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Abstract

Decompiling low-level code to a high-level intermedi-
ate representation facilitates the development of analyzers,
model checkers, etc. which reason about properties of the
low-level code (e.g., bytecode, .NET). Interpretive decom-
pilation consists in partially evaluating an interpreter for
the low-level language (written in the high-level language)
w.r.t. the code to be decompiled. There have been proofs-of-
concept that interpretive decompilation is feasible, but there
remain important open issues when it comes to decompile
a real language: does the approach scale up? is the qual-
ity of decompiled programs comparable to that obtained by
ad-hoc decompilers? do decompiled programs preserve the
structure of the original programs? This paper addresses
these issues by presenting, to the best of our knowledge, the
first modular scheme to enable interpretive decompilation
of low-level code to a high-level representation, namely, we
decompile bytecode into Prolog. We introduce two notions
of optimality. The first one requires that each method/block
is decompiled just once. The second one requires that each
program point is traversed at most once during decompila-
tion. We demonstrate the impact of our modular approach
and optimality issues on a series of realistic benchmarks.
Decompilation times and decompiled program sizes are lin-
ear with the size of the input bytecode program. This de-
mostrates empirically the scalability of modular decompi-
lation of low-level code by partial evaluation.

1. Introduction

Decompilation of low-level code (e.g., bytecode) to an
intermediate representation has become a usual practice
nowadays within the development of analyzers, verifiers,
model checkers, etc. For instance, in the context of mo-
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bile code, as the source code is not available, decompilation
facilitates the reuse of existing analysis and model check-
ing tools. In general, high-level intermediate representa-
tions allow abstracting away the particular language fea-
tures and developing the tools on simpler representations.
As a representative example, Java bytecode is decompiled
to a rule-based representation in [1], to clause-based pro-
grams in [18], to a three-address code view of bytecodes in
Soot [20] and to the typed procedural language BoogiePL in
[5]. Also, PIC programs are transformed to logic programs
in [10]. Rule-based representations used in declarative pro-
gramming in general—and in Prolog in particular—provide
a convenient formalism to define such intermediate repre-
sentations. E.g., as it can be seen in [1, 18, 20, 10], the
operand stack used in a low-level language can be repre-
sented by means of explicit logic variables and that its un-
structured control flow can be transformed into recursion.

All above cited approaches (except [10]) develop ad-
hoc decompilers to carry out the particular decompilations.
An appealing alternative to the development of dedicated
decompilers is the so-called interpretive decompilation by
partial evaluation (PE) [11]. PE is an automatic program
transformation technique which specializes a program w.r.t.
part of its known input data. Interpretive compilation was
proposed in Futamura’s seminal work [6], whereby com-
pilation of a program P written in a (source) program-
ming language LS into another (object) programming lan-
guage LO is achieved by specializing an interpreter for
LS written in LO w.r.t. P . The advantages of interpretive
(de-)compilation w.r.t. dedicated (de-)compilers are well-
known and discussed in the PE literature (see, e.g., [3]).
Very briefly, they include: flexibility, it is easier to modify
the interpreter in order to tune the decompilation (e.g., ob-
serve new properties of interest); easier to trust, it is more
difficult to prove that ad-hoc decompilers preserve the pro-
gram semantics; easier to maintain, new changes in the lan-
guage semantics can be easily reflected in the interpreter.

There have been several proofs-of-concept of interpre-
tive (de-)compilation (e.g., [3, 10, 13]), but there remain
interesting open issues when it comes to assess its power
and/or limitations to decompile a real language: (a) does the
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approach scale? (b) do (de-)compiled programs preserve
the structure of the original ones? (c) is the “quality” of
decompiled programs comparable to that obtained by ded-
icated decompilers? This paper answers these questions
positively by proposing a modular decompilation scheme
which can be steered to control the structure of decompiled
code and ensure quality decompilations which preserve the
original program’s structure. Our main contributions are
summarized as follows:

1. We present the problems of non-modular decompila-
tion and identify the components needed to enable a
modular scheme. This includes how to write an inter-
preter and how to control an online partial evaluator in
order to preserve the structure of the original program
w.r.t. method invocations.

2. We present a modular decompilation scheme which is
correct and complete for the proposed big-step inter-
preter. The modular-optimality of the scheme allows
addressing issue (a) by avoiding decompiling the same
method more than once, and (b) by ensuring that the
structure of the original program can be preserved.

3. We introduce an interpretive decompilation scheme for
low-level languages which answers issue (c) by pro-
ducing decompiled programs whose quality is similar
to that of dedicated decompilers. This requires a block-
level decompilation scheme which avoids code dupli-
cation and code re-evaluation.

4. We report on a prototype implementation which incor-
porates the above techniques and demonstrate it on an
set of realistic Java bytecode programs.

For the sake of concreteness, our decompilation scheme
is formalized in the context of logic programming but the
techniques to enable modularity can also be applied to com-
pilation for any instantiation of languages (not necessarily
low-level languages).

