
HATS—A Formal Software Product Line Engineering Methodology

Dave Clarke‡, Nikolay Diakov∗, Reiner Hähnle‖,
Einar Broch Johnsen¶, Germán Puebla§, Balthasar Weitzel† and Peter Y. H. Wong∗

‡Katholieke Universiteit Leuven, Heverlee, Belgium
†Fraunhofer IESE, Kaiserslautern, Germany
∗Fredhopper B.V., Amsterdam, The Netherlands

¶University of Oslo, Oslo, Norway
§Technical University of Madrid, Madrid, Spain

‖Chalmers University of Technology, Gothenburg, Sweden

Abstract—Trust in software is typically achieved via stabili-
sation efforts over long periods of use. Adaptation to changing
circumstances, however, often requires substantial change of the
software. Changing a software system using standard manufactur-
ing processes often results in quality regressions, invalidating trust.
Formal methods provide means to guarantee various properties
of a software system that increase its trustworthiness. The HATS
methodology aims to integrate formal methods that model change
through variability in and evolution of software systems, while
preserving trustworthiness properties. This paper outlines how
different formal methods are extended and integrated to build an
industrially viable Software Product Line Engineering method for
manufacturing highly adaptable and trustworthy software.

Keywords-software product lines; methodology; formal methods

I. INTRODUCTION

Finance and health care are two of the many examples
where long-lived, trustworthy software systems have a large
impact on modern society. Long-lived systems typically show
the benefit of trustworthiness by proving their usefulness over
a long period of time. Software systems must regularly adapt
to changing circumstances in society. Adaptation to changing
circumstances, however, often requires substantial change of
the software. In an industrial context that views a software
system as a product, change may be viewed in two ways:
anticipated changes, these may be due to variations to clients
requirements and, unanticipated changes, these may be due to
changes to the market or new technological opportunities. The
former defines variability of a product in relation to its clients,
while the latter refers to the evolution of the product.

Changing a software system, for whatever reason, using
standard manufacturing processes typically results in quality
regressions. For example, after a change in a software system,
time and stabilisation efforts are required to regain the trust of
its user.

The “Highly Adaptable and Trustworthy Software using
Formal Models” (HATS) project [15] aims to address the issue

This research is partly funded by the EU project FP7-231620 HATS: Highly
Adaptable and Trustworthy Software using Formal Models (http://www.hats-
project.eu).

of producing trustworthy systems in light of the changing
requirements. To do this, the HATS project looks at a software
system not merely as a product offering some service, but
as a framework around the product. This framework governs
how one can modify a software product to meet changing
requirements, while preserving trustworthiness guarantees.

HATS takes an empirically successful, yet mostly informal,
software development paradigm for software product line en-
gineering (SPLE) [24] and places it on a more formal basis.
The SPLE approach is adopted for two main reasons:

• SPLE considers a product as belonging to a family of
products that includes explicit modelling of variability.
This abstraction fits well with applying formal methods
to anticipated change in software systems.

• SPLE addresses the maintenance of the product line
artefact base over time. Maintenance includes evolving the
artefact base in order to change the possible products of
the product line. This facilitates unanticipated changes.

A. Motivation

Motivation for the HATS methodology is fourfold.
• Incoherent integration of formal methods Complete

methodologies consist of many steps, each addressing
different aspects of the product life cycle. Formal methods
exist to address most individual aspects, however inte-
grating them together into a development methodology
presents a challenge. From methodological perspective one
needs to reliably propagate verified properties through the
entire development work flow.

• Lack of industrial level tools Learning formal methods
requires a large investment in time. To reduce costs and
increase productivity, tools are required that make using
formal methods more accessible.

• Low scalability of existing formal methods Industrial
applications are large in terms of combinations of aspects
and concerns. It is therefore important to scale formal
methods up to be usable for industrial applications.

• High adoption cost Integrating formal methods into an
organisation will usually encounter already established



methods and infrastructure. Supporting the translation or
migration from standard less-formal software production
methods to incorporate more formal methods represents a
significant practical challenge.

Several industrially-proven software product line ap-
proaches [9], [23], [24], [27] share similar high-level structure,
including family engineering and application engineering con-
cerns, as well as concerns about building maintainable repos-
itories of reusable artefacts. HATS uses these proven product
line abstractions as the backbone of all intended extensions.
Doing so ensures that the newly developed method will benefit
from the experience of many practitioners in this area.

