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Abstract. In this tutorial paper, we overview the techniques that under-
lie the automatic inference of bounds on resource consumption. We first
explain the basic techniques on a Java-like sequential language. Then,
we describe the extensions that are required to apply our method on
concurrent ABS programs. Finally, we discuss some advanced issues in
resource analysis, including the inference of non-cumulative resources
and the treatment of shared mutable data.

1 Introduction

Having information about the cost of programs, i.e., the amount of resources
that the execution will require, is useful for many different purposes, including
program optimization, verification and certification. Therefore, it is widely rec-
ognized that cost analysis, sometimes also referred to as resource analysis or
automatic complexity analysis, is quite important, although difficult and error-
prone. COSTA [45, 6]4 is a state-of-the-art cost and termination analyzer which
automates this task. The system is able to infer upper and lower bounds on the
resource consumption of a large class of programs. Given a program P , the anal-
ysis results allow bounding the cost of executing P on any input data x without
having to actually run P (x).

The first successful proposal for automatically computing the complexity
of programs was the seminal work of Wegbreit [42]. Since then, a number of
cost analysis frameworks have been proposed, mostly in the context of declar-
ative programming languages (functional programming [31, 36, 41, 37, 18] and
logic programming [21, 33]). Cost analysis of imperative programming languages
has received significantly less attention. It is worth mentioning the pioneering
work of [1]. To the best of our knowledge, COSTA has been the first system which
automatically infers bounds on cost for a large class of Java-like programs, get-
ting meaningful results. The system is implemented in Prolog (it runs both on
Ciao [26] and SWI Prolog [43]) and uses the Parma Polyhedra Library [17] for
manipulating linear constraints.

4 Further information of the system is available at http://costa.ls.fi.upm.es/

~costa/costa/costa.php.
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1.1 Organization of the Tutorial

We use the classical approach to static cost analysis which consists of two phases.
First, given a program and a cost model, the analysis produces cost relations,
i.e., a system of recursive equations which capture the cost of the program in
terms of the size of its input data. Section 2 overviews this first phase which
requires, among other things, the translation of the imperative program into
an intermediate representation and the inference of size relations. In a second
phase the cost relations are solved into a closed-form, i.e., an expression which
is not in recursive form and that can be directly evaluated. Section 3.1 describes
our approach to infer closed-form upper bounds on the worst-case cost and
Section 3.2 the techniques to infer closed-form lower bounds on the best-case
cost. Known limitations of this classical approach are described in Section 3.3,
where we also compare our approach with amortized cost analysis.

Section 4 overviews the extensions needed to infer the resource consump-
tion of ABS programs [6], where the concurrency model of concurrent objects is
adopted. The main challenge is handling concurrent interleavings in a sound and
precise way. This requires redefining the size analysis component for concurrent
objects. Also, the fact that concurrent objects represent distributed components
brings in a new notion of cost which is not monolithic (like in traditional sequen-
tial applications), but rather captures the cost attributed to each distributed
component separately. These two issues are explained in Section 4.1. The pre-
cision of the resource analysis of concurrent languages can be improved if we
infer may-happen-in-parallel (MHP) relations that over-approximate the set of
program points that may execute in parallel. Section 4.2 describes the MHP
analysis integrated in COSTABS [4]. COSTABS is the extension of the COSTA
system to analyze ABS programs.

Section 5 discusses advanced issues in resource analysis. We start by describ-
ing the analysis of memory consumption in Section 5.1. Memory consumption is
different from other type of (cumulative) resources if the language has a garbage
collector. We will see that the information on which objects are garbage col-
lected can be integrated in the analysis. As a follow-up, we will discuss in Sec-
tion 5.2 the inference of the task-level of a concurrent program which tries to
over-approximate the number of tasks that can be simultaneously executing in
a concurrent system. The similarity with the heap consumption analysis is that
both types of resources are non-cumulative. Another advanced issue that we
describe in Section 5.3 is the treatment of the shared mutable data in resource
analysis. This is currently one of the main challenges in static analysis of object-
oriented programs. Finally, Section 5.4 overviews the design of an incremental
resource analysis which, given some previous analysis results and a change in a
program, is able to recompute the analysis information by reanalyzing only the
components affected by the changes.

Section 6 concludes and points out directions for future work.
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2 From Programs to Cost Relations

This section describes how a program is analyzed in order to produce a cost
relation system which defines its resource consumption. The analysis consists of
a number of steps: (1) the program is transformed into a rule-based representation
which facilitates the subsequent steps of the analysis without losing information
about the resource consumption; (2) size analysis and abstract compilation are
used to generate size relations which describe how the size of data changes during
program execution; (3) the chosen cost model is applied to each instruction in
order to obtain an expression which represents its cost; (4) finally, a cost relation
system is obtained by joining the information gathered in the previous steps. Let
us illustrate these steps by means of an example.

Rule-based Intermediate Representation. The input language of the programs
analyzed by COSTA is Java bytecode [32]. The bytecode program is first trans-
formed into a recursive rule-based representation (RBR) [8]. The transformation
starts by constructing the Control Flow Graph (CFG) of the program. Each block
of the CFG is transformed into one rule in the RBR. Iteration (i.e. for/while/do
loops) is transformed into recursion and conditional constructs are represented
as multiple (mutually exclusive) guarded rules. Bytecode instructions for method
calls are transformed into the call of the corresponding rule in RBR and recursive
method calls are thus transformed into recursion. These transformations deter-
mine the recursive structure of the resulting cost relation system (CR). Each
rule in the RBR program will result in an equation in the CR. Intermediate
programs resemble declarative programs due to their rule-based form. However,
they are still imperative, since they use destructive assignment and store data
in mutable data structures (stored in a global memory, or heap).

Example 1. Fig. 1 shows at the top the Java source code of our running example.
The Java code is shown only for clarity, since the analysis works directly on the
bytecode. The example implements a sorting algorithm over an input array of
integers. At the bottom of Fig. 1, the CFG and the RBR corresponding to the
inner loop in the example are shown. The parameters in the rules of the RBR
are tupled into input parameters corresponding to the variables on which they
operate on, and the single output parameter corresponding to the return value
of the rules. The CFG contains the bytecode instructions of the original input
program. The entry rule to the loop is while1. Its input arguments are the array
a and local variables j and v and its output argument is the possibly modified
array. Procedures while2 and while3 correspond to the two conditions of the loop
and both are defined by two mutually exclusive guarded rules. The iterative
structure of the loop is preserved by the recursive call to while1 in the second
while3 rule.

Cost Models. A cost model M determines the cost (a natural number) of each
basic instruction b of the language. COSTA incorporates, among others, the
following cost models:
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stat ic void sort( int a[]) {

for ( int i = a.length -2; i>=0; i--)

{

q© int j = i+1;

int v = a[i];

while ( j<a.length && a[j]<v ) {

p© a[j-1] = a[j];

j++;

}

a[j-1]=v;

}

}

while1(〈a, j, v〉, 〈a′〉) ← while2(〈a, j, v〉, 〈a′〉).
while2 (〈a, j, v〉, 〈a〉) ← j≥a.length.
while2 (〈a, j, v〉, 〈a′〉) ← j<a.length,

while3 (〈a, j, v〉, 〈a′〉.
while3 (〈a, j, v〉, 〈a〉) ← a[j]≥v.
while3 (〈a, j, v〉, 〈a′〉) ← a[j]<v,

a[j − 1]=a[j], j=j + 1,
while1 (〈a, j, v〉, 〈a′〉).