2 Basics of Partial Deduction

We assume familiarity with basic notions of logic pro-
gramming [16]. Executing a program P for a call A con-
sists in building an SLD tree for P∪{A} and then extracting
the computed answers from every non-failing branch of the
tree. PE in logic programming (see e.g. [7]) builds upon the
SLD trees mentioned above. We now introduce a generic
function PE, which is parametric w.r.t. the unfolding rule,
unfold, and the abstraction operator, abstract and captures
the essence of most algorithms for PE of logic programs:

1: function PE (P,A, S0)
2: repeat
3: T pe := unfold(Si, P,A);
4: Si+1 := abstract(Si, leaves(T pe),A);
5: i := i + 1;

6: until Si = Si−1 % (modulo renaming)
7: return codegen(T pe, unfold);

Function PE differs from standard ones in the use of the
set of annotations A, whose role is described below. PE
starts from a program P , a (possibly empty) set of anno-
tations A and an initial set of calls S0. At each iteration,
the so-called local control is performed by the unfolding
rule unfold (L3), which takes the current set of terms Si,
the program and the annotations and constructs a partial
SLD tree for each call in Si. Trees are partial in the sense
that, in order to guarantee termination of the unfolding pro-
cess, it must be possible to choose not to further unfold a
goal, and rather allow leaves in the tree with a non-empty,
possibly non-failing, goal. The particular unfold operator
determines which call to select from each goal and when
to stop unfolding. The partial evaluator may have to build
several SLD-trees to ensure that all calls left in the leaves
are “covered” by the root of some tree. This is known as
the closedness condition of PE [17]. In the global control,
those calls in the leaves which are not covered are added
to the new set of terms to be partially evaluated, by the op-
erator abstract (L4). At the next iteration, an SLD-tree is
built for such call. Thus, basically, the algorithm iteratively
(L2-6) constructs partial SLD trees until all their leaves are
covered by the root nodes. An essential point of the oper-
ator abstract is that it has to perform “generalizations” on
the calls that have to be partially evaluated in order to avoid
computing partial SLD trees for an infinite number of calls.
A partial evaluation of P w.r.t. S is then systematically ex-
tracted from the resulting set of calls T pe in the final phase,
codegen in L7. The notion of resultant is used to generate
a program rule associated to each root-to-leaf derivation of
the SLD-trees for the final set of terms T pe. Given an SLD
derivation of P ∪ {A} with A ∈ T pe ending in B and θ be
the composition of the mgu’s in the derivation steps, the rule
θ(A) : −B is called the resultant of the derivation. A PE is
defined as the set of resultants associated to the derivations
of the constructed partial SLD trees for all P ∪ T pe.

The notions of completeness and correctness of PE [7]
ensure that the specialized program produces no less resp.
no more answers than the original program. A sufficient
condition to ensure completeness is that the specialized pro-
gram is closed by the resulting set of terms T pe. Intuitively,
the closedness condition ensures that all calls which may
arise during the computation of P ∪ S are instances of T pe

and hence there is a matching resultant for them (solutions
are not lost). The abstraction operator is encharged of en-
suring that the closedness condition is met by means of a
proper generalization of calls. Correctness is achieved when
the resulting set T pe is independent, i.e., there are no two
calls in T pe which unify. Independence can be easily re-
covered by a post-processing of renaming, which often does
argument filtering [7].
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Finally, the role of the annotations A (often manually
provided) in offline PE is to give information to the con-
trol operators to decide when to stop derivations in the local
control and how to perform generalizations in the global
control to ensure termination. In online PE, all control de-
cisions are taken during the specialization phase, without
the use of annotations. We trivially turn function PE into
online by just ignoring the annotations.

3 Non-Modular Interpretive Decompilation

This section describes the state of the art in interpretive
decompilation of low-level languages to Prolog, including
recent work in [10, 2, 9, 3]. We do so by formulating non-
modular decompilation in a generic way and identifying its
limitations. The low-level language we consider, denoted as
Lbc, is a simple imperative bytecode language in the spirit
of Java bytecode but, to simplify the presentation, without
object-oriented features (our implementation supports full
Java bytecode). It uses an operand stack to perform com-
putations. It has an unstructured control flow with explicit
conditional and unconditional goto instructions and ma-
nipulates only integer numbers. A bytecode program Pbc

is organized in a set of methods which are the basic (de-
)compilation units of Lbc. The code of a method m, denoted
code(m), consists of a sequence of bytecode instructions
BCm =<pc0 : bc0, . . . , pcnm

: bcnm
> with pc0, . . . , pcnm

being consecutive natural numbers. The Lbc instruction set
is:
BcInst ::= push(x) | load(v) | store(v) | add | sub | mul | div | rem |

| neg | if � (pc) | if0 � (pc) | goto(pc) | return | call(mn)

where � is a comparison operator (eq, le, gt, etc.), v a lo-
cal variable, x an integer, pc an instruction index and mn a
method name. Instructions push, load and store trans-
fer values or constants from the local variables to the stack
(and viceversa); add, sub, mul, div, rem and neg per-
form the usual arithmetic operations, being rem the divi-
sion remainder and neg the arithmetic negation; if and
if0 are conditional branching instructions (with the spe-
cial case of comparisons with 0); goto is an unconditional
branching; return marks the end of methods and call
invokes a method. A method m is uniquely determined by
its name. We write calls(m) to denote the set of all method
names invoked within the code of m. We use defs(Pbc)
to denote the set of internal method names defined in Pbc.
The remaining methods are external. We say that Pbc is
self-contained if ∀m ∈ Pbc, calls(m) ⊆ defs(Pbc), i.e., Pbc

does not include calls to external methods.

3.1 Non-modular, Online Decompilation

We rely on the so-called “interpretive approach” to com-
pilation by PE described in Sect. 1, also known as first

main(Method,InArgs,Top) :-
build_s0(Method,InArgs,S0), execute(S0,Sf),
Sf = st(fr(_,_,[Top|_],_),_)).

execute(S,S) :-
S = st(fr(M,PC,[_Top|_],_),[]),
bytecode(M,PC,return,_).

execute(S1,Sf) :-
S1 = st(fr(M,PC,_,_),_), bytecode(M,PC,Inst,_),
step(Inst,S1,S2), execute(S2,Sf).

step(goto(PC),S1,S2) :-
S1 = st(fr(M,_,S,LV),FrS),
S2 = st(fr(M,PC,S,LV),FrS).

step(push(X),S1,S2) :-
S1 = st(fr(M,PC,S,L),FrS), next(M,PC,PC2),
S2 = st(fr(M,PC2,[X|S],L),FrS).