Several approaches have attempted to put formal methods
into SPLE [12], [14], [17], [20]–[22]. Some have already
demonstrated applicability in industrial settings [17], while
others require additional work to become more applicable
in industrial setups [12]. These approaches typically focus
on enhancing specific steps in SPLE development, without
demonstrating a broader ambition of being a whole-process
methodology. While these approaches provide the means to
focus on particular fundamental aspects of software systems,
the approaches themselves do not offer the necessary trace-
ability from formal models to resulting software systems that
are end products. These limitations reduce the likelihood of
industrial adoption, do not help integration with formal methods
in other steps in a SPLE methodology, and tend to produce tools
which can be used in isolation only. By contrast, HATS aims
to address the complete life cycle of a software product line,
resulting in a holistic approach to the development of adaptable
and trustworthy software systems.

B. Goals

The HATS project aims to bring about the following:
• Integration of advanced software tools based on formal

models into SPLE development processes;
• High usability in an industrial context by a) designing tool

interfaces suitable for SPLE designers, and b) providing
scalability of the underlying methods.

C. Approach

The following approach developing and validating the
methodology is taken.

• We adapt existing successful industrial methods. This in-
creases the likelihood of acceptance of the HATS method-
ology by the industry.

• We inject formal methods into various steps of the method.
The HATS project aims to provide a well-rounded selec-
tion of formal methods to support each step in producing
high-quality software. This is achieved by either develop-
ing new formalisms or tailoring existing ones to a SPLE
methodology. When augmenting an existing methodolog-
ical step with formal methods, we will ensure that the
step integrates well with the other (adjacent) steps in the

method process flow, so that these steps can exchange
inputs and outputs, that tools can interoperate, and so on.

• Coupled with the development method is the Abstract
Behavioural Specification language (referred to hereafter
as ABS) — a formal executable language for specify-
ing software product line artefacts.1 ABS is based on
CREOL [19], a high-level executable modelling language
based on asynchronously communicating concurrent ob-
jects which, in particular, supports compositional reason-
ing [2], [10] and runtime code evolution [18].

• We aim to supply a tool chain supporting the HATS
methodology. The formalisation of artefacts and require-
ments of a system encourages the development of mechan-
ical and automatic procedures for the methodology.

• To validate our results, we apply the methodology to three
independent case studies: one academic and two industrial
projects [?]. We will focus on validating each individual
step and the integration of different steps examining the
quality and cost of production of the resulting software
artefacts (models, components, product).

The HATS methodology bases its overall process flow on
existing successful methodologies to increase the likelihood of
industrial acceptance compared to a methodology built from
the ground. In addition, a complete industrial evaluation of
a product family methodology requires the application of the
method over a family of similar products of significant size
and over a long period of time. Therefore, the validation effort
within HATS is limited to individual steps and to proving the
coherence among them.

D. Outline

Section II introduces the current HATS methodology with
its general flow; Section III presents the family engineering
flow, and Section IV presents the application engineering flow.
A more detailed description of the HATS methodology is
described in a companion technical report [1]. The presentation
of each methodological step is structured as follows:

• We motivate the formal methods used in each step by iden-
tifying deficiencies in the state-of-the-art and/or particular
needs for formalisation.

• We explain whether a new formal method is to be devel-
oped or whether existing methods and techniques can be
adapted.

• We discuss how to integrate the formal methods from
different steps in the HATS methodology flow.

We report concrete results depending on the work progress
within the HATS project regarding the particular methodolog-
ical step. If the project has not yet addressed a particular step
we state explicitly our vision only.

Section V presents how the HATS methodology governs
the evolution of software products. Section VI presents results

1ABS is used to formally describe specification, design and executable
artefacts. It does not consider informal requirements or natural-language based
documentation.



already achieved by the HATS project. These results are
structured as examples of the application of formal methods in
several steps of the HATS methodology. We discuss the kind
of formalisms used, the adaptations made for SPLE, and the
integration with adjacent steps in the HATS methodology flow.
Section VII summarises the paper.

II. HATS DEVELOPMENT METHODOLOGY

This section describes the main flow of the HATS method-
ology and highlights where formal methods may be applied.
Figure 1 shows the product line lifecycle in the HATS de-
velopment methodology. The HATS methodology adopts the
traditional SPLE approach by splitting the overall development
lifecycle into family engineering (FE) and application engineer-
ing (AE).2 FE and AE are described in detail in Sections III
and IV, respectively. The HATS development methodology is
derived by extending and adapting existing industrial software
product line engineering (SPLE) methods [9], [23], [24], [27]
in the following ways.

