
Control-Flow Refinment via Partial Evaluation

Jesús Doménech1, Samir Genaim2, and John P. Gallagher3

1 Universidad Complutense de Madrid, Spain
jdomenec@ucm.es

2 Universidad Complutense de Madrid, Spain
sgenaim@ucm.es

3 Roskilde University, Denmark and IMDEA Software Institute, Spain
jpg@ruc.dk

1 Introduction

Control-flow refinement is a technique used in program analysis to make the implicit control-
flow of a given program explicit. Typically, this is done to increase the precision of the
corresponding analysis. Consider for example the program on the left:

while (x > 0)
if (y < z) y++; else x--;

while (x > 0 && y < z) y++;
while (x > 0 && y >= z) x--;

Its execution has two implicit phases: in the first one, variable y is incremented until it
reaches the value of z, and in the second phase the value of x is decremented until it reaches
the value 0. Control-flow refinement techniques can transform this program into the one on
the right, in which the two phases are explicit.

In the context of termination analysis, such a transformation simplifies the termination
proof; while the original program requires a lexicographic termination argument, the trans-
formed one requires only linear ones. In addition, in the context of resource usage (cost)
analysis, tools that are based on bounding loop iterations using linear ranking functions fail
to infer the cost of the first program, while they succeed in inferring a linear upper-bound on
the cost of the second one. In general, splitting the control-flow might also help in inferring
more precise invariants, without the need for expensive disjunctive abstract domains, and
thus improve any analysis that relies on such invariants (e.g. termination and cost analyses).

In the context of cost (and implicitly termination) analysis, control-flow refinement has
been studied in [8] and [10]. The first [8] considers a general form of recurrence relations called
cost equations, and the latter [10] considers structured imperative programs. Both handle
programs with integer variables. These works demonstrated that control-flow refinement
is crucial for handling programs that were considered challenging by the cost analysis
community.

We started with the obvious observation that control-flow refinement is based on a special
kind of partial evaluation tailored for a very particular analysis. We decided to explore
what we would get, in terms of precision of cost and termination analysis, if instead, we use
an existing off-the-shelf partial evaluation tool. This would allow integrating control-flow
refinement into existing static analysis tools without any effort.

In this extended abstract, we describe preliminary experimental results obtained by using
an off-the-shelf partial evaluation tool for control-flow refinement, and its impact on the
precision of termination and cost analysis. Our experiments are done for Integer Transition
Systems, which are graphs where edges are annotated with linear constraints describing
transition relations between corresponding nodes.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Control-Flow Refinment via Partial Evaluation

2 Control-flow Refinement via Partial Evaluation for Cost and
Termination Analyses

In this section we describe our experiments on the use of a partial evaluation tool for
control-flow refinement, and its impact on the precision of termination and cost analysis.

Programs. Our programs are Integer Transition Systems. Briefly, such programs are
described by control-flow graphs (CFGs) where edges are annotated with linear constraints
over primed and unprimed integer variables. The unprimed variables represent the current
state and the primed variables the next state; for example {x > 0, x′ = x + 1} describes the
transition relation in which x must be positive to apply it, and the value of x increases by 1.
We use this form since it is used as an intermediate representation in many termination and
cost analyses.

Used Tools. For termination analysis we use RankFinder [2]. It is a termination analysis
tool based on using linear and (several kinds of) lexicographic-linear ranking functions. It
also infers supporting invariants using the abstract domain of polyhedra.

For cost analysis we use several tools: (1) KoAT [6], which is designed to analyze CFGs but
does not use any control-flow refinement; (2) PUBs [4], which is the back-end of the COSTA [5]
and SACO [3] systems. It accepts cost relations as input (a form of recurrence relation). We
translate CFGs to this form when possible. (3) CoFloCo, which similarly to PUBs uses cost
relations as input but it also applies control-flow refinement. We do not use or compare to the
techniques of [10] since the corresponding tools are not available. For partial evaluation [11],
we use a partial evaluation tool for constrained Horn clauses (CHCs) [12, 9] since CFGs can be
seen as linear CHC programs. The partial evaluator yields a polyvariant specialisation, that
it, it generates a finite number of versions of each predicate (where each predicate represents
a program point), distinguished according to the constraints that hold upon reaching that
point. Polyvariance is essential in order to achieve control-flow refinement.

In what follows, we first describe some selected interesting examples, and then describe
and discuss our experiments on a larger set of examples.