Fig. 1. Running Java example, Control Flow Graph and RBR

– Number of instructions: we have thatMi(b) = 1, i.e., each bytecode instruc-
tion b in the rule-based program counts 1;

– Number of calls to a method : calls to methods in bytecode are of the form
invoke method name, thusMc(b) = 1 if b ≡ invoke m; otherwiseMc(b) = 0.

– Heap consumption: Mh(b) = size(C) if b ≡ new C, otherwise Mc(b) = 0,
where size(C) returns the amount of memory allocated in the heap when
executing new C.

Generation of Cost Relations. Given a program P (in RBR form) and a cost
model M, we automatically generate a cost relation system (CR) which defines
the cost of executing the program on some input x w.r.t. the selected cost model
M. CR are basically an extended form of recurrence relations. A CR is defined by
a finite set of equations of the form 〈c(x̄) = e, ϕ〉, where e is a cost expression and
ϕ is a set of linear constraints which define the applicability conditions for the
equations and the size relations among the variables. Variables in the equations
represent the “size” of the corresponding data in the program according to the
selected size measure [19]. Each program variable is abstracted using a size
measure such that every non-integer value is represented as a natural number.
Classical size measures used for non-integer types are array length for arrays or
the length of the longest reference path for linked data structures, etc. In our
running example, arrays are abstracted to their length. Thus, variable a in the
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CR represents the length of the array a. Note that due to this choice of size
abstraction, we cannot observe the values stored in the elements of the array.
All information about them is not present in the CR.

The inference of ϕ is defined as a fixpoint computation which comprises two
steps: first, abstract compilation of the program replaces bytecode instructions
in the RBR by size constraints. Then, size analysis infers size relations between
states at different program points, i.e., it approximates how the size of variables
changes from one call in the cost relation to another. Analysis is often done by
obtaining an abstract version of the program by relying on abstract interpreta-
tion [20]. In Fig. 2, such size relations are shown on the right-hand side.

Example 2. Let us assume that q© (resp., p©) represents the cost of executing the
body of the for excluding the cost of the inner loop (resp., the cost of executing
the body of the while loop). Both q© and p© are computed w.r.t. some given
cost model which is left implicit here. Fig. 2 shows the resulting CR for the
running example of Fig 1. Here, variables are constraint variables corresponding
to those of the original rule, e.g. i and i′ both correspond to values of variable i,
but at different program points. Instructions are replaced by linear constraints.
Array a is abstracted to its length a. Thus, the first rules for while1 become
non-deterministic, as it is not possible to observe the array elements. Output
variables are removed by inferring input-output size relations.

sort(a) = for(a, i) {i=a−2, a≥0}
for(a, i) = 0 {i<0}
for(a, i) = q©+while1(a, j)+for(a′, i′) {i≥0, j=i+1, i′=i−1,a′=a}

while1(a, j) = 0 {j≥a}
while1(a, j) = 0 {j<a}
while1(a, j) = p©+while1(a′, j′) {j<a, j′=j+1, a′=a}

Fig. 2. CR from example in Fig 1

The process of generating cost relations involves several additional static
analysis techniques. In particular, class analysis is performed to compute reach-
able code; nullity and array bound analysis are used to eliminate dead code;
slicing helps to remove variables which are irrelevant to cost; finally, cyclicity
analysis identifies cyclic data structures.

3 From Cost Relations to Closed-Form Bounds

Though CRs are simpler than the programs they originate from, since all vari-
ables are of integer type, in several respects they are not as static as one would
expect, namely: (1) in order to obtain a concrete bound for a given input, we
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still need to evaluate the CRs; moreover, due to the nondeterministic nature of
CRs, such evaluation must consider all possibilities and select the worst/best
among them; and (2) CRs do not provide a clear insight on the complexity class
(polynomial, exponential, etc.)to which the resource consumption belongs. For
these reasons, closed-form bounds, which are functions composed from simple
arithmetic expressions, are preferable. This form makes it possible to address
the above two issues efficiently. COSTA includes a solver called PUBS, that is
encharged of solving CRs into closed-form upper and lower bounds.

Solving CRs into closed-form (lower or upper) bounds in PUBS is done in
two phases. In the first phase, the CRs are simplified such that all recursions
are direct (i.e., all cycles in the call graph between relations of the CR have
length 1), which is achieved by applying partial evaluation [29] in order to unfold
intermediate equations. After this step, each iterative or recursive construct in
the original program is represented by a single directly recursive CR. The CRs
of Fig. 2 are given in this form. In the second phase, the CRs are solved into
closed-form bounds in a compositional way, by handling one CR at a time, in
a reversed order to the calling relation. E.g., for the CRs of Fig. 2 the solving
proceeds as follows: it solves CR while1; substitutes the resulting bound in the
CR for ; solves CR for ; substitutes the resulting bound in CR sort ; and finally
solves CR sort . These two phases are common for inferring both upper and
lower bounds, the difference is in how each CR (that does not call any other
CRs, i.e., standalone), in the second phase above, is solved. This is discussed in
sections 3.1 and 3.2. Sec. 3.3 discusses programs whose cost cannot be modeled
precisely with CRs, and explain a corresponding solution.

Note that a common feature to all solving methods, that we describe in this
section, is that they heavily rely on the use of program analysis techniques. This,
we believe, is the most important factor that made COSTA succeed where other
previous cost analyses had failed.

3.1 Upper Bounds

PUBS includes two approaches for solving CRs into closed-form upper-bounds.
They have different applicability and precision properties. In what follows we
explain the essentials of both approaches.

We start by intuitively explaining the first approach using the CRs of Fig. 2,
starting with the standalone CR while1. Let a0 and j0 be unknown initial values,
for a and j respectively, with which while1 is called. Solving this CR is done by
inferring an upper-bound f̂(a0, j0) on the number of times that the recursive

equation can be applied, when evaluating while1(a0, j0), then, f̂(a0, j0) ∗ p© is
guaranteed to be an upper-bound for while1(a0, j0) since all applications of the

recursive equation contribute the constant symbol p©. Inferring f̂(a0, j0) auto-
matically can be done by relying on techniques from the field of termination
analysis, such as synthesis of ranking functions [34]. For the case of while1, we

automatically infer f̂(a0, j0) = nat(a0−j0), where nat(v) = max(v, 0), and thus,
nat(a0 − j0) ∗ p© is an upper-bound for while1(a0, j0). The nat function is used
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for technical reasons to lift negative values to zero because the number of times
the recursive equation of while1 is applied in an evaluation cannot be negative.