• The HATS methodology emphasizes a formal software
product line engineering approach. For this purpose, in
the application engineering process HATS specifically ex-
tends the Product Line Model Instantiation and Validation
activity and the System Validation activities. The former
adds formal verification activities as early in the process as
possible, and the latter allows for testing and verification
of the ultimately generated product.

• Coupled with the development method is the formal
executable language, ABS, for specifying product line
artefacts. ABS supports formal specification from as early
as Product Line Requirement Analysis to Generic Com-
ponent Design phases. ABS aims to provide capabilities
for modelling SPLE variability, as well as reasoning about
concurrency, security, resources guarantees and evolvabil-
ity. ABS consists of a core language and a number of
extensions, and is part of ongoing work in the HATS
project [1]. Section VI illustrates how the core language
extended with µTVL3 and delta modelling [8], [25], [26]
may be used to model variability.

• Introducing formal approaches to artefact development in
the product line enables much of the testing and verifica-
tion efforts to be moved to the family engineering process.
Methodologically, we extend the Generic Component Val-
idation phase to include both testing and verification activ-
ities. Furthermore, we envisage that Generic Component
Validation may be carried out in parallel with Generic
Component Design and Generic Component Realisation.

• The HATS methodology aims to support continuous de-
velopment of the product line as well as individual family
members. This is achieved by developing theories and
techniques for handling continuous evolution of software

2We assume readers are familiar with the concepts of FE and AE, details
on current approaches to FE and AE may be found in existing literature.

3µTVL is a trimmed down version of TVL [6].

systems. The Evolution Process (EP) of the HATS method-
ology supports this. See Section V.

A. Scope

Providing complete formal support for some of the more
work intensive phases (e.g., the Reference Architecture Design
phase) may prove overly ambitious and very challenging from
a scientific perspective. Therefore, we focus contributions by
scoping our work. Specifically, informal processes such as those
involving customers in industrial SPLE are not considered. As
a consequence, we do not make formal contribution to the
Product Line Planning and Scoping, Application Engineering
Planning and System Delivery phases. On the other hand
phases, such as the Reference Architecture Design phase,
provide a very large opportunity for formal development. In
order to leverage the contributions quality and impact, the
HATS methodology focuses on particular technical aspects of
the relevant phases that will have the highest scientific impact,
but are also most amenable to the development of tool support
and the integration into a development framework.

III. FAMILY ENGINEERING

The family engineering process (FE) identifies commonal-
ities and variabilities of the product line and builds reusable
artefacts for the product line artefact base. The workflow of
this process is shown in the lower half of Figure 1.

A. Product Line Requirement Analysis

In the Product Line Requirement Analysis phase, we analyse
variability in detail. The requirements of the product line are
defined during the Product Line Planning and Scoping phase. In
particular, µTVL is used to specify feature models describing
common and variable features and their constraints. Other
text-based feature modelling languages exist [28]. The main
purpose of µTVL is to add feature description capabilities to
ABS. Underlying µTVL is a formal semantics of features with
notions of abstraction, refinement and views, based on existing
semantics [16]. Using this abstract model one may resolve
ambiguities within the informal requirements of the product
line as well as reason about compatibility and reconciliation
of feature model views. Models developed in this phase could
then be used in later phases to guide design and validation,
while compatibility and reconciliation are important during the
Product Model Instantiation and Validation phase in AE.4

B. Reference Architecture Design

In the Reference Architecture Design phase a common
reference architecture is defined for all product line members.
The reference architecture is documented by means of different
architectural views containing information about component
interfaces, their interactions, overall system behaviour and

4Besides variability, there are informal product line requirement artefacts
which may be documented in various ways, for example, use cases, workflows
descriptions, etc.



Family Engineering (FE) Process

Application Engineering (AE) Process

Product Line

Planning

and Scoping

Application

Engineering

Planning

Product 

Line 

Artifact 

Base

Fee
db

ac
k

System

Delivery

Generic

Component

Realization

Generic

Component

Design

Reference

Architecture

Design

Product Line

Requirement

Analysis

Generic

Component

Validation

Product Line Model

Instantiation and

Validation

Reference

Architecture

 Instantiation

Product

Construction and

Integration

System

Validation

Evolution

Process
Input/Output

Dependency

Legend

Interaction

Phase

Process

HATS Contribution

Figure 1. Product Line Lifecycle in the HATS Development Methodology

system’s variability. Here we aim to provide theories, tech-
niques and tools to support the description of variability over
components, as well as component functionality, system-level
invariants and cross-cutting, non-functional properties such
as resource guarantees. For brevity, we focus on variability
description and resource guarantees; see report [1] for more.

