to figure out from them why these dependencies
arise, and in particular the interleavings scheduled to lead to this situation.

5.2 Guiding Testing towards Deadlock Cycles

Given an abstract deadlock cycle, we now present a novel technique to guide the
systematic execution towards paths that might contain a representative of that
abstract deadlock cycle, by discarding paths that are guaranteed not to contain
such a representative. The main idea is as follows: (1) From the abstract dead-
lock cycle, we generate deadlock-cycle constraints, which must hold in all states
of derivations leading to the given deadlock cycle. (2) We extend the execu-
tion semantics to support deadlock-cycle constraints, with the aim of stopping
derivations as soon as cycle-constraints are not satisfied. Uppercase letters in
constraints denote variables to allow representing incomplete information.

Definition 3 (Deadlock-cycle constraints). Given a state St = (S, table),
a deadlock-cycle constraint takes one of the following three forms:

1. ∃tL,T,PP 7→ 〈N, ρ〉, which means that there exists or will exist an entry of
this form in table (time constraint)

2. ∃fut(F,L,Tk , p), which means that there exists or will exist a future variable
of this form in S (fut constraint)

3. pending(Tk), which means that task Tk has not finished (pending constraint)

The following function φ computes the set of deadlock-cycle constraints associ-
ated to a given abstract deadlock cycle.

10

Definition 4 (Generation of deadlock-cycle constraints). Given an ab-

stract deadlock cycle e1
p1:tk1−−−−→ e2

p2:tk2−−−−→ . . .
pn:tkn−−−−→ e1, and two fresh variables

Li,Tk i, φ is defined as φ(ei
pi:tki−−−→ ej

pj :tkj−−−−→ . . . ,Li,Tk i) ={
{∃tLi,Tki, 7→〈 , sync(pi,Fi)〉, ∃fut(Fi,Lj ,Tk j , pj)} ∪ φ(ej

pj :tkj−−−−→ . . . ,Lj ,Tk j) if ej=tk j

{pending(Tk i)} ∪ φ(ej
pj :tkj−−−−→ . . . ,Li,Tk j) if ej = `

Notation sync(pi, Fi) is a shortcut for pi:Fi.block or pi:Fi.await. Uppercase let-
ters appearing for the first time in the constraints are fresh variables. The first
case handles location-task and task-task arrows (since ej is a task abstraction),
whereas the second case handles task-location arrows (ej is an abstract location).
Let us observe the following: (1) The abstract location and task identifiers of
the abstract cycle are not used to produce the constraints. This is because con-
straints refer to concrete identifiers. Even if the cycle contains the same identifier
on two different nodes or arrows, the corresponding variables in the constraints
cannot be bound (i.e., we cannot use the same variables) since they could refer
to different concrete identifiers. (2) The program points of the cycle (pi and pj)
are used in time and fut constraints. (3) Location and task identifier variables of
fut constraints and subsequent time or pending constraints are bound (i.e., the
same variables are used). This is done using the 2nd and 3rd parameters of func-
tion φ. (4) In the second case, Tk j is a fresh variable since the location executing
Tk i can be blocked due to a (possibly) different task. Intuitively, deadlock-cycle
constraints characterize all possible deadlock chains representing the given cycle.

Example 5. The following deadlock-cycle constraints are computed for the cycle
in Ex. 4: { ∃tL1,Tk1, 7→ 〈 , 11:F1.block〉, ∃ fut(F1,L2,Tk2, 15), ∃tL2,Tk2, 7→〈 ,
17:F2.await〉,∃ fut(F2,L3,Tk3, 25), pending(Tk3), ∃tL3,Tk4, 7→〈 , 24:F3.block〉,
∃fut(F3,L4,Tk5, 12), pending(Tk5)}. They are shown in the order in which they
are computed by φ. The first four constraints require table to contain a concrete
time in which some barber sleeps waiting at L11 for a certain chair to be taken at
L15 and, during another concrete time, this one waits at L17 for a certain client
to sit at L25. The client is not allowed to sit by the 5th constraint. Furthermore,
the last three constraints require a concrete time in which this client waits at
L24 to get a haircut by some barber at L12 and that haircut is never performed.
Note that, in order to preserve completeness, we are not binding the first and
the second barber. If the example is generalized with several clients and barbers,
there could be a deadlock in which a barber waits for a client which waits for
another barber and client, so that the last one waits to get a haircut by the
first one. This deadlock would not be found if the two barbers are bound in the
constraints (i.e., if we use the same variable name). In other words, we have to
account for deadlocks which traverse the abstract cycle more than once.

