
Handling non-linear operations in the value analysis of
Costa

Diego Alonso, Puri Arenas, Samir Genaim

Departamento de Sistemas Informáticos y Computación (DSIC)
Complutense University of Madrid (UCM)

March 27th 2011

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 1 / 19

Costa in a nutshell

Costa is a COSt and Termination Analyzer that

analyzes a Java Bytecode(JBC) program

with a cost model (termination, instructions, heap)

and computes bounds on its execution cost

CostaCosta
Java

Bytecode
Program

Cost Model

Termination

Upper Bounds

Asymptotic Complexity

Lower Bounds

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 2 / 19

Example: logarithm with a fixed base b = 2

Example

// Pre : x>0
i n t l o g 2 (i n t x) {

i n t l = 0 ;
i n t y = 1 ;
whi le (x>y) {

y = y * 2;

l = l + 1 ;
}
return l ;

}

y is initialized as y = 1

each iteration duplicates y until
it reaches x

therefore, an execution of
log2(x) terminates after log2x
iterations

Costa infers a cost in
O(log(x))

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 3 / 19

Example: logarithm with a parametric base b

Example

// Pre : x>0,b>1
i n t logB (i n t b , i n t x) {

i n t l = 0 ;
i n t y = 1 ;
whi le (x>y) {

y = y * b;

l = l + 1 ;
}
return l ;

}

y is initialized as y = 1.

each iteration multiplies y until
it reaches x

therefore, an execution of
logB(b, x) terminates after
approx logbx iterations

Costa fails to prove
termination or complexity

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 4 / 19

Analysis overview

Costa first “compiles” the bytecode to abstract rules in which

data is represented as size values

each operation is replaced with its cost and

its effect is modeled with linear constraints

Abstract
Rules

Java
Bytecode

Cost Model

Abstract
Compilation

Abstract
Compilation

Size Measures

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 5 / 19

Analysis example: logarithm with a fixed base b = 2

Example

// Pre : x>0
i n t l o g 2 (i n t x) {

i n t l = 0 ;
i n t y = 1 ;
whi le (x>y) {

y = y * 2;

l = l + 1 ;
}
return l ;

}

log2(〈x〉, 〈l〉)←
{l0 = 0} ,
{y0 = 1} ,
log2w (〈x , l0, y0〉, 〈l1〉),
{l = l1} .

log2w (〈x , l1, y1〉, 〈l3〉)←
{x > y1} ,
{y2 = y1 ∗ 2} ,
{l2 = l1 + 1} ,
log2w (〈x , l2, y2〉, 〈l3〉).

log2w (〈x , l , y1〉, 〈l〉)←
{x ≤ y1} .

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 6 / 19

Resolution overview

The resolution phase obtains the desired results from the Cost-Size-Rules:

Entries model the program’s starting state

A postcondition models the size effect of a call

A transition describes how variables change from the rule’s header to
a recursive call

Cost
Size

Rules

Value
Analysis
Value

Analysis

Postcontions
Preconditions

Loop
Transitions

Iteration
Bounds

Program
Entries

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 7 / 19

Resolution example: logarithm with a fixed base b = 2

Example

log2(〈x〉, 〈l〉)←
{l0 = 0} ,
{y0 = 1} ,
log2w (〈x , l0, y0〉, 〈l1〉),
{l = l1} .

log2w (〈x , l1, y1〉, 〈l3〉)←
{x > y1} ,
{y2 = y1 ∗ 2} ,
{l2 = l1 + 1} ,
log2w (〈x , l2, y2〉, 〈l3〉).

log2w (〈x , l , y1〉, 〈l〉)←
{x ≤ y1} .

Preconditions:

log2(〈x0〉) J {x0 ≥ 0}
log2w (〈x , l1, y1〉) J
{x > 0, l1 ≥ 0, y1 > 0}

Loop transition of log2w :

〈x , l1, y1〉 → 〈x , l2, y2〉 J
{x > 0, l1 ≥ 0, y1 > 0}u
{x > y1, y2 = y1 ∗ 2, l2 = l1 + 1}

This transition can be proven
to have a logarithmic order

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 8 / 19

Analysis example: logarithm with a parametric base b

Example

// Pre : x>0,b>1
i n t logB (i n t b , i n t x) {

i n t l = 0 ;
i n t y = 1 ;
whi le (x>y) {

y = y * b;

l = l + 1 ;
}
return l ;

}

logB(〈b, x〉, 〈l〉)←
{l0 = 0} ,
{y0 = 1} ,
logBw (〈b, x , l0, y0〉, 〈l〉).

logBw (〈b, x , l1, y1〉, 〈l2〉)←
{x > y1} ,
{y2 = },
{l2 = l1 + 1} ,
logBw (〈b, x , l2, y2〉, 〈l2〉).

logBw (〈b, x , l , y1〉, 〈l〉)←
{x ≤ y1} .