1) Variability Distribution: It is important to ensure that the
components cover all variation points and do not invalidate any
variation constraints defined during Product Line Requirement
Analysis phase. Specifically during Product Line Requirement
Analysis feature models defined using µTVL are provided. Us-
ing these models appropriate hooks for incorporating variation
points into the core architecture at the component level may
be provided, thereby assisting the distribution of variability.
Coupled with µTVL is delta modelling [8], [25], [26]. Delta
modelling connects the features in µTVL to design artefacts, in
this context, to the core architecture and its constituent compo-
nents. Delta models define changes to the core architecture to
implement the various products. The application condition of a
delta model determines for which combination of features the
changes are applied to the core architecture, linking features to
design artefacts. Other formal approaches to represent feature-
based variability exist, such as AHEAD [5]; see report [13] for
a comparison. As with µTVL, delta modelling is designed to be
integrated into ABS. In Section VI we illustrate the application
of µTVL and delta modelling as an integrated method.

2) Resource Guarantees: The reference architecture also
specifies resource constraints, such as execution costs, security
requirements, etc. For execution costs, we will develop cost
models for specifying the upper and lower bounds of execution
costs. We aim to specify this information at the level of varia-
tion points of the reference architecture. Using such information
as constraints, one may verify that a change (evolution) of the
reference architecture guarantees members of the product line
run within some given available resources. While this is still
work in progress, we aim to leverage existing results on static
resource analysis, namely Albert et al.’s COSTA system [4].
Currently COSTA allows obtaining of safe symbolic upper
bounds on the resource usage of JAVA programs. In Section VI

we illustrate the application of COSTA and also discuss the
challenges to integrate it with the ABS language.

C. Generic Component Design

In this step, we make a detail internal design of each
component based on the artefacts of the reference architecture.
Specifically, in this phase an executable model of each compo-
nent is defined using ABS. Each component’s model specifies
and integrates both component-specific and cross-cutting vari-
abilities. Components designed in this phase are called generic
components, because these components may contain variation
points that are resolved later during the application engineering
process. As a result every generic component is associated with
a variability model, that is, a combination of the high level
feature models described in µTVL and deltas defined in the
Product Line Requirement Analysis and Reference Architecture
Design phases.

Furthermore, having a precise reference architecture and
design models of generic components helps validating the
correctness of component designs against the reference archi-
tecture to ensure consistency at all levels of abstraction. This
encourages both incremental and concurrent development of
product line artefacts. Two main tasks to be carried out in this
phase are feature modelling and feature integration.

1) Feature Modelling: µTVL-based feature models provided
the during Product Line Requirement Analysis and Reference
Architecture phases formally capture variation points along
with all platform-related and other configuration parameters.
Along with providing documentation, such models ensure
that the generic component designer provides support for all
variation points. In addition, we aim to integrate an abstract
failure model into ABS to capture cross-cutting variability
in platform configurations. The failure model allows generic
component design models to be instantiated with different
platform configuration that support different levels of failure
handling.

2) Feature Integration: Given µTVL-based feature mod-
els, features are composed at the level of ABS using delta
modelling [8], [25], [26]. Specifically, deltas formalise the



underlying behaviour of individual features as well as their
combinations. Each delta is annotated with an application con-
dition, indicating the feature configurations for which it applies.
During feature integration, delta modelling helps to resolve
conflicts between interdependent features without affecting the
behaviour unrelated features.

D. Generic Component Realisation

After designing the generic components, they are realised
and added to the product line artefact base for reuse. As men-
tioned above, generic components contain variation points that
are resolved during application engineering. All variation points
for a generic component are consolidated in a variability model,
which is a combination of high level µTVL-based feature
models and deltas. This provides the necessary link between the
implementation of the generic component and the variability it
supports. This link enables the application engineer to reuse
generic components by resolving variation points and instanti-
ating them as concrete components. Other considerations in this
phase include: developing the techniques and tool support for
specifying and debugging generic components, and automatic
code generation. In particular, these techniques will be based on
symbolic execution. Symbolic execution provides both forward
and backward navigations along all possible execution paths of
the component up to a finite depth. Since symbolic execution
does not require concrete start states, it is ideal to support the
implementation and validation of generic components.