...
step(call(M2),S1,S2) :-

S1 = st(fr(M,PC,OS,LV),FrS), split_OS(M2,OS,Args,OS3),
build_s0(M2,Args,st(fr(M2,PC2,OS2,LV2),_)),
S2 = st(fr(M2,PC2,OS2,LV2),[fr(M,PC,OS3,LV)|FrS]).

step(return,S1,S2) :-
S1 = st(fr(_,_,[RV|_],_),[fr(M,PC,OS,LV)|FrS]),
next(M,PC,PC2), S2 = st(fr(M,PC2,[RV|OS],LV),FrS).

Figure 1. Fragment of (small-step) Lbc interpreter

Futamura projection [6]. In particular, the decompila-
tion of a Lbc-bytecode program Pbc to LP (for short LP-
decompilation) might be obtained by specializing (with an
LP partial evaluator) a Lbc-interpreter written in LP w.r.t.
Pbc. In Fig. 1 we show a fragment of a (small-step) Lbc in-
terpreter implemented in Prolog, named IntLbc

. We assume
that the code for every method in the bytecode program Pbc

is represented as a set of facts bytecode/3 such that, for
every pair pci : bci in the code for method m, we have a
fact bytecode(m,pci,bci). The state carried around by
the interpreter is of the form st(Fr,FrStack)where Fr
represents the current frame (environment) and FrStack
the stack of frames (call stack) implemented as a list.
Frames are of the form fr(M,PC,OStack,LocalV),
where M represents the current method, PC the program
counter, OStack the operand stack and LocalV the list
of local variables. Predicate main/3, given the method
to be interpreted Method and its input method arguments
InArgs, first builds the initial state by means of predi-
cate build s0/3 and then calls predicate execute/2.
In turn, execute/2 calls predicate step/3, which pro-
duces S2, the state after executing the bytecode, and then
calls predicate execute/2 recursively with S2 until we
reach a return instruction with the empty stack. For
brevity, we only show the definition of step/3 for a se-
lected set of instructions and omit the code of build s0/3
and localVar update/4. The latter simply updates the
value of a local variable. By using this interpreter, in a
purely online setting, we define a non-modular decompila-
tion scheme in terms of the generic function PE as follows.

Definition [DECOMPLbc
] Given a self-contained

Lbc-bytecode program Pbc, the (non-modular) LP-
decompilation of Pbc can be obtained as:

DECOMPLbc
(Pbc) = PE(IntLbc

∪ Pbc, ∅, S)

where S is the set of calls {main(m, , ) |m ∈ defs(Pbc)}.
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int gcd(int x,int y){
int res;
while (y != 0){

res = x%y; x = y;
y = res;}

return abs(x);}

int abs(int x){
if (x < 0) return -x;
else return x; }

int lcm(int x,int y){
int gcd = gcd(x,y);
if (gcd == 0) return 0;
else return x*y/gcd;}

int fact(int x){
if (x == 0)

return 1;
else

return x*fact(x-1);}

Method gcd/2
0:load(1)
1:if0eq(11)
2:load(0)
3:load(1)
4:rem
5:store(2)
6:load(1)
7:store(0)
8:load(2)
9:store(1)
10:goto 0
11:load(0)
12:call(abs)
13:return

Method abs/1
0:load(0)
1:if0ge(5)
2:load(0)
3:neg
4:return
5:load(0)
6:return

Method lcm/2
0:load(0)
1:load(1)
2:call(gcd)
3:store(2)
4:load(2)
5:if0ne 8
6:push(0)
7:return
8:load(0)
9:load(1)
10:mul
11:load(2)
12:div
13:return

Method fact/1
0:load(0)
1:if0ne(4)
2:push(1)
3:return
4:load(0)
5:load(0)
6:push(1)
7:sub
8:call(fact)
9:mul
10:return

Figure 2. Source code and Lbc-bytecode for working example

Recent work in interpretive, online decompilation has fo-
cused on ensuring that the layer of interpretation is com-
pletely removed from decompiled programs, i.e., effec-
tive decompilations are obtained. This requires the use
of advanced control strategies as explained in [2] and [9].
Our starting point is thus a state-of-the-art partial evaluator
which incorporates such advanced techniques and which is
able to remove the layer of interpretation.

3.2 Limitations

This section illustrates by means of the bytecode exam-
ple in Fig. 2 that non-modular decompilation does not en-
sure a satisfactory handling of issues (a) and (b). In the
examples, we often depict the Java source code for clar-
ity, but the partial evaluator works directly on the bytecode.
The program consists of a set of methods that carry out
arithmetic operations. Method gcd computes the greatest-
common divisor, abs the absolute value, lcm the least-
common multiple and fact the factorial recursively. The
LP-decompilation obtained by applying Def. 3.1 is shown
in Fig. 3. We identify the following limitations of non-
modular decompilation:

(L1) Method invocations from lcm to gcd (index 2) and
from gcd to abs (index 12) do not appear in the decom-
piled code. Instead, such calls have been inlined within their
calling contexts and, as a consequence, the structure of the
original code has been lost. For instance, the last two rules
in the decompilation for lcm, execute 1, correspond to
the while loop of gcd.