Next we proceed to solve the CR for . First we substitute the upper-bound
of while1 in the CR of for , which converts it into the self-contained

for(a, i) = 0 {i<0}
for(a, i) = q©+ nat(a− j) ∗ p©+for(a′, i′) {i≥0, j=i+1, i′=i−1,a′=a}

In this case, f̂(a0, i0) = nat(i0−1) is an upper-bound on the number of times the
recursive equation can be applied when evaluating for(a0, i0). Assuming that we
have a function ê(a0, i0) such that it is guaranteed to be bigger than any instance

of q©+ nat(a− j) ∗ p©, then f̂(a0, i0) ∗ ê(a0, i0) is an upper-bound for for(a0, i0).
Let us explain how to automatically compute ê(a0, i0). Since q©+nat(a− j)∗ p©
takes its maximum value when a − j is maximal, it is enough to compute an
upper-bound on a− j (in terms of a0 and j0). This can be done using invariant
generation and linear programming as follows: (1) we infer an invariant Ψ that
relates the initial values a0 and i0 to the values of a and i at any call for(a, i),
which is Ψ = {a=a0, i0≥i} in this case; and (2) the maximum value to which
a − j can be evaluated is obtained by applying the recursive equation in the
context of Ψ , and asking what is the maximum of a − j for this application.
This is equivalent to solving the following parametric integer programming [22]
problem:

maximize a−j w.r.t
{a=a0, i0≥i} ∧ {i≥0, j=i+1, i′=i−1,a′=a} and the parameters a0, i0

which results in a0−1. Then, ê(a0, i0) = q©+nat(a0−1)∗ p©, and thus nat(i0 +
1) ∗ ( q©+ nat(a0 − 1) ∗ p©) is an upper-bound for the CR for . An upper-bound
nat(a0−1)∗( q©+nat(a0−1)∗ p©) for the CR sort is then obtained by substituting
the one of for in the corresponding equation. Note that this approach is general
enough to handle CRs which are constructed with possible multiple equations
having possible multiple recursive calls. E.g, if the CR while1 had two recursive
calls, then we would obtain the upper-bound 2nat(a0−j0) ∗ p© – For more details
see [6]. Note also that PUBS provides a mechanism for converting the above non-
asymptotic bounds to asymptotic ones [2]. E.g., in the case of sort , it computes
O(nat(a0)2 ∗ p©+ nat(a0) ∗ q©).

In the above approach, the contributions of all applications of the recursive
equation are approximated by the same amount. E.g., in the case of the CR for ,
all instances of q©+ nat(a− j) ∗ p© are approximated by q©+ nat(a0 − 1) ∗ p©,
while in practice this happens only in the last application, when j = 1 (i.e.,
when i = 0 since j = i+1). This leads to some imprecision that might be crucial
for some applications. To overcome this imprecision, PUBS provides an alter-
native approach that is based on simulating the contributions of the different
applications using sequences (arithmetic, geometric, etc.). E.g., in the case of
the CR for , it first infers that the difference between the contributions of two
consecutive applications is at least d̂ = 1; then, it considers the arithmetic se-
quence û1 = ê(a0, i0), ûi = ûi−1− d̂, and sums the first f̂(a0, i0) elements (which
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while1(a, j, λ) =0 {j≥a}
while1(a, j, λ) =0 {j<a}
while1(a, j, λ) = p©+while1(a′, j′, λ′) {j<a, j′=j+1, a′=a, λ′ = λ+ 1}

Fig. 3. CR after instrumenting counter variables in the CRs in Fig 2

are positive) of this sequence. This sum is guaranteed to be an upper-bound for

for(a0, i0) since the equation is applied at most f̂(a0, i0) times; moreover, the
sequence starts from the maximum value ê(a0, i0). For the case of the CR for
we obtain 1

2 ∗ p© ∗ (nat(a0 − 1) ∗ (nat(a0 − 1) − 1)) + q© ∗ nat(a0 − 1) which is
more precise than what we have obtained above. Note, however, that they are
asymptotically equivalent. In practice, the summation is computed by solving a
corresponding recurrence relation using a computer algebra system – For more
details see [14].

3.2 Lower Bounds

In the latter approach [14], the inference of LBs is a dual problem to that of
inferring UBs. The main difference is that one has to use (new) techniques for
inferring LBs on the number of iterations and obtaining the best-case cost of
each iteration. LB on the number of iterations can be inferred by instrumenting
the given CR and inferring an invariant on that CR. First, the arguments of
each head of the given CR are augmented with a new counter variable λ that
is incremented by 1 in each recursive call of that CR. Next, an invariant Ψ is
inferred for this new CR such that Ψ holds between an initial call with 0 as the
initial counter value and any other call to the new CR with counter variable
λ. Then, the LB on the number of iterations is obtained by minimizing λ w.r.t
Ψ and ϕ0, where ϕ0 is the set of constraints in the base-case of the new CR.
Minimization of λ can be done using parametric integer programming or by
looking syntactically λ ≥ l in Ψ ∧ ϕ0 where l is over the initial arguments.

Example 3. Let us consider the CR while1 in Fig. 2. We now instrument it with
the counter variable λ as shown in Fig. 3. The invariant Ψ between an initial
call while1 (a0, j0, 0) and another call while1 (a, j, λ) is Ψ ≡ {j ≥ j0, a = a0, λ =
j−j0}. λ is minimized to 0 w.r.t Ψ and the base-case constraints (j ≥ a∨j < a).
The LB on the iterations of for obtained is nat(i0 + 1) where i0 is the initial
value of i.

The best-case cost in each iteration is obtained by transforming the given CR
into a best-case recurrence relation (RR for sort). Suppose 〈C(x̄) = e+C(x̄′), ϕ〉
be any CR and e1, · · · , en be the costs contributed by e along the n iterations
of C(x̄). In order to obtain the LB cost for C, first, a LB ň on n (i.e. ň ≤ n)
is obtained (as above). Then, a series of costs u1, · · · , uň such that ui ≤ ei for
all 1 ≤ i ≤ ň is obtained, and u1 + · · · + uň is the LB of C. When e is a
simple linear expression, the novel idea is to view u1, · · · , uň as an arithmetic
sequence that starts from u1 ≡ ě and each time increases by ď , i.e., ui =
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ui−1 + ď where ě is the minimization of e, and ď is an under-approximation of
all di = ei+1− ei. Minimization of e, i.e. ě, can be obtained by using parametric
integer programming w.r.t. an appropriate invariant. When e is a complex non-
linear expression, e.g., l ∗ l′, it can be approximated by approximating each sub-
expressions (which are linear) separately. Technically, the summation u1+· · ·+uň
can be approximated by transforming the CR into a RR whose closed-form
solution is the LB cost after instantiating the recurrence counter by ň.