E. Generic Component Validation

After generic components are realised, they are validated to
ensure that they conform to their specification before being put
into the product line artefact base for reuse. By leveraging the
compositionally of ABS, it is possible to carry out validation
of generic components during the reference architecture design
and the generic component design phase. In this phase the val-
idation process may be partitioned into two formal testing and
formal verification. For reason of space, we briefly overview the
latter. In HATS techniques based on symbolic execution have
been investigated (such as [7]) as means to achieve scalable
formal verification. These techniques will be integrated into
ABS to allow verification of behavioural and functional aspects
of generic components.

IV. APPLICATION ENGINEERING

The application engineering process (AE) builds products
based on the reuse of generic artefacts from the product
line artefact base. When reusing artefacts, their variability is
resolved. New customer specific requirements are also taken
into account when resolving variability. The workflow of this
process is shown at the top of Figure 1.

A. Product Line Model Instantiation and Validation

During the Product Line Model Instantiation and Validation
phase the external product line variability is resolved. The
µTVL-based feature model constructed during the Product

Line Requirement Analysis phase specifies all variation points
available to the customer. Feature selection at this level occurs
by specialising the feature model, making choices and selecting
values for attributes. Similar to TVL, resolving variability of
a µTVL-based feature model is done using constraint satis-
faction [6]. Using both constraint solving and the refinement
theories that underlie the feature model’s semantics, we aim to
provide automatic consistency checking for feature selection
and system derivation. Some internal variation points may
require the knowledge of a system architect, and hence such
variation points are resolved without altering the system’s
external properties.5

B. Reference Architecture Instantiation

Given a precise description of the product requirements,
the reference architecture may be instantiated. This means the
internal variability model for the reference architecture needs
to be resolved. Furthermore, the resulting product architecture
needs to be validated against the product requirements. It is
often necessary to make changes to the product requirements to
adapt to customer-specific requirements. This means changing
either the product architecture or the reference architecture to
include these new requirements. This decision will be made
in the context of the evolution process, which is described in
Section V. Resolving variability at this level means selecting
the correct platform configuration as well as the correct set of
deltas defined during the Reference Architecture Design phase.
We then prove this selection to be correct by first resolving
any conflict over selected deltas [8], and then proving product
specific requirements by reusing and composing proof artefacts
constructed during the family engineering process.

C. Product Construction and Integration

During AE, generic components are instantiated and reused
according to the product’s architecture. After identifying the
necessary generic components, they are either adapted to fit the
product requirements, or new product specific components are
developed instead. After identifying the correct set of generic
components, we employ delta modelling to mechanically re-
solve variation points in this variability model. Specifically,
required code-changes to specific products are applied to the
generic components directly, while very specialised changes,
even those affecting only a single product, may be written
in an additional precisely targeted delta. Other considerations
during this phase include verifying the correctness of the
composition of the selected components, and translating the
verified composition into executable code.

D. System Validation

The product that was constructed during AE needs to be
validated for correctness against the product line requirements

5Besides resolving external variability, this phase also includes requirements
analysis for customer specific requirements that cannot be mapped to variation
points in the feature model.



and any customer-specific requirements. HATS aims to develop
the theories and techniques for conducting proofs for functional
correctness of the constructed product. This will be achieved by
efficiently reusing and composing proof artefacts constructed at
earlier stages of the life cycle, such as during family engineer-
ing. While it is still ongoing work, verification techniques based
on symbolic execution have been investigated [7]. We will also
consider test case generation to address deployment issues such
as scheduling and platform configurations.

V. EVOLUTION PROCESS

The aim of the Evolution Process is twofold: a) to manage
changes to released products and, b) to link between AE and
the FE for better reuse. For brevity we present only the latter.
A reuse problem in AE occurs when evaluating potential reuse
candidates reveals that adapting each candidate requires more
effort than building the desired component from scratch. Since
it is not possible for the application engineer alone to decide
the solution to this problem, an evolution request would be
triggered and handled in the evolution process. An evolution
request is handled independently and in parallel to AE. The
main decision to be resolved is whether it is more efficient
to improve or recreate a generic artefact than to develop the
artefact only specific for that application. In the former case the
result is re-injected into the ongoing application engineering
process, so that the creation of the specific artefacts can start.
In the latter case, a change request is sent to the FE where
the concrete impact for changing of the product line can be
realised.