(L2) As a consequence, decompilation might become
very inefficient. E.g., if n calls to the same method appear
within a code, such method will be decompiled n times.
This might be even worse in teh case of loops.

main(lcm,[B,0],A) :-
B>0, C is B*0, A is C//B.

main(lcm,[0,0],0).
main(lcm,[B,0],A) :-

B<0, D is B*0,
C is -B, A is D//C.

main(lcm,[B,C],A) :-
C\=0, D is B rem C,
execute_1(C,D,B,C,A).

execute_1(A,0,B,C,D) :-
A>0, E is B*C, D is E//A.

execute_1(0,0,_,_,0).
execute_1(A,0,B,C,D) :-

A<0, E is-A,
F is B*C, D is F//E.

execute_1(A,B,C,D,I) :-
B\=0, K is A rem B,
execute_1(B,K,C,D,I).

main(gcd,[A,0],A) :-A>=0.
main(gcd,[B,0],A) :-

B<0, A is-B.
main(gcd,[B,C],A) :-

C\=0, D is B rem C,
execute_2(C,D,A) .

execute_2(A,0,A) :-
A>=0.

execute_2(A,0,C) :-
A<0, C is-A.

execute_2(A,B,G) :-
B\=0,
I is A rem B,
execute_2(B,I,G).

main(abs,[A],A) :- A>=0.
main(abs,[B],A) :-

B<0, A is-B.

Figure 3.Decompiled (non-modular) code for working example

(L3) The non-modular approach does not work incre-
mentally, in the sense that it does not support separate de-
compilation of methods but rather has to (re)decompile all
method calls. Thus, decompiling a real language becomes
unfeasible, as one needs to consider system libraries. Limi-
tation L2 together with L3 answer issue (a) negatively.

(L4) The decompiled program does not contain the code
corresponding to recursive fact due to space limitations,
as the decompiled code contains basically the whole inter-
preter. The problem with recursion is: assume we want to
decompile method m1 whose code is < pc0 : bc0, . . . , pcj :
call(m1), . . . , pcn : return >. There is an initial decom-
pilation for Ak = execute(st(fr(m1, pcj, os, lv), []), Sf)
in which the call stack is empty. During
its decompilation, a call of the form Al =
execute(st(fr(m1, pcj, os′, lv′), [fr(m1, pcj, os, lv)]), Sf)
with the call stack containing the previous frame appears
when we get to the recursive call. At this point, the
derivation must be stopped as Ak�T Al. In order to
ensure termination, the global control generalizes the
above calls into execute(st(fr(m1, pcj, , ), ), Sf),
where denotes a fresh variable and thus the call-stack
has become unknown. As a consequence, after evalu-
ating the return statement, the continuation obtained
from the call-stack is unknown and we produce the call
execute(st(fr( , , , ), ), Sf) to be decompiled. Here,
the fact that the method and the program counter are
unknown prevents us from any chance of removing the
interpretation layer, i.e., the decompiled code will poten-
tially contain the whole interpreter. This indeed happens
during the decompilation of fact. Partial solutions to
the recursion problem exist and will be discussed later.
Limitations L1 and L4 answer issue (b) negatively.

4 A Modular Decompilation Scheme

By modular decompilation, we refer to a decompilation
technique whose decompilation unit is the method, i.e., we
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decompile a method at a time. We show that this approach
overcomes the four limitations of non-modular decompila-
tion described in Sect. 3.2 and answers issues (a) and (b)
positively. In essence, we need to: (i) give a compositional
treatment to method invocations, we show that this can be
achieved by considering a big-step interpreter; (ii) provide a
mechanism to residualize calls in the decompiled program,
we automatically generate program annotations for this pur-
pose; (iii) study the conditions which ensure that separate
decompilation of methods is sound.

4.1 Big-step Semantics Interpreter

Traditionally, two different approaches have been con-
sidered to define language semantics, big-step (or natural)
semantics and small-step semantics (see, e.g., [12]). Essen-
tially, in big-step semantics, transitions relate the initial and
final states for each statement, while in small-step seman-
tics transitions define the next step of the execution for each
statement. In the context of bytecode interpreters, it turns
out that most of the statements execute in a single step,
hence making both approaches equivalent for such state-
ments. This is the case for our Lbc-bytecode interpreter
for all statements except for call. The transition for call in
small-step defines the next step of the computation, i.e., the
current frame is pushed on the call-stack and a new environ-
ment is initialized for the execution of the invoked method.
Note that, after performing this step, we do not distinguish
anymore between the code of the caller method and that of
the callee. This avoids modularity of decompilation.

In the context of interpretive (de-)compilation of imper-
ative languages, small-step interpreters are commonly used
(see e.g. [19, 10, 3]). We argue that the use of a big-step
interpreter is a necessity to enable modular decompilation
which scales to realistic languages. In Fig. 4, we depict the
relevant part of the big-step interpreter for Lbc-bytecode,
named Intbs

Lbc
. We can see that the call statement, after

extracting the method parameters from the operand stack,
calls recursively predicate main/3 in order to execute the
callee. Upon return from the method execution, the return
value is pushed on the operand stack of the new state and
execution proceeds normally. Also, we do not need to carry
the call-stack explicitly within the state, but only the infor-
mation for the current environment. I.e., states are of the
form st(M,PC,OStack,LocalV). This is because the
call-stack is already available by means of the calls for pred-
icate main/3.

The compositional treatment of methods in Intbs
Lbc

is not
only essential to enable modular decompilation (overcome
L1, L2 and L3) but also to solve the recursion problem in
a simple and elegant way. Indeed, the decompilation based
on the big-step interpreter Intbs

Lbc
does not present L4. E.g.,

the decompilation of a recursive method m1 starts from the

execute(S,S) :-
S = st(M,PC,[_Top|_],_),
bytecode(M,PC,return,_).

execute(S1,Sf) :-
S1 = st(M,PC,_,_),
bytecode(M,PC,Inst,_),
step(Inst,S1,S2),
execute(S2,Sf).

step(call(M2),S1,S2) :-
S1 = st(M,PC,OS,LV),
next(M,PC,PC2),
split_OS(M2,OS,Args,OSRs),
main(M2,Args,RV),
S2 = st(M,PC2,[RV|OSRs],LV).