Example 4. Let us consider again the CR in Fig. 2. The LB cost of while1 is
0 since the LB on the iterations of while1 is 0 (see example 3). After sub-
stituting the cost of while1 , the recursive equation for CR for is 〈for(a, i) =
q©+for(a ′, i ′), {i≥0 , j =i+1 , i ′=i−1 ,a ′=a}〉. Here, ď = 0 as cost q© is con-
stant and ň = nat(i0 + 1). Next, the RR of for is 〈Pfor (0) = 0, Pfor (N) =
q© + Pfor (N − 1)〉 whose closed-form solution is E = q© ∗ N , and LB cost is
q© ∗ nat(i0 + 1) (after replacing N by nat(i0 + 1) in E). Finally, the LB cost of
sort(a0) is q©∗nat(a0−1). This is the LB that we have expected, since when the
array is sorted, the inner loop does not perform any iteration and the best-case
cost is linear on the length of the array.

3.3 Amortised cost analysis

The classical approach of COSTA is based on assuming that the cost of a proce-
dure is solely determined by the size of its input data. In some procedures, there
is also a codependency between the outputs and the cost, which may be crucial
to infer precise cost bounds. Yet, since CRS do not model this codependency,
for such programs the COSTA approach necessarily infers imprecise bounds.

Example 5. Consider the program of Fig. 4 (left), adapted from [40], where ∗
in the guard of the while loop corresponds to a nondeterministic evaluation
of true or false. This nondeterministic choice is reflected in the constraints
of equation rpop(s) = 0 in Fig. 4 (right) as the while loop can terminate for
any value of s ≥ 0. The procedure main admits the UB r©∗s, but COSTA
gets the asymptotically imprecise UB r©∗s∗m instead. The reason is that the
nondeterministic procedure rpop sets up a codependency between its cost and s′,
its return value: a possible execution of rpop(s) consumes r©∗s and returns s′=0;
another one returns s′=s and consumes zero; but no one both consumes r©∗s
and also returns s′=s. COSTA abstracts the program into the CRS at Fig. 4
(right up), solves rpop(s) into the precise bound s∗ r© and unfolds this bound
in the main CRS (right down). Although both this UB and the postcondition
s ≥ s′ ≥ 0 are precise abstractions w.r.t. rpop, they miss the described output-
cost codependency. Thus, the CRS semantics now includes the spurious case of
an execution of rpop consuming r©∗s and returning s′ = s. For this reason, the
CRS does not admit the bound r©∗s that we look for, and the techniques of
Section 3.1 give r©∗s∗m as the most precise UB for the main CRS.

Examples like this usually appear in the context of amortised cost analysis [40].
There, the output-cost codependency is described like the variable s storing credit
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int rpop( int s){

while(s > 0 && * )

s-- ;

return s ;

}

void main( int s, int m){

for (;m>0;m--)
s = rpop(s);

}

rpop(s) =0 {s ≥ 0}
rpop(s) = r©+ rpop(s− 1) {s ≥ 1}

main(s,m) =0 {m = 0, s ≥ 0}

main(s,m) =
rpop(s)+
main(s′,m− 1)

{
m ≥ 1
s ≥ s′ ≥ 0

}
main(s,m) =0 {m = 0, s ≥ 0}

main(s,m) =
r©∗ s+
main(s′,m− 1)

{
m ≥ 1
s ≥ s′ ≥ 0

}

Fig. 4. Example of Amortised cost, with the Java program (left), the inferred CRS
(right up) and the CRS unfolding the UB for rpop (right down)

or potential to pay the decrement operations. To overcome these limitations, we
have recently developed [16] a novel definition of UBs that involve input and
output arguments: a net-cost UB ˜rpop(s|s′) bounds the cost of any terminating
evaluation of rpop from an input s to an output s′. By making s′ an input of the
UB, net-cost UBs capture the output-cost codependency. In [16] we also describe
a solving procedure based on real quantifier elimination, and draw a relation
between net-cost functions and the potential functions used in the automated
amortised approach [27, 30, 35].

4 Concurrency and Distribution

In order to develop a resource analysis for distributed and concurrent programs,
we have considered a concurrency model based on the notion of concurrently
running (groups of) objects, similar to the actor-based and active-objects ap-
proaches [38, 39]. These models take advantage of the concurrency implicit in
the notion of object in order to provide programmers with high-level concur-
rency constructs that help in producing concurrent applications more modularly
and in a less error-prone way. The main novelty of the analysis is that it provides
the resource consumption per cost center, where each cost center represents a
distributed component. Having prior knowledge on the resource consumption of
the different components which constitute a system is useful for distributing the
load of work. Upper bounds can be used to predict that one component may
receive a large amount of remote requests, while other siblings are idle most of
the time. Also, our framework allows instantiating the different components with
the particular features of the infrastructure on which they are deployed.

4.1 The Basic Cost Analysis Framework for Concurrency

ABS [28] is an abstract behavioral specification language for distributed object-
oriented systems. COSTA has been recently extended to be able to infer mean-
ingful bounds for ABS programs [3]. The main novelties are related to the con-
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def B look〈A,B〉(Map〈A,B〉 ms, A k) =
case ms {Ass(Pair(k,y), ) ⇒ y;

Ass( ,tm) ⇒ look(tm,k);
}
class AddrBook {

Map〈String ,User〉 users = EmptyM ;
User getUser(String email){
return look(users,email);
}

}
class User {

List〈String〉 msgs = Nil ;
Unit receive(String m) {

msgs = Cons(m,msgs);
}

}

class MailServer(AddrBook ab) {
List〈String〉 emails =Nil;

Unit addUser(String email) {
emails = Cons(email, emails);
}
Unit addUsers(List〈String〉 l) {

while ( l != Nil ) {
this ! addUser(head(l));
l=tail(l);

}
}
Unit notify(String m) {

while (emails != Nil) {
Fut〈User〉 u;
u = ab ! getUser(head(emails));
await u ? ;
User us = u.get;
us ! receive(m);
emails = tail(emails);

}
}
}

Fig. 5. ABS Implementation of a Mail Server

currency and distribution aspects of the language. Concurrency poses new chal-
lenges to the process of obtaining sound and precise size relations. This is mainly
because the interleaving behaviour inherent to concurrent computations can in-
fluence how the sizes of data are modified. Distribution does not match well
with the traditional monolithic notion of cost which aggregates the cost of all
distributed components together. We use cost centers to keep the resource con-
sumption of the different distributed components separate. An implementation
of this cost analysis framework is described in [4]. The system is open-source
and can be downloaded (together with examples, documentation, etc.) from
http://costa.ls.fi.upm.es/costabs.

Example 6. The example in Fig. 5 shows a simple mail server application pro-
grammed in ABS. Due to lack of space, we omit data and type definitions. At
the top, we see a fragment of the functional sub-program which includes the
function look . The imperative concurrent part contains the implementation of
all classes. Calls to functions and functional data structures appear in italics. A
mail server is composed of an address book (the class parameter ab) and a list
of email addresses (the field emails). Email addresses can be added to the server
by invoking addUser or addUsers. The method notify sends a message (m) to all
users in the list emails. To this end, it first asynchronously invokes getUser in
order to retrieve the next user (variable u) in the list. The await instruction al-
lows releasing the processor if the information is not ready. The next instruction
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get blocks the execution of the current task until the requested information has
arrived. When it arrives, the asynchronous call to receive is encharged of sending
the message to the corresponding user without any kind of synchronization.