2.1 Selected Examples
Iterative McCarthy 91

Our first example is the iterative McCarthy program depicted in Fig. 1. For an input x > 100
the loop body executes the then branch once and exits the loop; and for an input x ≤ 100
the execution is done in two phases: in the first phase the else branch is executed repetitively
until the value of x reaches the interval x ∈ [101..111]; and in the second phase the execution
alternates between the then and else branches until c reaches 0. Note that it is guaranteed
that c reaches 0 because executing the then and else branches consecutively increments x by
1 but does not change the value of c, and when reaching a state in which x is 111 the then
branch is executed twice and thus the value of c is decreased by 1 (and x goes back to 91).
The complexity of this program is O(|x|); this is because for x < 100 the first phase executes
at most 100−x

11 + 1 times, and the second phase executes at most 21(100−x
10 + 1) + 1 (because

the value of c when entering the second phase is at most 100−x
11 + 2 and in the second phase

it takes at most 21 iterations to decrease c by 1).
The CFG depicted in Fig. 1 (middle) corresponds to the iterative McCarthy program. It

was obtained automatically using llvm2KITTeL [1]. Transition t1 = {c > 0, c′ = c, x′ = x}
corresponds to entering the loop body, and transitions t3 = {x > 100, x′ = x−10, c′ = c−1}

Jesús Doménech, Samir Genaim, and John P. Gallagher 3

int McCarthy(int x){
int c = 1;
while (c > 0) {

if (x > 100) {
x -= 10;
c--;

} else {
x += 11;
c++;

}
}
return x;

}

Figure 1 Iterative McCarthy 91

and t4 = {x ≤ 100, x′ = x + 11, c′ = c + 1} to the then and else branches, respectively.
Analyzing the termination behaviour of this CFG using RankFinder results in a termination
proof with a lexicographical termination witness 〈10c− x + 90, x〉 for the recursive SCC
(that is defined by the nodes bb1 and bb2). Cost analysis using KoAT results in the bound
O(x2), which is not precise enough. CoFloCo and PUBs were not able to infer any bound for
this example. Recall that CoFloCo applies some control-flow refinement as well.

Applying PE on this CFG results in the CFG depicted Fig. 1 (right). Note that transition
names in the two CFGs are not related. PE splits the control into two cases: one in which
the input x > 100, which is represented by t1 and t9, and one in which the input x ≤ 100
which is represented by the rest of transitions. The subgraph that corresponds to the second
case has 2 SCCs. The first one (node bb2_4_5) corresponds to the first phase in which the
else branch is executed repetitively, and the second SCC (nodes bb1_3_3, bb2_4_2 and
bb2_4_1) corresponds to the second phase in which the then and else branches alternate.

For this CFG, RankFinder infers that first SCC terminates with a linear termination
witness 100− x, and that the second terminates with a linear termination witness 335c− 6x

as well (for each node there is a different free constant added to this function, but it is not
important for our discussion). Having linear ranking functions makes cost analysis simpler as
well, and indeed applying KoAT on this CFG we infer bound O(x). Note that PUBs would infer
a linear bound for this CFG as well since all SCCs are ranked by linear ranking functions.

Greatest Common Divisor

Consider the GCD program depicted in Fig. 2. It calculates the GCD of two positive integers
using iterative subtracting. This program terminates and has a linear runtime complexity.

The CFG depicted in Fig. 2 (middle) is automatically obtained using llvm2KITTeL. The
following are transitions that we will discuss later. t3 = {x > 0, y > 0, x′ = x, y′ = y},
t4 = {x > y, x′ = x, y′ = y}, t4 = {x < y, x′ = x, y′ = y}, t7 = {x < y, y′ = y − x, x′ = x},
and t8 = {x ≥ y, y′ = y, x′ = x− y}. Note that in t8, which corresponds to the else branch,
we have the constraint x ≥ y while at runtime it will always be the case that x > y. This
happens because llvm2KITTeL translates the if-statement independently from the context
(the while-condition), and thus for the else branch it takes the negation of the if-condition.

RankFinder fails to prove termination of this CFG. The reason is that proving termination
requires the invariant {x ≥ 1, y ≥ 1} for node bb2 in order to rank transitions t7 and t8.

4 Control-Flow Refinment via Partial Evaluation

int gcd(int x, int y){
assert(x>0 && y>0);
while(x != y){

if(x<y)
y = y-x;

else
x = x-y;

}
return x;

}

Figure 2 Greatest Common Divisor

RankFinder fails to infer this invariant mainly due to the constraint x ≥ y, which at some
point in the fixpoint computation introduces x ≥ 0 at node bb1, and then the widening
operation of PPL loses the lower bound of x (a more clever widening would have solved the
problem). In order to solve this problem it is enough to unfold transitions in the recursive
SCC, and thus collapse the two nodes into one (t4 followed by t7, and t5 followed by t8) which
then will eliminate x ≥ y. Note that unfolding is the basic operation in partial evaluation.
KoAT and PUBs fail to infer a bound for this program, while CoFloCo infers the expected
linear bound. Recall that CoFloCo applies control-flow refinment.

Applying PE to this CFG results in the one in Figure 2 on the right. We can see that PE
actually did not collapse the node of the recursive SCC into one, which would have solved
the problem. It actually split the two phases of the loop into separated ones and introduced
transitions for moving from one to another – nodes bb1_2_2 and bb2_4_1 correspond
to the else branch and nodes bb1_1_3 and bb2_3_5 correspond to the then branch. In
addition, it has merged transitions so that the constraint x ≥ y disappeared.