Figure 4. Fragment of big-step Lbc interpreter Intbs
Lbc

call main(m1, , ) and then reaches a call main(m1, args, )
where args represents the particular arguments in the recur-
sive call. This call is flagged as dangerous by local control
and the derivation is stopped. The important points are that,
unlike before, no recomputation is needed as the second call
is necessarily an instance of the first one and, besides, there
is no information loss associated to the generalization of
the call-stack, as there is no stack. The recursion problem
was first detected in [8] and a solution based on computing
regular approximations during PE was proposed. Although
feasible in theory, such technique might be too inefficient
in practice and problematic to scale it up to realistic ap-
plications due to the overhead introduced by the underlying
analysis. Another solution is proposed in [10], where a sim-
pler control-flow analysis is performed before PE in order
to collect all possible instructions which might follow the
return. Such information may then be used to recover in-
formation lost by the generalization. This solution turns out
to be also impractical for our purposes when considering
realistic programs that make intensive use of library code
(e.g. Java bytecode) as many continuations can follow. Our
solution does not require the use of static analysis and, as
our experiments show, does not pose scalability problems.

4.2 Guiding Online PE with Annotations

We now present the annotations we use to provide ad-
ditional control information to PE. They are instrumental
for obtaining the quality decompilation we aim at. We
use the annotation schema: “[Precond] ⇒ Ann Pred”
where Precond is an optional precondition defined as a
logic formula, Ann is the kind of annotation (Ann ∈
{memo, rescall}) and Pred is a predicate descriptor, i.e.,
a predicate function and distinct free variables. Such an-
notations are used by local control when a call for Pred is
found as follows:

• memo: The current call is not further unfolded. There-
fore, the call is later transferred to the global control to
carry out its specialization separately.

• rescall: The current call is not further unfolded. Un-
like calls marked memo, the current call is not trans-
ferred to the global control.

In the following, we denote by unfoldA�T
the unfolding op-

erator of Sect. 2 enhanced to use the above annotations. We
adopt the same names for the annotations as in offline PE
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[15]. However, in offline PE they are the only means to
control terminationand rescall annotations are in principle
only used for builtins.

4.3 Modular Decompilation

In order to achieve modular decompilation, it is instru-
mental to allow performing separate decompilation. In the
interpretive approach this requires being able to perform
separate PE, i.e., to be able to specialize parts of the pro-
gram independently and then join the specializations to-
gether to form the residual program. For instance, con-
sider a self-contained logic program P partitioned in a set
{P1, . . . , Pn} of mutually disjoint subprograms which pre-
serve predicate boundaries, i.e., for any predicate pred in
P we have that all rules for pred are in the same parti-
tion Pj , for some j ∈ {1, . . . , n}. Consider also the sets
of terms S1, . . . , Sn such that all calls in Si correspond to
predicates defined in Pi, i = 1, . . . , n. We can now de-
fine S = S1 ∪ · · · ∪ Sn and the usual notions of closedness
and independence are applicable. A separate partial evalu-
ation for P and S is obtained as the union of the individual
specializations w.r.t. each corresponding set of calls, i.e.,⋃

Pi∈P PE(Pi, ∅, Si). One additional difficulty for sepa-
rate PE is related to the use of renaming for guaranteeing
independence, since renaming requires a global table which
is not available when generating code for the individual sub-
programs. A simple strategy which we will use in our mod-
ular decompilation is to allow polyvariant specialization for
calls to predicates locally defined in the subprogram Pi be-
ing partially evaluated but to resort to monovariant special-
ization for predicates used across subprogram boundaries.
Then, the renaming can use a local renaming table, which
must guarantee that there will be no name clash with re-
named calls from other subprograms.

We present now a modular decompilation scheme which,
by combining the big-step interpreter with the use of rescall
annotations, enables separate decompilation and ensures
soundness (i.e., it is correct and complete w.r.t. internal
methods).

Definition [MOD-DECOMPLbc
] Given a Lbc-bytecode pro-

gram Pbc, a modular LP-decompilation of Pbc can be ob-
tained as:

MOD-DECOMPLbc
(Pbc) =

⋃

∀m∈defs(Pbc)

PE(Intbs
Lbc

∪code(m),Amod, Sm)

where the set of annotations Amod = {(m ∈ calls(Pbc)) ⇒
rescall main(m, , )} and the initial sets of calls Sm =
{main(m, , )} for each m ∈ defs(Pbc).

Let us briefly explain the above definition. Now the func-
tion PE is executed once per method defined in Pbc, starting
each time from a set of calls, Sm, which contains a call of

the form main(m, , ) for method m. The set Amod contains
a rescall annotation which affects all methods invoked (but
not necessarily internal) inside Pbc. When a method invoca-
tion is to be decompiled, the call step(call(m’), , )
occurs during unfolding. We can see that, by using the big-
step interpreter in Fig. 4, a subsequent call main(m’, , )
will be generated. As there is a rescall annotation which
affects all methods invoked in the program, such call is not
unfolded but rather remains residual. If m′ is internal, a cor-
responding decompilation from the call main(m’, , )
will be, or has already been, performed since function PE
is executed for every method in Pbc. Thus, completeness is
ensured for internal predicates.