In what follows, we explain briefly the differences w.r.t. sequential cost anal-
ysis by using the running example:

Cost Models for Concurrency. We consider the cost models steps, memory, ob-
jects and task-level. The first two ones are inherited from the sequential setting
(see Section 2), while the last two ones are specific for concurrency. The objects
cost model counts the total number of objects created along the execution. This
provides an indication of the amount of parallelism that might be achieved, since
each object could be running in a different processor. The task-level cost model
estimates the number of tasks that are spawned along an execution. This can be
counted by tracing how many asynchronous calls are performed. The task-level
is useful for finding optimal deployment configurations, and detect situations like
when one component is receiving too many requests while its siblings are idle.

Size Analysis. In order to handle the concurrency primitives, the classical se-
quential size analysis described in Section 2 is modified as follows: (a) when
executing an instruction which does not cause the suspension of the current
task, then fields (i.e., the global state) are tracked as if they were local variables,
since in the concurrent objects setting it is guaranteed that in such circumstances
no other tasks can modify those fields simultaneously; and (b) when executing
an instruction that might cause suspension (e.g., await) of the current task, the
analysis loses all information about the corresponding fields (this is because they
might be modified by other tasks in the meantime). This simple modification
guarantees soundness of size analysis for a concurrent setting. However, it of-
ten loses precision. For example, in the while loop of method notify, losing the
information on the field emails when executing await prevents us from proving
that its size decreases in each iteration. Thus, the technique fails to bound the
number of iterations of that loop. To overcome this problem, we provide a way
to incorporate class invariants. For example, if we add the following invariant
(using JML syntax) //@invariant \old(emails) == emails before the await

instruction in the while loop of method notify, then we state that it is guar-
anteed that when the process resumes, the value of emails will be the same as
when the process has been suspended. At present, we can infer class invariants
automatically in a limited manner (See [3] for details). For example, if a variable
(or shared location) is initialized and is never updated afterwards, we can infer
that the values of this variable before and after a release point are always equal.

Cost Centers. The last step in this framework uses the inferred size relations
and the selected cost model in order to generate cost equations and solve them
into closed-form bounds. See Section 2 for more details. Now, let us explain the
upper bounds that we obtain for the running example.

By applying the analysis starting from method notify and using the steps cost
model, we obtain the following upper bound (after simplifying the constants for
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the sake of readability): 5 + (22 + 4 ∗ users+) ∗ emails+. Variables emails+ and
users+ refer to the maximum sizes of the fields emails and users respectively.
The subexpression (22 + 4 ∗ users+) refers to the cost of each iteration of the
while loop. Note that the subexpression 4 ∗ users+ refers to the cost consumed
by the function look . The constant 4 corresponds to executing the code of look
once, and users+ is the number of recursive calls. The cost of each iteration is
then multiplied by emails+, which is a bound on the number of iterations of the
while loop. Finally, we add 5 to account for the cost of the instructions outside
the loop (in this case it refers to the last comparison of the loop guard).

Instead of computing a monolithic cost expression, there exists the option
of splitting the cost into Cost Centers that represent the different distributed
components of the system. By assuming that objects of the same type belong to
the same cost center, we obtain the following upper bounds (after simplification
of constants for the sake of readability):

Cost Center Upper Bound

MailServer 5 + 16 ∗ emails+

User 3 ∗ emails+

AddrBook (3 + 4 ∗ users+) ∗ emails+

Observe that the sum of all bounds is equal to the single bound obtained before.

4.2 MHP

In the previous section, an invariant was used to ensure that the list of emails
was not modified during the await. However, in order for the analysis to be safe,
this invariant must be proven to be correct. An invariant in an await instruction
expresses properties of the object fields that are maintained during the execution
of the await. Therefore, the validity of these invariants depends on the actual
changes that can take place while the current task is suspended.

A first step towards verifying these invariants consists in approximating the
instructions that can be executed at that point. In our example, the invariant
//@invariant \old(emails) == emails will hold if the instructions that can
be executed during the await do not modify the field emails. For that purpose,
a may-happen-in-parallel analysis has been developed [11, 12].

To illustrate the behavior of the MHP analysis, we complete our example code
with the main block in Figure 6 that defines the entry point of the program. The
main block implements the following usage scenario: (a) it creates several User
objects, each with a unique email address; (b) it creates an AddrBook object,
and passes to it a list of pairs (name,user), [p1,...]; (c) it creates a Notifier

object which receives the address book ab as class parameter; (d) it adds some
email addresses to be notified by asynchronously calling addUsers, and waits
until it has terminated; and (e) finally it calls method notify in order to notify
all registered users with a given message.

First, the MHP analysis generates a MHP graph that captures all MHP
relations between the different program points of the program. Then, using this
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User u1=new UserImp ( ) ;
Pair<Str ing , User> p1 =Pair ( ”John” , u1 ) ;
. . .
AddrBook ab=new AddrBook (map [ p1 , p2 , p3 ] ) ;
Mai lServer ms =new Mai lServer ( ab ) ;
Fut<Unit> x =ms ! addUsers ( l i s t [ ” A l i c e ” , ”Bob” ] ) ;
await x ? ;
ms ! n o t i f y ( ” He l lo A l i c e and Bob” ) ;

Fig. 6. Usage scenario: Main method

graph, it infers the set of MHP pairs of the form (i,j) which indicates that the
instruction at program point i might execute in parallel with the one at program
point j, and vice versa.
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Fig. 7. MHP graph

MHP graphs. The MHP graph corresponding to our current example is de-
picted in Fig. 7. Each program point i that corresponds to a context switch,
i.e., a program point in which the execution might switch from one method to
another, is represented by a node i©. These nodes always include the method’s
entry and exit program points. In principle, other program points can be in-
cluded; however, these are the only ones required for soundness. Each method m

contributes two nodes: m represents an instance of m that is active, i.e., running
at some program point, and m represents an instance of m that is finished, i.e.,
it is at the exit program point.

The MHP graph is composed of 6 sub-graphs, one for each method, repre-
sented as dashed rectangles. In each sub-graph: (a) the active method node (the
white rectangle) is connected to all program point nodes of that method, mean-
ing that when the method is active it can be executing at any of those program
points; and (b) the finished method node (the gray rectangle) is connected to
the exit program point node, meaning that when the method is finished it must
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be at the exit program point. For example, in the sub-graph of method main,
there are edges from main to nodes 1©, 2©, and 3©; and from main to 3©.