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 9 / 19

Resolution example: logarithm with a parametric base b

Example

logB(〈b, x〉, 〈l〉)←
{l0 = 0} ,
{y0 = 1} ,
logBw (〈b, x , l0, y0〉, 〈l〉).

logBw (〈b, x , l1, y1〉, 〈l2〉)←
{x > y1} ,
{y2 = },
{l2 = l1 + 1} ,
logBw (〈b, x , l2, y2〉, 〈l2〉).

logBw (〈b, x , l , y1〉, 〈l〉)←
{x ≤ y1} .

Preconditions

logB(〈b, x〉) J {b > 1, x ≥ 0}
logBw (〈b, x , l1, y1〉) J
{b > 1, x ≥ 1, l1 ≥ 0, y1 = }

Loop transition of log2w :

〈b, x , l1, y1〉 → 〈b, x , l2, y2〉 J
{x > y1, y2 = , l2 = l1 + 1}

This loop is non-terminating

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 10 / 19

Linear or non-linear operations

A linear operation like z = x+y
can be modeled with a linear
constraint

A nonlinear operation like z = x∗y
can only be modeled as >

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 11 / 19

Solution: disjunctive abstraction of z = x ∗ y

Example (z = x ∗ y)

ϕ1 ≡ {x = 0} , {z = 0}
ϕ2 ≡ {y = 0} , {z = 0}
ϕ3 ≡ {x = 1} , {z = y}
ϕ4 ≡ {y = 1} , {z = x}
ϕ5 ≡ {x = −1} , {z = −y}
ϕ6 ≡ {y = −1} , {z = −x}
ϕ7 ≡ {x ≥ 2, y ≥ 2}

{z ≥ 2x , z ≥ 2y}
ϕ8 ≡ {x ≥ 2, y ≤ −2}

{z ≤ −2x , z ≤ 2y}
ϕ9 ≡ {x ≤ −2, y ≥ 2}

{z ≤ 2x , z ≤ −2y}
ϕ10 ≡ {x ≤ −2, y ≤ −2}

{z ≥ −2x , z ≥ −2y}

Input space of z = x ∗ y
Y

X

φ
1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ
10

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 12 / 19

The solution: disjunctive abstractions

Nonlinear operations can’t be modeled with linear constraints because
no linear constraint holds for all input values (input space).

But a constraint can hold for the inputs in a subset of the space.

We abstract a non-linear operation F to a finite disjunction
ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn.

φ
4 φ

3

φ
1

 φ
5

φ
2

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 13 / 19

Using disjunctive information

(a) We could employ a value analysis over over a disjunctive domain
but using a disjunctive abstract domain doesn’t scale

(b) Instead, we encode those disjunctions into the abstract program and
use linear constraints in the value analysis

Example

When the value analysis reaches the operation z = x ∗ y and it knows that
x ≥ 1 and y ≥ 2, we want it to use only the satisfiable cases

ϕ3 ≡ {x = 1} {z = y}
ϕ7 ≡ {x ≥ 2, y ≥ 2} {z ≥ 2x , z ≥ 2y}

and ignore the (unsatisfiable) rest for computing the postcondition
{z = y} t {z ≥ 2x , z ≥ 2y} = {z ≥ 2x , z ≥ y}

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 14 / 19

Using disjunctive information

(a) We could employ a value analysis over over a disjunctive domain
but using a disjunctive abstract domain doesn’t scale

(b) Instead, we encode those disjunctions into the abstract program and
use linear constraints in the value analysis

Example

When the value analysis reaches the operation z = x ∗ y and it knows that
x ≥ 1 and y ≥ 2, we want it to use only the satisfiable cases

ϕ3 ≡ {x = 1} {z = y}
ϕ7 ≡ {x ≥ 2, y ≥ 2} {z ≥ 2x , z ≥ 2y}

and ignore the (unsatisfiable) rest for computing the postcondition
{z = y} t {z ≥ 2x , z ≥ 2y} = {z ≥ 2x , z ≥ y}

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 14 / 19

Using disjunctive information

Replace each code b ≡ z = xFy by a call to opFb(〈x , y〉, 〈z〉).

opFb(〈x , y〉, 〈z〉) is defined with one rule per case.