Example 1 By applying function MOD-DECOMPLbc
to

the Lbc-bytecode program in Fig. 2 we execute PE
once for each of the four methods in the pro-
gram. In each execution we specialize the interpreter
w.r.t. the calls main(fact, , ), main(gcd, , ),
main(lcm, , ), and main(abs, , ). We obtain the
following LP-decompilation:

main(lcm,[B,C],A) :-
main(gcd,[B,C],D),
D\=0, E is B*C,
A is E//D.

main(lcm,[A,B],0) :-
main(gcd,[A,B],0).

main(gcd,[B,0],A) :-
main(abs,[B],A).

main(gcd,[B,C],A) :-
C\=0, D is B rem C,
exec_1(C,D,A).

exec_1(A,0,C) :-
main(abs,[A],C).

exec_1(A,B,F) :- B\=0,
H is A rem B, exec_1(B,H,F).

main(abs,[A],A) :- A>=0.
main(abs,[B],A) :- B<0, A is-B.

main(fact,[B],A) :-
B\=0, C is B-1,
main(fact,[C],D), A is B*D.

main(fact,[0],1).

The structure of the original program w.r.t. method calls is
preserved, as the residual predicate for lcm contains an
invocation to the definition of gcd, which in turn invokes
abs, as it happens in the original bytecode. Moreover,
we now obtain an effective decompilation for the recursive
method fact where the interpretive layer is completely re-
moved without the need of any analysis. Thus, L1 and L4
have been successfully solved.

The following theorem ensures the soundness of modular
decompilation for the big-step bytecode interpreter. Com-
pleteness can be ensured by excluding calls to external
methods not defined in the bytecode. It is independent of
the way the interpreter is defined, as the closedness condi-
tion for the internal methods is enforced by our definitions
of Amod and Sm. Correctness holds in the case of our in-
terpreter, because the only calls which are transferred to the
global control are instances of main/3 and execute/2
and their first argument is the method’s name, which makes
them mutually exclusive. A post-processing of renaming
is thus optional, but it can be necessary to ensure that the
independence condition is met for other interpreters.
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Theorem 1 (soundness) Consider a Lbc-bytecode pro-
gram Pbc and a concrete input I . Let P ′

bc be the result of
MOD-DECOMPLbc

(Pbc) and I ′ the LP representation of I .
Then, A′ is an answer for P ′

bc∪{I ′} iff A is the result of exe-
cuting Pbc for the input I , where A′ is the LP representation
of A.

We now characterize the notion of modular-optimality in
decompilation which ensures that (1) only the code associ-
ated to internal methods is decompiled, thus, we can have
external calls (e.g., to libraries) which are not decompiled
and overcome L3; (2) and each method is decompiled only
once and thus we overcome L2.

Proposition 1 (modular-optimality) Given a Lbc-
bytecode program Pbc, function MOD-DECOMPLbc

only
decompiles the code corresponding to internal methods
defined in Pbc, and the code of each method is decompiled
once.

Note that modular decompilation gives a monovariant
treatment to methods in the sense that it does not allow
creating specialized versions of method definitions. This is
against the usual spirit in PE, where polyvariance is a main
goal to achieve further specialization. However, in the con-
text of decompilation, we have shown that a monovariant
treatment is necessary to enable scalability and to preserve
program structure. It naturally raises the question whether
a polyvariant treatment could achieve, even if at the cost
of efficiency and loss of structure, a better quality decom-
pilation. Note that enabling polyvariant specialization in
the modular setting can be trivially done by not introduc-
ing rescall annotations for certain selected methods which
should be treated in a polyvariant manner. Our experience
indicates that there is often a small quality gain at the price
of a highly inefficient decompilation.

5 Decompilation of Low-Level Languages

Applying the interpretive approach on a low-level lan-
guage introduces new challenges. The main issue is
whether it is possible to obtain, by means of interpretive de-
compilation, programs whose quality is equivalent to that
obtained by dedicated decompilers, issue (c) in Sect. 1.
We will show now that, using the most effective unfold-
ing strategies of PE, code for the same program point can
be emitted (i.e. it can be decompiled) several times, which
degrades both efficiency and quality of decompilation. In
order to obtain results which are comparable to that of ded-
icated decompilers, it makes sense to use similar heuristics.
Since decompilers first build a control flow graph (CFG)
for the method, which guides the decompilation process, we
now study how a similar notion can be used for controlling
PE of the interpreter.

Let us explain block-level decompilation by means of an
example. Consider the method mbl to the left of Fig. 5,
where we only show the relevant bytecode instructions, and
its CFG in the center. A divergence point (D point) is a
program point (bytecode index) from which more than one
branch originates; likewise, a convergence point (C point)
is a program point where two or more branches merge. In
the CFG of mbl, the only divergence (resp. convergence)
point is pci (resp. pck).

By using the decompilation scheme presented so far, we
obtain the SLD-tree shown to the right of Fig. 5, in which
all calls are completely unfolded as there is no termination
risk (nor rescall annotation). The decompiled code is shown
under the tree. We use {resX} to refer to the residual code
emitted for BlockX and condi to refer to the condition as-
sociated to the branching instruction at pci (condi denotes
its negation). The quality of the decompiled code is not op-
timal due to:

D. Decompiled code {resA} for BlockA is duplicated in
both rules. During PE, this code is evaluated once but,
due to the way resultants are defined (see codegen in
Sect. 2), each rule contains the decompiled code as-
sociated to the whole branch of the tree. This code
duplication brings in two problems: it increases con-
siderably the size of decompiled programs and also
makes their execution slower. For instance, when
condi holds, the execution goes unnecessarily through
{resA} in the first rule, fails to prove condi and, then,
attempts the second rule.