The HATS methodology aims to support the evolution pro-
cess during family engineering. Specifically, we aim to support
evolution for the reference architecture and generic component
designs. For the reference architecture we aim to apply be-
havioural interfaces to specify component behaviour in terms
of attribute grammars [11]. Interfaces help specify behavioural
constraints of the interacting components, which facilitates
well-formed composition and enables safe evolution to be
checked statically and dynamically. For generic components we
aim to use model mining. Model mining helps deriving partial
models of an application from its code base. As a result, given
an existing implementation of a component, model mining
techniques can be used to formally inspect and revise the
corresponding generic component design model. Techniques
discussed in this section are still ongoing work in the HATS
project.

VI. EXAMPLE

In this section we consider two examples of the application
of formal methods in several steps of the HATS methodology.
In Section VI-A we consider an example based on a text editor
to illustrate the following: How to specify, implement and
resolve variability of a SPLE using the HATS methodology.
In Section VI-B we consider an existing formal method tool
for analysing program resources—the COSTA system [4]. We

illustrate its application with a simple example and highlight
its relevance to HATS and suggest how to integrate it into the
HATS methodology.

A. Feature Modelling and Integration

Following the classical SPLE approach, the text editor prod-
uct line consists of common and variable requirements. For
brevity, we provide the following code fragment of the text
editor to illustrate the product line’s commonality.
class Editor {
Model model;
void draw () { ... }
Font font(int c) { ... }
void onMouseOver(Coordinate c) { ... } }

Specifically, the Editor class holds a reference to the
underlying model being edited. It has methods to render the
model to the screen, to access the model, to get access to the
default font, and an event handler for when the mouse hovers
over some location in the text editor. The interface types of
these methods would have been defined during the Reference
Architecture Design phase, while the (generic) implementation
of these methods would be provided during the Generic Com-
ponent Design and the Generic Component Realisation phases.
This resulting class is a product line artefact, stored in the
artefact base for reuse during AE.

We model variability of the product line using feature models
expressed in µTVL. The following feature model describes the
variability of the text editor.
root Editor {

group {
opt SH {}
opt SPELL {}
opt TT { int sense; 0 <= sensitivity <= 1000; }}}

This model expresses the following additional features: SH
a syntax highlighting module; SPELL a spell checker; and
TT offering tool-tip functionality. In addition, the TT feature
takes an integer parameter reflecting the desired sensitivity
level, which is a value between 0 and 1000 milliseconds.
This micro-variability is reflected in the attribute sensitivity

in the feature model. Normally both high-level commonality
and variability of a product line are expressed in µTVL-based
feature models during the Product Line Requirement Analysis
phase, for reason of space our example µTVL only describes
variability.

During Generic Component Design and Generic Component
Realisation phases, the variability of the product line are imple-
mented using software deltas. These deltas can be applied to the
core to modify it by adding, removing, or modifying classes,
methods and fields. Deltas are stored in the artefact base as
generic components for reuse during AE. During AE variability
is resolved by first selecting the required set of features during
the Product Line Model Instantiation and Validation phase, the
corresponding deltas are the applied to the core during the
Reference Architecture Instantiation and Product Construction
and Integration phases.



In this example six deltas implement the above three features:
SH implements syntax highlighting; SPELL implements spell
checking; TT1 implements tool tips for sensitivity > 500;
TT2 implements tool tips for sensitivity ≤ 500 (using a
different algorithm); P1 patches the core so that syntax high-
lighting and spell checking work together, namely, to highlight
the spelling errors, and P2 patches core so that spell checking
and tool tips work together, namely, to use tool tips to suggest
alternative spellings.

For illustration purposes, we provide the definition of TT1
delta. The first line in TT1 expresses the name of the delta and
a list of the attributes imported from the feature selection made
from the feature model. The second line gives an application
condition stating when the delta is applicable, based on the
features selection (in this case, TT) and values passed in as the
attributes. These attributes can also be used within the body of
a delta.
delta TT1 (attr int TT.sensitivity)
when TT and TT.sensitivity > 500 {
modifies class Editor {
adds int sensitivity = TT.sensitivity;
modifies void onMouseOver(Coordinate c)
{ S } // the method body in TT1 } }