The sub-graphs are interconnected by weighted edges. Each edge starts at a
program point node in one sub-graph, and ends in an active or finished method
node in another sub-graph (it can be the same if the method is recursive). These
edges are inferred by applying a method-level MHP analysis which analyzes each
method separately. This analysis infers, for each program point, which meth-
ods might be running in parallel with that program point, how many instances
of each, and in which mode (active or finished). This information is inferred
by considering only the code of the corresponding method. For example, the
method-level analysis infers: (a) for method main, at 2 (that corresponds to the
await instruction), there might be one active instance of method addUsers. This
will add an edge from 2© to addUsers . The edge is labeled with 1 to indicate
that it is only one instance of addUsers; and (b) for method notify, at 5(the
await instruction), there might be an active instance of getUser, many finished
instances of getUser, and many active instances of receive. This will add an edge
from 5© to getUser with label 1, to getUser with label ∞, and to receive

with label∞. Edges with∞ should be interpreted as infinitely many edges with
weight 1.

MHP property. The MHP graph guarantees that if there is an execution in
which the instructions at program points i and j might execute in parallel, at
least one of the following holds:

– direct relation: there is a path from i© to j© (or vice versa); or

– indirect relation: there is a node k© that has two different paths to both i©
to j©.

These properties are the base of the MHP inference. We can see that there is a
path from 2© to 13© which induces the direct MHP pair (2 ,13). Also, there are
different paths from 3© to both 13© and 5© which induces the indirect MHP pair
(5,13). Given this pair we cannot verify our invariant. In fact, we just detected
a synchronization error. At 5(where our invariant is placed) the emails list can
be modified by the method addUser.

The MHP analysis can also be used to spot synchronization errors, find the
causes of those errors (debugging), and acquire a better understanding of the
program concurrent behavior (program understanding) –See [11, 12].

5 Advanced Topics in Resource Analysis

We briefly overview some advanced topics in resource analysis which we have
investigated within the context of the COSTA system.
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5.1 Analysis of Memory Consumption

Predicting the amount of dynamic memory (heap) required to run a program is
crucial in many contexts such as in embedded applications with stringent space
requirements or in real-time systems which must respond to events or signals
within a predefined amount of time. On the other hand, garbage collection (GC)
is a very powerful and useful mechanism which is increasingly used in high-
level languages such as Java. Unfortunately, GC makes it difficult to predict
the amount of memory required to run a program. A first approximation to
this problem is to simply ignore the GC and infer bounds on the total heap
consumption, i.e., the accumulated amount of memory dynamically allocated by
a program. This can be done directly applying the COSTA framework using the
Mh cost model defined in Section 2. If such amount of memory is available it
is ensured that the program can be executed without exhausting the memory,
even if no GC is performed during its execution. However, this is an overly
pessimistic estimation of the actual heap consumption since, in the presence of
GC, the memory usage increases and decreases along the execution.

COSTA incorporates a novel peak heap space analysis [13], also known as
live heap space analysis, which aims at approximating the maximum size of data
on the heap at runtime, which provides a much tighter estimation. Whereas
analyzing the total heap consumption requires to observe the consumption at
the final state only, peak heap consumption analysis has to reason on the heap
consumption at all program states along the execution. As a consequence, the
basic COSTA framework cannot be directly applied.

When considering GC, several techniques exist which differ on:

(1) what can be collected, i.e., the lifetime of objects;
(2) when GC is performed.

As regards (1), a GC strategy classifies objects in the heap into two categories:
those which are collectible and those which are not. Most types of garbage col-
lectors determine unreachable objects as collectible, i.e., they eliminate those
objects to which there is no variable in the program environment pointing di-
rectly or indirectly. The more precise alternative is to rely on the notion of
liveness. An object is said to be not live (or dead) at some state if it is not used
from that point on during the execution.

As regards (2), we consider several possibilities. One is scope-based GC in
which deallocation of unreachable objects takes place on return from methods,
and only objects created during the method execution can be freed. Another
possibility is the so-called ideal GC in which objects are collected as soon as
they become collectible. The third one assumes a given limit on the heap, and
applies GC only when we are about to exceed this limit.

COSTA offers a general framework to infer accurate bounds on the peak heap
consumption of bytecode programs which improves the state-of-the-art in that:

– it is not restricted to any complexity class and deals with all bytecode lan-
guage features including recursion,
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void m1() {
A a=new A(); 1©
a.f=new B(); 2©
a=m2(a); 4©
D d=new D();
}
A m2(A a) {

C c=new C();
int i=a.f.data+c.data
a.f = null; 3©
return new E(i);
}

m1(〈〉,〈〉) ←
a:=new A, 1©
a.f:=new B, 2©
m2(〈a〉, 〈a〉), 4©
d:=new D.

m2(〈a〉,〈r〉) ←
c:=new C,
i:=a.f.data+c.data,
a.f:=null, 3©
r:=new E.
initE(〈r, i〉, 〈〉).

T = s(A) + s(B) + s(C) + s(D) + s(E)
S = s(A) + s(B) + s(E) + max(s(C), s(D))
R = max(s(A) + s(B) + s(C), s(A) + s(C) + s(E), s(E) + s(D))
L = max(s(A) + s(B) + s(C), s(E), s(D))

Fig. 8. A Java Program and its memory requirements: T=total-allocation; S=scope-
based; R=reachability-based; L=liveness-based.

– it is parametric w.r.t the lifetime of objects and,
– it can be instantiated with different GC strategies, e.g., the scope-based and

ideal GC discussed above.

Example 7. Let us consider the Java program in Figure 8 (to the left). To the
right, we show the RBR. Because the program has simple (constant) memory
consumption, it is useful to describe intuitively the differences among the dif-
ferent approximations to memory consumption. In Figure 8 (to the bottom)
we provide four possible approximations inferred by our analysis for the mem-
ory consumption of executing method m1, where the notation s(X) means the
memory required to hold an instance of class X.

First, we consider a scope-based GC in which the lifetime of objects is inferred
by an escape analysis. In this case, we can take advantage of the knowledge that
at 4© (i.e., upon exit from m2) the object to which “c” refers can be freed, i.e., it
does not escape from the method. Hence, the UB S is obtained. The important
point is that s(A) and s(B) are always accumulated, together with the largest
between the consumption of m2 (i.e., s(C)+s(E)) and the memory escaped from
m2 (i.e., s(E)) plus the continuation (i.e., s(D)).

As another instance, we consider a reachability-based GC but without the
assumption of being scope-based, rather we assume an ideal GC. Then, our
method is able to obtain the UB R in Fig 8. This is due to the fact that the object
to which “a.f” points becomes unreachable at program point 3©, the object to
which “c” points becomes unreachable upon exit from m2, and the object created
immediately before 1© becomes unreachable at 4©. We can observe that this
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information is reflected in R by taking the maximum between: the consumption
up to the first allocation instruction in m2; the consumption up to the end of m2

taking into account that the object to which “a.f” points becomes unreachable,
plus the consumption until the end of m1 taking into account that both the
object pointed by “a.f” and the object created immediately before 1© become
unreachable.

As the third instance, we consider the combination of an ideal garbage col-
lector based on liveness, i.e., objects are reclaimed as soon as they become dead
(i.e, will not be used in the future). Then, we obtain the UB L by taking advan-
tage of the fact that the object created immediately before 1© and those to which
“a.f” and “c” point are dead at program point 3©, and that the object created at
the end of m2 is dead at program point 4©. This information is reflected in the
elements of the max similarly to what we have seen for R. Note that, in theory,
the peak heap consumption L is indeed the minimal memory requirement for
executing the method.