C. Decompiled code of BlockD is again emitted more
than once. Each rule for the decompiled code contains
a (possibly different) version, {resD} and {res′

D}, of
the code of BlockD. Unlike above, at PE time, the
code of BlockD is actually evaluated in the context of
{condi, {resB}} and then re-evaluated in the context
of {condi, {resC}}. Convergence points thus might
degrade both efficiency (and endanger scalability) and
quality of decompilation (due to larger residual code).

The amount of repeated residual code grows exponentially
with the number of C and D points and the amount of re-
evaluated code grows exponentially with the number of C
points. Thus, we now aim for a block-level decompilation
that helps overcome problems D and C above. Intuitively,
a block-level decompilation must produce a residual rule
for each block in the CFG. This can be achieved by build-
ing SLD-trees which correspond to each single block, rather
than expanding them further.

The memo annotations presented in Sect. 4.2 facili-
tate the design of the block-level interpretive decompilation
scheme. In particular, we can easily force the unfolding pro-
cess to stop at D points by including a memo annotation for
execute/2 calls whose PC corresponds to a D point. In
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Method mbl
pc0 : bc0
...
pci : if � (pcj)
pci+1 : bci+1

...
pcj−1 : goto(pck)
pcj : bcj
...
pck−1 : bck−1

pck : bck
pcn : return

pcj−1:goto(pck)
. . .
pci+1:bci+1 pcj:bcj

pck−1:bck−1

. . .

pc0:bc0
. . .
pci:if�(pcj)

pck:bck

. . .
pcn:return

condi

Block A

Block B

Block D

Block Ccondi

exec(st(mbl, 0, os0, lv0), )

exec(st(mbl, pci, osi, lvi), )

exec(st(mbl, pci+1, . . .)

exec(st(mbl, pcn, osn, lvn), )

true true

exec(st(mbl, pcj, osj, lvj), )

exec(st(mbl, pck, osk, lvk), )exec(st(mbl, pck, osk, lvk), )

exec(st(mbl, pcn, osn, lvn), )

{resD}

{resC}

{res
′
D}

{resB}

{resA}

main(mbl, , )

condi condi

main(mbl,Args,Out) :- {resA}, condi, {resB}, {resD}.

main(mbl,Args,Out) :- {resA}, condi, {resC}, {res′D}.

Figure 5. Lbc-bytecode, CFG, unfolding tree and decompiled code of mbl method

the example, unfolding stops at pci as desired. Regarding
C points, an additional requirement is to partially evaluate
the code on blocks starting at these points at most once.
The problem is similar to the polyvariant vs monovariant
treatment in the decompilation of methods in Sect. 4.3, by
viewing entries to blocks as method calls. Not surprisingly,
the solution can be achieved similarly in our setting by: (1)
stopping the derivation at execute/2 calls whose PC cor-
responds to C points and (2) passing the call to the global
control, and ensuring that it is evaluated in a sufficiently
generalized context which covers all incoming contexts.
The former point is ensured by the use of memo annotations
and the latter by including in the initial set of terms a gener-
alized call of the form execute(st(mbl, pck, , ), ) for all
C points, which forces such generalization. The next defi-
nition presents the block-level decompilation scheme where
div points(m) and conv points(m) denote, resp., the set
of D points and C points of a method m.

Definition [BLOCK-MOD-DECOMPLbc
] Given a Lbc-bytecode

program Pbc, a block-level, modular LP-decompilation of
Pbc can be obtained as:

BLOCK-MOD-
DECOMPLbc

(Pbc) =
⋃

∀m∈defs(Pbc)

PE(Intbs
Lbc

∪ code(m),Am, Sm)

Ablocks = {pc ∈ div points(m) ∪ conv points(m) ⇒
memo execute(st(m, pc, , ), )}

Sm = {main(m, , )} ∪
{execute(st(m, pc, , ), ) | pc ∈ conv points(m)}

Am = Amod ∪ Ablocks, for each m ∈ defs(Pbc).

An important point is that, unlike annotations used in offline
PE [13] which are generated by only taking the interpreter
into account, our annotations for block-level decompilation
are generated by taking into account the particular program
to be decompiled. Importantly, both the annotations and the
initial set of calls can be computed automatically by per-
forming two passes on the bytecode (see, e.g., [1, 20]). The
result of performing block-level decompilation on mbl is:

main(mbl,Args,Out) :- {resA}, execute1(. . .).
execute1(. . .) :- condi, {resB}, execute2(. . .).
execute1(. . .) :- condi, {resC}, execute2(. . .).
execute2(. . .) :- {resD}.

Now, the residual code associated to each block appears
once in the code. This ensures that block-level decompila-
tion preserves the CFG shape as dedicated decompilers do.
Thus, the quality of our decompiled code is as good as that
obtained by state-of-the-art decompilers [1, 18] but with the
advantages of interpretive decompilation (see Sect. 1). We
formalize the quality of block-level decompilation.

Proposition 2 (block-optimality) Given a bytecode
program Pbc, the block-level decompilation function
BLOCK-MOD-DECOMPLbc

ensures that: (I) residual code
for each bytecode instruction in Pbc is emitted once in the
decompiled program, and (II) each bytecode instruction in
Pbc is evaluated at most once during PE.