A delta may modify multiple classes and a class may be
modified by more than one delta. Deltas need to applied in
a pre-determined order to ensure that no conflicts arise [8].
Besides adding a new class to a program, ABS supports three
operations to support class modifications: the addition of a new
interface to an existing class; the redefinition (or addition) of
fields and methods in an existing class; and the removal of fields
and methods from an existing class. To illustrate, the effect of
applying delta TT1, based on feature selection TT with attribute
TT.sensitivity = 750, to class Editor yields the following
class definition:
class Editor {

Model model; int sensitivity = 750;
void draw () { ... }
Font font(int c) { ... }
void onMouseOver(Coordinate c) { S } }

These operations are flexible enough to capture the mod-
ification given in terms of deltas, when projected down to
single classes. Furthermore, these operations have been shown
to support the type-safe runtime redefinition of classes in con-
current distributed systems [18]. Consequently, the operations
are specific enough to support both the static feature selection
in software product lines and the runtime reconfiguration of
variation points in deployed products.

B. Resource Guarantee
Typical resource usage (or cost) measures of a program in-

clude execution time, executions steps, memory usage, amount
of data transmitted over the network, etc. The COSTA system
can obtain closed-form upper bounds on resource usages of
JAVA bytecode programs (and therefore JAVA), parametric on
the notion of resource (cost model). Consider the following
JAVA implementation of the binary search method:

int bi(int[] t, int v, int l, int u) {
int m;
while (l <= u) {
m = (l+u)/2; if (t[m] == v) return m;
if (t[m] > v) u = m-1; else l = m+1; }

return -1; }

COSTA infers an arithmetic expression that is an upper bound
on the number of execution steps, when the method bi is
called. The calculated upper bounds are parametric on the input
values and not specific for given concrete input values. COSTA
follows the classical approach to static resource analysis and it
consists of two phases.

In the first step, several static analyses are applied to a given
program and a cost model to generate a cost relation system
that represents the program’s cost w.r.t. the given cost model.

In the second step, COSTA [3] solves the cost relations and
obtains a closed-form upper-bound (i.e, an expression without
recursion). For example, for the above cost relation it obtains
bi(t, v, l, u) = 24∗dlog2(nat(u− l)+1)e+40 where nat(a) =
max(a, 0). The full details of this example may be found in [4].

1) Relevance: In the HATS methodology the COSTA sys-
tem has several uses: (a) verification of resource usage require-
ment: here resources usage requirements are provided at the
level of ABS models and verified either at the level of ABS
models or the level of the generated concrete code (e.g., JAVA),
depending on the resource of interest; (b) tracking the resource
usage evolution of a given system and in case that an evolution
step violates the resource usage requirements, try to identify the
smallest part of the system responsible for this violation; and
(c) directing the feature selection process towards an optimal
(from cost point of view) feature selection. This is useful when
the number of features combination is large, and our interest is
in selecting the features that minimise resource consumption.

2) Challenges: Currently, the COSTA system is able to
analyse JAVA bytecode programs, and has support for several
cost models. It can be used in HATS methodology in one of
the following ways: (a) apply it to JAVA programs generated
from ABS models. This requires a language for specifying
resource constraints at the level of ABS; (b) compile ABS
models into the intermediate language used in COSTA, and
then apply COSTA directly to compiled models. This requires
developing a translator from ABS models to this intermediate
language; and (c) reuse the technologies developed in COSTA
to develop a cost analyser dedicated to ABS models. In all
these alternatives an important issue is to support concurrency,
as currently COSTA lacks support for this feature. Support for
concurrency should use the ABS concurrency model. This is
essential to make COSTA widely applicable in the context of
the HATS methodology.

VII. CONCLUSION

This paper reports the current status of the HATS methodol-
ogy. The HATS methodology derives from industrial strength
software product line engineering methods by applying formal
methods to various phases of the method. We have provided



an overview of each phase in the methodology and identified
specific places where formal methods are applied. We have
presented two applications of formal methods in the HATS
methodology. First, we illustrated how variability of a prod-
uct line is modelled in the HATS methodology. Second, we
considered the ongoing challenges of integrating an existing
tool for analysing resource usage in a product line.

The HATS project has yet to validate the intended method-
ological benefits for large scale information systems in indus-
trial settings. This evaluation remains future work.

REFERENCES

[1] Report on the Core ABS Language and Methodology: Parts
A and B, Mar. 2010. Deliverable 1.1 of project FP7-231620
(HATS), available at http://www.hats-project.eu.