5.2 Inference of Task-Level in Concurrent Languages

Another type of non-cumulative resource is the task-level. In parallel languages,
we refer to a task as the unit of parallelism in a program execution, i.e., a
sequential computation which can be executed in parallel and communicate with
a number of other computations going on at the same time. The task level of a
program is the maximum number of tasks that can be available (i.e., not finished
nor suspended) simultaneously during its execution, regardless of the input data
(e.g., considering all possible inputs). Knowing statically the task level of a
program is of utmost importance for program understanding, debugging, and
task scheduling.

COSTA includes a component which estimates the task level of parallel pro-
grams written in a subset of the X10 programming language. X10 features async-
finish parallelism, where async and finish are basic constructs for, respectively,
spawning a new task and waiting until some tasks terminate. In particular finish
waits until all tasks spawned within the block that it delimits finish. Given a
parallel program, our analysis [9] returns a task-level upper bound, i.e., a function
on the input arguments that guarantees that the task level of the program will
never exceed its value along any execution.

Example 8. The following recursive program implements the merge-sort algo-
rithm working on a global array, and shows how async-finish parallelism works:

void msort( int from , int to) {

i f (from <to) {

mid=(from+to)/2;

finish {

async msort(from ,mid);

async msort(mid+1,to);

}

merge(from ,to ,mid);
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} }

msort recursively calls itself twice inside async: this means that the tasks msort

(from,mid) and msort(mid+1,to) are spawned asynchronously and can execute
independently. However, calling them inside finish means that the main proce-
dure cannot continue to merge(from,to,mid) until both tasks have finished.

In the above example, the total number of tasks (i.e., all the tasks which
may be spawned along the execution) spawned by a call to msort(from,to) is
bounded by 2(to−from+1)−2. Moreover, it can also be inferred that the peak of
live tasks (i.e., the maximum number of tasks which can be alive at the same
time) is bounded by the same expression. In general, the peak of live tasks is
smaller than the total number since it is often the case that tasks are created
only after other tasks have finished (this can be implemented by using finish).

Both notions of task level discussed above disregard whether a created task is
active, i.e., actually executing, or suspended. In the example, the main procedure
is suspended while the execution of the finish block is going on. Our analysis
can give an upper bound to−from+1 to the peak of available tasks (i.e., those
which can be active at the same time), which is almost half the one obtained for
total and live tasks. Such bound is useful when allocating tasks on processors,
since active tasks are the only ones actually needing a processor to execute.

The analysis uses most of the machinery already developed in COSTA, and
defines all the notions of task level as something similar to cost models. Further
effort has been devoted to adapting the analyzer to this specific language, and
to optimizations: for example, knowing which tasks, among the ones spawned
inside a procedure p, are still live after p ends allows, in general, improving the
obtained upper bounds.

5.3 Heap-Sensitive Analysis

Shared mutable data structures, such as those stored in the heap, are the bane
of formal reasoning and static analysis. In object-oriented programs most data
reside in objects and arrays stored in the heap. Analyses which keep track of
heap-allocated data are referred to as heap-sensitive. Most existing value analyses
are only applicable to numeric variables which satisfy two locality conditions: (1)
all occurrences of a variable refer to the same memory location, and (2) memory
locations can only be modified using the corresponding variable. The conditions
above are not satisfied when numeric variables are stored in shared mutable
data structures such as the heap. Condition (1) does not hold because memory
locations (numeric variables) are accessed using reference variables, whose value
can change during the execution. Condition (2) does not hold because a memory
location can be modified using different references which are aliases and point
to such memory location.

Example 9. Consider the following loops where f is a field of integer type:
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1©while ( x . f > 0) {
x . f = x . f −1;

}

2©while ( x . f > 0) {
x . f = x . f −1;
x = x . nex t ;

}

3©while ( x . y . f > 0) {
x . f = x . f −1;
y . f = y . f +1;

}

Loop 1© terminates in sequential execution because x.f decreases at each
iteration and, for any initial value of x.f, there are only a finite number of values
which x.f can take before reaching zero. Unfortunately, applying standard value
analyses on numeric fields can produce wrong results, and further conditions are
required. E.g., if we add the instruction x=x.next; as in loop 2©, the memory
location pointed to by x.f changes, invalidating Condition 1. Also, Condition 2
is false if we add y.f=y.f+1 as in loop 3©, as x and y may be aliases.

The approach developed in COSTA [15, 7, 5] is based on the observation that,
by analyzing scopes, rather than the application as a whole, it is often possible
to keep track of heap accesses in a similar way to local variables. Our approach
consists of the following steps: (1) partition the program to be analyzed into
scopes (in our case, we use the strongly connected components of the program);
(2) identify with a reference constancy analysis the access paths used to access
to the heap; (3) check the above locality conditions for the access paths (i.e.,
if an access path meets the above conditions, then it can be safely handled
by a heap-insensitive analysis); (4) transform the program by introducing local
ghost variables whose values represent the values of the corresponding heap
accesses; and (5) analyze the transformed program scope by scope using any
heap-insensitive static analyzer, in particular, the one that we already have in
COSTA. Let us describe the main components of the heap-sensitive analysis
implemented in COSTA:

Reference Constancy Analysis. We first develop a reference constancy analysis
which infers those memory locations of fields which are constant in the con-
sidered scope. The idea behind this analysis is similar in spirit to that of the
classical numeric constant propagation analysis [20]. However, in addition to
numerical constants, the values computed by our analysis can include symbolic
expressions that refer to locations in (the initial) heap. Such expressions encode
as well the way in that the corresponding memory locations are reached (e.g.,
the dereferenced fields). Intuitively, our analysis will assign to each variable (at
each program point) an access path which describes its possible memory loca-
tions whenever the execution reaches that point. Access paths can be separated
in read accesses and write accesses. In the analysis, if a reference variable is
updated inside a scope its access path is not constant in this scope, so we cannot
keep track of this variable by using a local variable.

Example 10. Let us consider the loops in Ex. 9. We obtain the following read
R(f) and write sets W (f) for field f by applying the reference constancy analysis.

1©R(f) = {x.f} 2©R(f) = ∅ 3©R(f) = {x.f, y.f}
W (f) = {x.f} W (f) = ∅ W (f) = {x.f, y.f}
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Observe that in loop 1© field f is accessed only using reference variable x. In
loop 2© the sets are empty because the location of variable x is updated by the
instruction x = x.next inside the loop, so it is not constant in the scope of the
loop. Loop 3© has two different access paths through x and y to field f.

Locality. Intuitively, in order to ensure a sound transformation, a field f can be
considered local in a scope S if all read and write accesses to it in all reachable
scopes are performed through the same access path l, that is, if R(f)∪W (f) =
{l}. This makes it safe to replace such heap access by a corresponding local ghost
variable.