The idea now is to monitor the execution using the inferred deadlock-cycle con-
straints for the given cycle, with the aim of stopping derivations at states that
do not satisfy the constraints. The following boolean function checkC checks the
satisfiability of the constraints at a given state.

11

Definition 5. Given a set of deadlock-cycle constraints C, and a state St =
(S, table), check holds, written checkC(St), if ∀tLi,Tki,PP 7→ 〈N, sync(pi, Fi)〉 ∈
C, fut(Fi,Lj ,Tk j , pj) ∈ C, one of the following conditions holds:

1. reachable(tLi,Tki,pi
, S)

2. ∃t`i,tki,pp 7→ 〈n, sync(pi, fi)〉 ∈ table ∧ fut(fi, `j , tk j , pj) ∈ S ∧
(pending(Tk j) ∈ C⇒ getTskSeq(tk j , S) 6= ε)

Function reachable checks whether a given task might arise in subsequent states.
We over-approximate it syntactically by computing the transitive call relations
from all tasks in the queues of all locations in S. Precision could be improved us-
ing more advanced analyses. Function getTskSeq gets from the state the sequence
of instructions to be executed by a task (which is ε if the task has terminated).
Intuitively, check does not hold if there is at least a time constraint so that: (i) its
time identifier is not reachable, and, (ii) in the case that the interleavings table
contains entries matching it, for each one, there is an associated future variable
in the state and a pending constraint for its associated task which is violated,
i.e., the associated task has finished. The first condition (i) implies that there
cannot be more representatives of the given abstract cycle in subsequent states,
therefore if there are potential deadlock cycles, the associated time identifiers
must be in the interleavings table. The second condition (ii) implies that, for
each potential cycle in the state, there is no deadlock chain since at least one
of the blocking tasks has finished. This means there cannot be derivations from
this state leading to the given cycle, hence the derivation can be stopped.

Definition 6 (Deadlock-cycle guided-testing (DCGT)). Consider an ab-
stract deadlock cycle c, and an initial state St0. Let C = φ(c,Linit,Tk init) with
Linit,Tk init fresh variables. We define DCGT, written execc(St0), as the set
{d : d ∈ exec(St0), deadlock(Stn)}, where Stn is the last state in d.

Example 6. Let us consider the DCGT of our working example with the deadlock-
cycle of Ex. 4, and hence with the constraints C of Ex. 5. The interleavings table
at St5 contains the entries tini,main,1 7→〈0, return〉, tcl,wakeup,21 7→〈1, 24:f0.block〉
and tba,cuts,12 7→〈2, return〉}. checkC does not hold since tL1,Tk1,24 is not reach-
able from St5 and constraint pending(Tk5) is violated (task cuts has already
finished at this point). The derivation is hence pruned. Similarly, the rightmost
derivation is stopped at St11. Also, derivations at St4, St8 and St10 are stopped
by function deadlock of Th. 1. Since there are no more deadlock cycles, the search
for deadlock detection finishes with this DCGT. Our methodology therefore ex-
plores 19 states instead of the 181 explored by the full systematic execution.

Theorem 2 (Soundness). Given a program P, a set of abstract cycles C in P
and an initial state St0, ∀d ∈ exec(St0) if d is a derivation whose last state is
deadlock, then ∃c ∈ C s.t d ∈ execc(St0). (The proof can be found in App. A)

6 Experimental Evaluation

We have implemented our approach within the SYCO tool, a testing tool for
concurrent objects which is available at http://costa.ls.fi.upm.es/syco, where most

12

of the benchmarks below can also be found. Concurrent objects communicate
via asynchronous method calls and use await and block, resp., as instructions for
non-blocking and blocking synchronization. This section summarizes our exper-
imental results which aim at demonstrating the effectiveness and impact of the
proposed techniques. The benchmarks we have used include: (i) classical concur-
rency patterns containing deadlocks, namely, SB is an extension of the sleeping
barber, UL is a loop that creates asynchronous tasks and locations, PA is the
pairing problem, FA is a distributed factorial, WM is the water molecule making
problem, HB the hungry birds problem; and, (ii) deadlock free versions of some
of the above, named fX for the X problem, for which deadlock analyzers give
false positives. We also include here a peer-to-peer system P2P.