[2] W. Ahrendt and M. Dylla. A verification system for distributed
objects with asynchronous method calls. In ICFEM’09, volume
5885 of Lecture Notes in Computer Science. Springer-Verlag,
2009.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form
Upper Bounds in Static Cost Analysis. Journal of Automated
Reasoning, 2010. To appear.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
Resource usage analysis and its application to resource certifica-
tion. In A. Aldini, G. Barthe, and R. Gorrieri, editors, FOSAD
2007/2008/2009 Tutorial Lectures, volume 5705 of LNCS. PUB-
SV, 2009.

[5] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Trans. Software Eng., 30(6), 2004.

[6] Q. Boucher, A. Classen, P. Faber, and P. Heymans. Introducing
TVL, a text-based feature modelling language. In Proc. of
VaMoS’10. University of Duisburg-Essen, January 2010.

[7] R. Bubel, R. Hähnle, and R. Ji. Interleaving symbolic execution
and partial evaluation. In Post Conf. Proc. FMCO2009, LNCS.
Springer-Verlag, 2010.

[8] D. Clarke, M. Helvenstijn, and I. Schaefer. Abstract delta
modeling. Submitted, 2010.

[9] P. Clements and L. Northrop. Software Product Lines: Practices
and Patterns. Addison Wesley Longman, 2001.

[10] F. S. de Boer, D. Clarke, and E. B. Johnsen. A Complete Guide
to the Future. In Proc. of ESOP’07, volume 4421 of Lecture
Notes in Computer Science. Springer-Verlag, Mar. 2007.

[11] S. de Gouw, J. Vinju, and F. de Boer. Prototyping a tool
environment for run-time assertion checking in JML with Com-
munication Histories. In Proc. of FTfJP 2010, 2010. To appear.

[12] A. Fantechi and S. Gnesi. Formal modeling for product families
engineering. In Proc. of 12th Software Product Line Conference
(SPLC 2008).

[13] First Report on Feature Selection and Integration, Mar. 2010.
Deliverable 2.2a of project FP7-231620 (HATS), available at
http://www.hats-project.eu.

[14] A. Gruler, M. Leucker, and K. Scheidemann. Calculating and
modeling common parts of software product lines. In Proc. of
12th Software Product Line Conference (SPLC 2008).

[15] Highly Adaptable and Trustworthy Software using Formal Meth-
ods, Mar. 2009. http://www.hats-project.eu.

[16] P. Heymans, P. Schobbens, J. Trigaux, Y. Bontemps, R. Matule-
vicius, and A. Classen. Evaluating formal properties of feature
diagram languages. Software, IET, 2(3):281–302, 2008.

[17] A. Hubaux, A. Classen, and P. Heymans. Formal modelling
of feature configuration workflows. In Proc. of 13th Software
Product Line Conference (SPLC 2009), 2009.

[18] E. B. Johnsen, M. Kyas, and I. C. Yu. Dynamic classes: Modular
asynchronous evolution of distributed concurrent objects. In
Proc. of FM’09, volume 5850 of Lecture Notes in Computer
Science. Springer-Verlag, Nov. 2009.

[19] E. B. Johnsen and O. Owe. An asynchronous communication
model for distributed concurrent objects. Software and System
Modeling, 6(1):35–58, Mar. 2007.

[20] T. Kishi and N. Noda. Formal verification and software product
lines. Communications of the ACM, 49(12):73–77, 2006.

[21] T. Kishi, N. Noda, and T. Katayama. Design verification for
product line development. In Proc. of 9th Software Product Line
Conference (SPLC 2005), 2005.

[22] M. Mannion. Using first-order logic for product line model
validation. In Proc. of SPLC 2, LNCS. Springer-Verlag, 2002.

[23] D. Muthig. A Lightweight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines. PhD thesis, Univer-
sity of Kaiserslautern, 2002.

[24] K. Pohl, G. Böckle, and F. Van Der Linden. Software Prod-
uct Line Engineering: Foundations, Principles, and Techniques.
Springer, Heidelberg, 2005.

[25] I. Schaefer. Variability Modelling for Model-Driven Develop-
ment of Software Product Lines. In Proc. of VaMoS 2010, 2010.

[26] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella.
Delta-oriented programming of software product lines. In Proc.
of SPLC 2010, Sept. 2010. To appear.

[27] F. J. van der Linden, K. Schmid, and E. Rommes. Software
product lines in action: the best industrial practice in product
line engineering. Springer, 2007.

[28] A. van Deursen and P. Klint. Domain-specific language design
requires feature descriptions. Journal of Computing and Infor-
mation Technology, 10(1):1–18, 2002.