6 Experimental Evaluation

We report on our implementation of a decompiler for
full (sequential) Java Bytecode into Prolog. The exten-
sions needed to handle the features of Java Bytecode not
considered in Lbc (exception handling, dynamic memory
allocation, object orientation, etc) are basically carried
out by making the decompiler produce the corresponding
builtins in the residual code. E.g. the bytecode instruc-
tion putfield will make the decompiler produce the predicate
set field/5 in the decompiled code. This naive solu-
tion might be considerably improved to increase the preci-
sion and quality of the decompilation. However this is out
of the scope of this paper. For the experimental evaluation
we have used the set of benchmarks in the JOlden suite [4].
Most programs make an extensive use of library methods.
Hence, non-modular decompilation cannot be assessed as
we run into memory problems when trying to decompile the
code of library calls. The experiments have been performed
on an Intel Core 2 Duo 1.86GHz with 2GB of RAM, run-
ning Linux. Figure 6 depicts four charts measuring different
aspects of the decompilation. We assess the differences be-
tween the modular and the modular+block-level (just block-
level for short) approaches; as well as how the size of the
programs affects the decompilation. We measure two as-
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Figure 6. Evaluating modular decompilation vs. modular+block-level deompilation with the JOlden Suite

pects of the decompilation: the decompilation time (in mil-
liseconds) per instruction and the decompiled program size
(in bytes) per instruction. The decompilation time indicates
the efficiency of the process and the size of decompiled pro-
grams is directly related to the decompilation quality. Each
point [X,Y ] in the charts corresponds to the decompilation
of a single method in the JOlden suite, where X represents
the number of instructions of the method and Y the mea-
sured data (time or decompiled program size). The tables in
the left-hand side show the data obtained (times in the top
chart and sizes in the bottom one) for both the modular and
the block-level decompilation. The variations in the block-
level decompilation cannot be appreciated when combined
with modular. Thus, we include in the tables on the right-
hand side the figures for the block-level decompilation in
isolation such that we adjust the scale on the Y-axis to the
domain of the data.

From the charts, we conclude: (1) Times per instruc-
tion are notably larger for the smallest methods, as can be
seen by looking at the initial curve in the charts. This is
because the overhead introduced for starting a new decom-
pilation is more noticeable when the time for decompilation
itself is small, while it becomes negligible for larger meth-
ods. The same happens for the size of the decompiled pro-
grams. (2) Block-level decompilation achieves important
speedups in general (for all methods with more than 40 in-
structions). Besides, it obtains significantly smaller decom-
piled programs. The speedups per package range from 3.36
in power to 31.4 in bisort for the decompilation times; and
from 2.5 times smaller in power to 9 times smaller in bisort
for the decompiled program sizes. Note that there is a clear
correspondence between both measures, since C points in-
troduce both inefficiency and size increase in decompila-
tion, as explained in Sect. 5. Moreover, modular decompi-
lation runs out of memory for some of the largest methods.

This is again related to code duplication (C and D points)
and (re-)evaluation (C points), which grow exponentially.
(3) The most important conclusion is that, while in modu-
lar decompilation both the times and the sizes per instruc-
tion greatly increase with the size of the benchmarks, this
does not happen in the block-level scheme. In block-level
decompilation, these figures are totally stable (mostly con-
stant) for all methods with more than 40 instructions. This
demonstrates that both the decompilation times and the de-
compiled program sizes are linear with the size of the input
bytecode program, thus demonstrating the scalability of the
block-level decompilation. One might wonder why there
are still small variations in the ratio. In our experience, the
following points also matter: 1) the complexity of the con-
trol flow of the methods, 2) the relative complexity of the
bytecode instructions used, e.g., instructions which operate
in the heap tend to produce more residual code, 3) the struc-
ture w.r.t. methods of the program, e.g., classes with meth-
ods of medium size tend to result in better decompilations
than those with few large methods or many small ones.

7 Conclusions and Related Work

We argue that declarative languages and the technique of
partial evaluation have nowadays a large application field
within the development of analysis, verification, and model
checking tools for modern programming languages. On one
hand, declarative languages provide a convenient intermedi-
ate representation which allows (1) representing all iterative
constructs (loops) as recursion, independently of whether
they originate from iterative loops (conditional and uncon-
ditional jumps) or recursive calls, and (2) all variables in the
local scope of the methods (formal parameters, local vari-
ables, fields, and stack values in low-level languages) can
be represented uniformly as explicit arguments of a declar-
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ative program. On the other hand, the technique of par-
tial evaluation enables the automatic (de-)compilation of a
(complicated) modern program to a simple declarative rep-
resentation by just writing an interpreter for the modern lan-
guage in the corresponding declarative language and using
an existing partial evaluator. The resulting intermediate rep-
resentation greatly simplifies the development of the above
tools for modern languages and, more interestingly, existing
advanced tools developed for declarative programs (already
proven correct and effective) can be directly applied on it.

Previous work in interpretative (de-)compilation has
mainly focused on proving that the approach is feasible for
small interpreters and medium-sized programs. The focus
has been on demonstrating its effectiveness, i.e., that the so-
called interpretation layer can be removed from the com-
piled programs. To achieve effectiveness, offline [13], on-
line [3, 10, 19] and hybrid [14] PE techniques have been
assessed and novel control strategies have been proposed
and proved effective [9, 2]. Our work starts off from the
premise that interpretive decompilation is feasible and ef-
fective as proved by previous work and studies further is-
sues which have not been explored before. A main objec-
tive of our work is to investigate, and provide the neces-
sary techniques, to make interpretive decompilation scale in
practice. A further goal is to ensure, and provide the tech-
niques, that decompiled programs preserve the structure of
the original programs and that its quality is comparable to
that obtained by dedicated decompilers. We believe that the
techniques proposed in this paper, together with their exper-
imental evaluation, provide for the first time actual evidence
that the interpretive theory proposed by Futamura in the 70s
is indeed an appealing and feasible alternative to the devel-
opment of ad-hoc decompilers from modern languages to
intermediate representations.
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Type-based Homeomorphic Embedding and its Applica-
tions to Online Partial Evaluation. In 17th International
Symposium on Logic-based Program Synthesis and Trans-
formation (LOPSTR’07), number 4915 in LNCS, pages 23–
42. Springer-Verlag, 2008.
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