Table 6 shows, for each benchmark, the results of our deadlock guided test-
ing (DGT) methodology for finding a representative trace for each deadlock
compared to those of the standard systematic testing. Partial-order reduction
techniques are not applied since they are orthogonal. This way we focus on the
reductions obtained due to our technique per-se. For the systematic testing set-
ting we measure: the number of solutions or complete derivations (column Ans),
the total time taken (column T) and the number of states generated (column
S). For the DGT setting, besides the time and number of states (columns T
and S), we measure the “number of deadlock executions”/“number of unfeasible
cycles”/“number of abstract cycles inferred by the deadlock analysis” (column
D/U/C), and, since the DCGTs for each cycle are independent and can be per-
formed in parallel, we show the maximum time and maximum number of states
measured among the different DCGTs (columns Tmax and Smax). For instance,
in the DGT for HB the analysis has found five abstract cycles, we only found
a deadlock execution for two of them (therefore 3 of them were unfeasible), 44s
being the total time of the process, and 15s the time of the longest DCGT (in-
cluding the time of the deadlock analysis) and hence the total time assuming an
ideal parallel setting with 5 processors. Columns in the group Speedup show
the gains of DGT over systematic testing both assuming a sequential setting,
hence considering values T and S of DGT (column Tgain for time and Sgain for
number of states), and an ideal parallel setting, therefore considering Tmax and
Smax (columns Tmax

gain and Smax
gain). The gains are computed as X/Y , X being the

measure of systematic testing and Y that of DGT. Times are in milliseconds
and are obtained on an Intel(R) Core(TM) i7 CPU at 2.3GHz with 8GB of
RAM, running Mac OS X 10.8.5. A timeout of 150s is used. When the timeout
is reached, we write >X to indicate that for the corresponding measure we have
got X units in the timeout. In the case of the speedups, >X indicates that the
speedup would be X if the process finishes right in the timeout, and hence it is
guaranteed to be greater than X. Also, we write X∗ when DGT times out.

Our experiments support our claim that testing complements deadlock analy-
sis. In the case of programs with deadlock, we have been able to provide concrete
traces for feasible deadlock cycles and to discard unfeasible cycles. For deadlock-
free programs, we have been able to discard all potential cycles and therefore
prove deadlock freedom. More importantly, the experiments demonstrate that

13

Systematic DGT (deadlock-per-cycle) Speedup

Bm. Ans T S D/U/C T Tmax S Smax Tgain Sgain T
max
gain S

max
gain

HB 35k 32k 114k 2/3/5 44k 15k 103k 34k 0.73 0.9 2.15 3.33
FA 11k 11k 41k 2/1/3 2k 759 3k 2k 5.5 13.7 15.1 22.2
UL >90k >150k >489k 1/0/1 133 133 5 5 >1.1k>2.5k >2.5k >98k
SB >103k >150k >584k 1/0/1 59 59 23 23 >2.5k >25k >2.5k >25k
PA >121k >150k >329k 2/0/2 42 4 12 6 >3.6k >27k >38k >55k
WM >82k >150k >380k 1/0/2 >150k>150k>258k>258k 1∗ 1.47∗ 1∗ 1.47∗

fFA 5k 7k 25k 0/1/1 5k 5k 11k 11k 1.61 2.35 1.61 2.35
fP2P 25k 66k 118k 0/1/1 34k 34k 52k 52k 1.96 2.28 1.96 2.28
fPA 7k 7k 30k 0/2/2 4k 2k 9k 4k 1.75 3.33 3.73 6.98
fUL >102k >150k >527k 0/1/1 410 410 236 236 >1k >2k >1k >2k

Table 1. Experimental results: Deadlock-guided testing vs. systematic testing

our DGT methodology achieves a notable reduction of the search space over
systematic testing in most cases. Except for benchmarks HB and WM which
are explained below, the gains of DGT both in time and number of states are
enormous (more than three orders of magnitude in many cases). It can be ob-
served that the gains are much larger in the examples in which the deadlock
analysis does not give false positives (namely, in SB, UL and PA). In general,
the generated constraints for unfeasible cycles are often not able to guide the
exploration effectively (e.g. in HB and WM). Even in these cases, DGT outper-
forms systematic testing in terms of scalability and flexibility. Let us also observe
that the gains are less notable in deadlock-free examples. That is because, each
DCGT cannot stop until all potential deadlock paths have been considered. As
expected, when we consider a parallel setting, the gains are much larger.

All in all, we argue that our experiments show that our methodology com-
plements deadlock analysis, finding deadlock traces for the potential deadlock
cycles and discarding unfeasible ones, with a significant reduction.