The value analysis computes the precondition pre(opbF) and the

postcondition post(opbF) as for any other predicate

Operationpre

φ
1

φ
3

φ
2

post

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 15 / 19

Using disjunctive information

Replace each code b ≡ z = xFy by a call to opFb(〈x , y〉, 〈z〉).

opFb(〈x , y〉, 〈z〉) is defined with one rule per case.

The value analysis computes the precondition pre(opbF) and the

postcondition post(opbF) as for any other predicate

Operationpre

φ
1

φ
3

φ
2

post

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 15 / 19

Analyzing logB by abstract program transformation

Example (Program transformation of logB)

// Pre : x>0,b>1
i n t logB (i n t b , i n t x) {

i n t l = 0 ;
i n t y = 1 ;
whi le (x>y) {

y = y * b;

l = l + 1 ;
}
return l ;

}

logB(〈b, x〉, 〈l〉)←
{l0 = 0} ,
{y0 = 1} ,
logBw (〈b, x , l0, y0〉, 〈l〉).

logBw (〈b, x , l1, y1〉, 〈l2〉)←
{x > y1} ,
op∗(〈y1,b〉, 〈y2〉),
{l2 = l1 + 1} ,
logBw (〈b, x , l2, y2〉, 〈l2〉).

logBw (〈b, x , l , y1〉, 〈l〉)←
{x ≤ y1} .

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 16 / 19

The solution

Example (Value analysis of op∗)

The precondition of op∗(〈y1, b〉) is op∗(〈y1, b〉) J {y1 ≥ 1,b ≥ 2}

op∗(〈y1, b〉, 〈y2〉) ← {y1 = 0} , . . .
op∗(〈y1, b〉, 〈y2〉) ← {b = 0} , . . .
op∗(〈y1, b〉, 〈y2〉) ← {b = 1} , . . .
op∗(〈y1,b〉, 〈y2〉) ← {y1 = 1} , ← {y2 = b} .
op∗(〈y1,b〉, 〈y2〉) ← {b ≥ 2, y1 ≥ 2} , ← {y2 ≥ 2y1, y2 ≥ 2b} .
op∗(〈y1, b〉, 〈y2〉) ← {y1 ≥ 2, b ≤ −2} , . . .
op∗(〈y1, b〉, 〈y2〉) ← {y1 ≤ −2, b ≥ 2} , . . .
op∗(〈y1, b〉, 〈y2〉) ← {y1 ≤ −2, b ≤ −2} , . . .

The value analysis computes the postcondition

op∗(〈y1, b〉, 〈y2〉) J {y2 = b} t {y2 ≥ 2y1, y2 ≥ 2b} =
{y2 ≥ 2y1, y2 ≥ b}

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 17 / 19

The solution

Example (Bounding the iterations of logB)

The precondition of op∗(〈y1, b〉) is op∗(〈y1, b〉) J {y1 ≥ 1,b ≥ 2}
The postcondition is op∗(〈y1, b〉, 〈y2〉) J {y2 ≥ 2y1, y2 ≥ b}
Using these, we can infer the transition

〈b, x , l1, y1〉 → 〈b, x , l2, y2〉 J {y1 ≥ 1,b ≥ 2}u
{x > y1, l2 = l1 + 1}u
{y2 ≥ 2y1, y2 ≥ b}

This transition can be proven to have O(log(x − y)) iterations

Costa can now infer that logB has a logarithmic cost

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 18 / 19

Conclusions

Nonlinear operations are difficult to analyze

We propose to use a program transformation for handling nonlinear
operations like z = x ∗ y in static analysis

This technique increases precision by producing more accurate
abstract information
and it’s scalable because it still uses linear constraints

This solution is also applicable to other operations: integer quotient
(/) and remainder (%), and bitwise operations (&, |, <<,>>,>>>)

Alonso,Arenas,Genaim (DSIC,UCM) Handling nonlinear operations in Costa March 27th 2011 19 / 19