Example 11. From the results obtained in Ex. 10, and according to the locality
condition above, field accesses in loop 1© meet the locality condition since R(f)∪
W (f) = {x.f}. Field f is not local in the scope of loops 2© neither 3©, in 2©
because the union R(f) ∪ W (f) is empty, and in 3©, the union contains two
different references accessing field f, {x.f, y.f}.

Transformation. Our approach is based on instrumenting the program with
extra local (ghost) variables that expose the values of those locations to a heap-
insensitive analysis as follows: (1) for each heap access that is local in scope S,
we introduce a ghost variable g; (2) when the content of the memory location is
modified, we modify g accordingly; and (3) when the memory location is read, we
read the value from g. This approach has one clear advantage: there is no need
to change existing static analysis tools to make them heap-sensitive; instead, we
simply apply them on the transformed program, and the properties inferred for
the ghost variables hold also for the corresponding memory locations.

Example 12. Field f behaves locally in loop 1©, so the heap accesses to f can
be transformed into ghost variables resulting in the following program, whose
termination and cost can be inferred by a heap-insensitive analyzer:

g = x . f ;
while (g > 0) {
g = g−1;

}
x . f = g ;

Recently, COSTA has included an abstract-interpretation-based heap-sensitive
analysis [44] that infers reachability and acyclicity of heap allocated data struc-
tures. This analysis infers wether some reference variables point to an acyclic
data structure which is useful for the analysis of termination and resource us-
age.

5.4 Incremental Resource Analysis

A key challenge for static analysis techniques is achieving a satisfactory combi-
nation of precision and scalability. Making precise (and hence expensive) static
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analysis incremental is a step forward in this direction. The difficulty when devis-
ing an incremental analysis framework is to recompute the least possible amount
of information and do it in the most efficient way. Incremental resource usage
analysis comprises two phases: (1) devising an incremental analysis framework
for all pre-analysis required to infer cost relations and (2) making the process of
computing a closed-form upper bound incremental.

As regards (1), in other approaches to incremental analysis, such as in the
logic programming context [25], the analysis is focused in a single abstract do-
main. In contrast, COSTA includes a multi-domain incremental analysis engine
[10] which can be used by all global pre-analyses required to infer the resource us-
age of a program (including class analysis, sharing, cyclicity, constancy and size
analysis). The engine is multi-domain in the sense that it interleaves the com-
putation for the different domains and takes into account dependencies among
them, in such a way that it is possible to invalidate only partial pre-computed
information.

The incremental analysis engine starts from a program, its analysis results,
and a modified method m. In addition to re-analyzing method m for all domains,
other methods may require re-analysis as well: namely, methods invoked by m
with a different calling description (those methods are the descendants of m
in the program call-graph); and methods which invoke m and, because of new
results, require their re-analysis (referred to as ancestors of m). The process
of incremental re-analysis transitively re-analyzes descendants and ancestors of
previously re-analyzed methods, until a fixed point is reached. Once the new
pre-analyses results have been computed, cost relations that correspond to re-
analyzed methods are re-computed.

As regards (2), an upper bound is a global expression which includes the
upper bounds of the relations it calls. If method m changes, the upper bound
expressions that (directly or transitively) use m are no longer valid, since it
is not possible to distinguish within an upper bound which part of the cost is
associated to m. A fundamental idea to support incremental inference of upper
bounds is to annotate each cost subexpression with the name of the relation
it comes from. For this purpose, we define the notion of upper bound summary
to keep the annotated cost expression, the invariant and the size relations for
a method m. Given an upper bound summary for a method, it is possible to
replace the cost sub-expressions associated to those methods invoked from it
whose upper bounds have changed by their new upper bounds, and without
having to re-compute the whole upper bound for the method.

6 Conclusions and Future Work

We have overviewed the main techniques used to infer resource consumption
bounds in the COSTA system. In the future, we plan to extend our work along
the following directions.

Improvements in computing symbolic bounds. We plan to study new techniques
to infer more precise lower/upper bounds on the number of loop iterations.
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As this is an independent component, COSTA will directly benefit from any
improvement in this regard. In addition, so far we have used linear invariants
for inferring linear ranking functions, minimum number of iterations of a loop
and maximization or minimization of cost expressions. Another extension would
be to infer non-linear loop invariants using symbolic summation and algebraic
techniques. Another possible direction is inferring non-linear input-output (size)
relations for methods by viewing the output as the cost that is consumed by
the corresponding method. This way, we can view the problem of inferring such
input-output relations as solving corresponding CR. Also, we plan to develop new
techniques to solve cost relations, to handle some programs for which amortised
analysis is not needed.

Acyclicity analysis. COSTA performs an acyclicity analysis [23] based on track-
ing the reachability between heap locations. Future work includes improving this
analysis by considering, for a path between two locations, the name of the fields
involved. For example, this could allow to detect that, in a double-linked list,
cycles must forcefully traverse both the next and the prev field, so that a loop
where the data structure is traversed by x=x.next is guaranteed to terminate in
spite of the cyclicity of the data structure, since only next is traversed.

Heap-sensitive analysis. The heap-sensitive approach contained in COSTA shows
that analyzing program fragments rather than the application as a whole, and
under certain locality conditions, it is feasible to keep track of heap-allocated
data by means of local variables. However, there are cases when the locality
conditions cannot be proven unconditionally. In such cases, we seek to provide
aliasing preconditions between the input arguments which, when satisfied in the
initial state, can guarantee the termination of the program.

Proving termination of concurrent programs. In the current COSTA system,
termination is independently proved for each concurrent component. That is,
no assumptions are made about the interactions between different concurrent
components. Unfortunately, this approach is insufficient for many real world
applications where several concurrent tasks depend on each other. We plan to
investigate these cases in the future. Another possible research line is to consider
conditional termination in open systems. In this case, we should extract under
which conditions a given component terminates.

Deadlock analysis of ABS programs. Deadlocks are one of the most common
errors in concurrent programs. There has been some theoretical research about
deadlocks in ABS programs [24]. However, there is no practical analysis that
can be used for real programs. Deadlocks can occur when several concurrent
components are waiting for each other (Circular dependency). We intend to
develop a deadlock analysis that combines the MHP analysis and a points-to
analysis. The MHP information can detect sets of synchronization instructions
that may happen in parallel and the points-to analysis can identify dependencies
(which components are waiting for which others) within these sets.
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Cost Analysis of Concurrent Java programs. At present, the extension of COSTA
handles concurrent primitives of ABS programs where the number of context
switches among concurrently running objects is determined by the release points
defined by the high-level language constructs. This means that the concurrent
code runs sequentially between two release points, which simplifies the resource-
usage analysis for ABS programs. However, in thread-based concurrent java pro-
grams, the context switch can happen at any program point. Hence, the existing
analysis loses too much precision in inferring size relations or bounding loop iter-
ations, so that it does not provide any useful information on the cost of java-like
concurrent programs. In order to extend our analysis to handle thread-based
concurrent primitives, it is essential to infer relational invariants both on shared
variables and thread local variables at every program point. It is also essential to
infer relations between shared and thread local variables. Thus, these invariants
can be used to infer the size relations which capture the cost.
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