7 Conclusions and Related Work

There is a large body of work on deadlock detection including both dynamic and
static approaches. Much of the existing work, both for asynchronous programs
[6, 7] and thread-based programs [11, 13], is based on static analysis techniques.
Static analysis can ensure the absence of errors, however it works on approx-
imations (especially for pointer aliasing) which might lead to a “don’t know”
answer. Our work complements static analysis techniques and can be used to
look for deadlock paths when static analysis is not able to prove deadlock free-
dom. Using our method, we try to find a deadlock by exploring the paths given
by our deadlock detection algorithm that relies on the static information.

Deadlock detection has been also studied in the context of dynamic test-
ing and model checking [4, 9, 10, 15], where sometimes has been combined with
static information [2, 8]. As regards combined approaches, the approach in [8]
first performs a transformation of the program into a trace program that only
keeps the instructions that are relevant for deadlock and then dynamic testing is
performed on such program. The approach is fundamentally different from ours:

14

in their case, since model checking is performed on the trace program (that over-
approximates the deadlock behaviour), the method can detect deadlocks that do
not exist in the program, while in our case this is not possible since the testing is
performed on the original program and the analysis information is only used to
drive the execution. In [2], the information inferred from a type system is used to
accelerate the detection of potential cycles. This work shares with our work that
information inferred statically is used to improve the performance of the testing
tool, however there are important differences: first, their method developed for
Java threads captures deadlocks due to the use of locks and cannot handle wait-
notify, while our technique is not developed for specific patterns but works on a
general characterization of deadlock of asynchronous programs; their underlying
static analysis is a type inference algorithm which infers deadlock types and the
checking algorithm needs to understand these types to take advantage of them,
while we base our method on an analysis which infers descriptions of chains of
tasks and a formal semantics is enriched to interpret them.

References

1. P. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas. Optimal dynamic partial
order reduction. In Proc. of POPL’14, pages 373–384. ACM, 2014.

2. R. Agarwal, L. Wang and S. D. Stoller. Detecting Potential Deadlocks with Static
Analysis and Run-Time Monitoring. In HVC, LNCS 3875. Springer, 2006.

3. E. Albert, P. Arenas and M. Gómez-Zamalloa. Actor- and Task-Selection Strate-
gies for Pruning Redundant State-Exploration in Testing. In FORTE’14, Springer.

4. M. Christakis, A. Gotovos, and K. F. Sagonas. Systematic Testing for Detecting
Concurrency Errors in Erlang Programs. In ICST’13, pages 154–163. IEEE, 2013.

5. C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Check-
ing Software. In Proc. POPL’05, pp. 110-121. ACM, 2005.

6. A. Flores-Montoya, E. Albert, and S. Genaim. May-Happen-in-Parallel based
Deadlock Analysis for Concurrent Objects. In FORTE’13, LNCS 7892. 2013.

7. E. Giachino, C.A. Grazia, C. Laneve, M. Lienhardt, and P. Wong. Deadlock Anal-
ysis of Concurrent Objects – Theory and Practice, 2013.

8. P. Joshi, M. Naik, K. Sen, and Gay D. An effective dynamic analysis for detecting
generalized deadlocks. In Proc. of FSE’10, pages 327–336. ACM, 2010.

9. P. Joshi, C. Park, K. Sen, and M. Naik. A randomized dynamic program analysis
technique for detecting real deadlocks. In Proc. of PLDI’09. ACM, 2009.

10. A. Kheradmand, B. Kasikci, and G. Candea. Lockout: Efficient Testing for Dead-
lock Bugs. Technical report, 2013.

11. S. P. Masticola and B. G. Ryder. A Model of Ada Programs for Static Deadlock
Detection in Polynomial Time. In Parallel and Distributed Debugging. ACM, 1991.

12. M. Naik, C. Park, K. Sen, and D. Gay. Effective static deadlock detection. In
Proc. of ICSE, pages 386–396. IEEE, 2009.

13. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. E. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM TCS, 1997.

14. K. Sen and G. Agha. Automated Systematic Testing of Open Distributed Pro-
grams. In Proc. FASE’06, LNCS 3922, pp. 339-356. Springer, 2006.

15. K. Havelund, Using Runtime Analysis to Guide Model Checking of Java Programs,
Proceedings of the 7th International SPIN Workshop, Springer-Verlag, 2000.

16. E. Albert, M. Gómez-Zamalloa, et.al. Combining Static Analysis and Testing for
Deadlock Detection. http://costa.ls.fi.upm.es/papers/costa/AlbertGI15.pdf.

15