Applying RankFinder of this CFG infers a linear ranking function for all components,
in particular the nodes in the recursive SCC are annotated with the following function:
bb1_1_3 : 〈4x + 2y − 1〉, bb1_2_2 : 〈2x + 2y + 1〉, bb2_3_5 : 〈2x + 2y〉, bb2_4_4 :
〈4x− 2y〉, bb2_4_1 : 〈2x + 2〉. This is possible since now it infers the invariant {x ≥
1, y ≥ 1} where needed. Applying KoAT on this program we get the desired bound O(|x|+ |y|).
PUBs would also get a linear bound for this CFG.

2.2 Preliminary Experimental Evaluation

We measured the precision of applying KoAT and RankFinder on two sets of examples, before
and after partial evaluation. We preferred to use KoAT for cost analysis since it accepts CFGs
as input without any need for reprocessing. We used two sets of integer transition systems:
SET-A (416 benchmarks taken from the termination competition database) and SET-B (a set
of 188 benchmarks used in [7] to evaluate the precision of CoFloCo).

The results of applying RankFinder on set SET-A (resp. SET-B) are: for 9 (resp. 7) CFGs
using PE improves the result from unknown to terminating; for 26 (resp. 19) CFGs using PE
improves the result from lexicographic to linear termination witness; for 7 (resp. 7) CFGs the
analysis times out when analyzing the CFG generated by PE, since it was very large, while
the analysis of the original CFG provides a proof of termination; for 3 (resp. 2) CFGs using PE
results in a lexicographic termination witness while the original in a linear one; and for the
the rest of CFGs the results are equivalent.

Jesús Doménech, Samir Genaim, and John P. Gallagher 5

The results of applying KoAT on set SET-A (resp. SET-B) are: for 72 (resp. 7) CFGs using
PE improves from unknown to some upper-bound; for 0 (resp. 16) CFGs using PE improves the
the complexity class of the upper-bound; for 10 (resp. 7) CFGs the analysis times out when
analyzing the CFG generated by PE, since it was very large, while the analysis of the original
CFG provides an upper-bound; for 19 (resp. 6) CFGs using PE results in an upper-bound of a
worse complexity class; and for the the rest of CFGs the results are equivalent.

In summary, in many cases using PE improves the results of both termination and cost
analyses. However, in some CFGs it generates large CFGs that the analysis is not able to
handle, and in some other cases they lead to worse results. We still need to explore these
(large) example in details in order to understand the reason.

3 Conclusions and Future Work

In this extended abstract we explored the use of PE as a control-flow refinement technique
in the context for termination and cost analysis. Our preliminary experiments show that
PE can improve both analyses. However, there are several cases where the results are worse.
Currently we are investigating these examples to identify the reason for this imprecision.

Apart from this, for future work we plan to follow up these preliminary research results.
In particular, we intend to pursue the following directions. (1) To measure the effect of
applying PE on performance. In particular if we can use PE only for parts of the CFG (e.g.,
selected SCCs) for which the analyzer produces imprecise results; (2) to measure the effect
of using PE on other termination and cost analysis tools (apart from KoAT and RankFinder);
(3) to explore the use of PE for inferring lower-bounds; (4) to specialize the PE tool we use in
order to take into account that is applied in the context of termination and cost analysis.

References
1 llvm2KITTeL. https://github.com/s-falke/llvm2kittel.
2 RankFinder. http://www.loopkiller.com:8081/ei/clients/web/.
3 E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-Zamalloa, E. Martin-

Martin, G. Puebla, and G. Román-Díez. SACO: Static Analyzer for Concurrent Objects.
In Proc. of TACAS’14, volume 8413 of LNCS, pages 562–567. Springer, 2014.

4 E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-form upper bounds in static cost
analysis. Journal of Automated Reasoning, 46(2):161–203, 2011.

5 E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design and Imple-
mentation of a Cost and Termination Analyzer for Java Bytecode. In Proc. of FMCO’07,
volume 5382 of LNCS, pages 113–132. Springer, 2008.

6 M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing runtime and size
complexity of integer programs. ACM Trans. Program. Lang. Syst., 38(4):13:1–13:50, 2016.

7 A. Flores-Montoya. Cost Analysis of Programs Based on the Refinement of Cost Relations.
PhD thesis, Technische Universität, Darmstadt, August 2017.

8 A Flores-Montoya and R. Hähnle. Resource analysis of complex programs with cost equa-
tions. In Proc. of APLAS’14, volume 8858 of LNCS, pages 275–295. Springer, 2014.

9 J. P. Gallagher. Tutorial on specialisation of logic programs. In Proc. of the ACM SIGPLAN
Symposium on PEPM’93, pages 88–98, 1993.

10 S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and progress invariants for
bound analysis. In ACM Sigplan Notices, volume 44, pages 375–385. ACM, 2009.

11 N. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Software Gen-
eration. Prentice Hall, 1993.

12 B. Kafle, J. P. Gallagher, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey. An
iterative approach to precondition inference using constrained Horn clauses. ICLP’18, 2018.

https://github.com/s-falke/llvm2kittel
http://www.loopkiller.com:8081/ei/clients/web/

	Introduction
	Control-flow Refinement via Partial Evaluation for Cost and Termination Analyses
	Selected Examples
	Preliminary Experimental Evaluation

	Conclusions and Future Work

