
Conditional Dynamic Partial Order Reduction
and Optimality Results

Miguel Isabel
Complutense University of Madrid

Spain
miguelis@ucm.es

ABSTRACT
Testing concurrent systems requires exploring all possible non-
deterministic interleavings that the concurrent execution may have,
as any of the interleavings may reveal an erroneous behaviour
of the system. This introduces a combinatorial explosion on the
number of states that must be considered, which leads often to a
computationally intractable problem. In the present PhD thesis,
this challenge will be addressed through the development of new
Partial Order Reduction techniques (POR). The cornerstone of POR
theory is the notion of independence, that is used to decided whether
each pair of concurrent events p and t are in a race and thus both
executions p · t and t · p must be explored. A fundamental goal
of this thesis is to introduce notions of conditional independence
–which ensure the commutativity of the considered events p and
t under certain conditions that can be evaluated in the explored
state–with a DPOR algorithm in order to alleviate the combinatorial
explosion problem. The new techniques that we propose in the
thesis have been implemented within the SYCO tool. We have
carried out accompanying experimental evaluations to prove the
effectiveness and applicability of the proposed techniques. Finally,
we have successfully verified a range of properties for several case
studies of Software-Defined Networks to illustrate the potential of
the approach, scaling to larger networks than related techniques.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation.

KEYWORDS
Testing, Software Verification, Partial-Order Reduction

ACM Reference Format:
Miguel Isabel. 2019. Conditional Dynamic Partial Order Reduction and
Optimality Results. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’19), July 15–19, 2019,
Beijing, China. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3293882.3338987

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3338987

1 INTRODUCTION
Due to increasing performance demands, application complexity
andmulti-core parallelism, concurrency is present everywhere in to-
day’s software applications. It is widely recognized that concurrent
programs are difficult to develop, debug, test and analyze. This is
even more so in the context of concurrent imperative languages that
use a global memory (so called heap) to which the different tasks
can have access. These accesses introduce additional hazards not
present in sequential programs such as race conditions, data races,
deadlocks, and livelocks. Therefore, software validation techniques
urge especially in the context of concurrent programming.

Testing is the most widely-used methodology for software vali-
dation. However, due to the non-deterministic interleaving of tasks,
traditional testing for concurrent programs is not as effective as for
sequential programs. In order to ensure that all behaviors of the
program are tested, the testing process, in principle, must system-
atically explore all possible ways in which the tasks can interleave.
This is known as systematic testing [24] in the context of concurrent
programs. Such full systematic exploration of all task interleavings
produces the well known state explosion problem and is often
computationally intractable (see, e.g., [25] and its references).

Partial-order reduction (POR) [14] is a general theory that helps
mitigate this combinatorial explosion by formally identifying equiv-
alence classes of redundant explorations. POR is based on the idea
that two interleavings can be considered equivalent if one can be
obtained from the other by swapping adjacent, non-conflicting
independent execution steps. Such equivalence class is called a
Mazurkiewicz trace [21], and POR guarantees that it is sufficient
to explore one interleaving per equivalence class. For this purpose,
a happens-before partial order among the events of the execution
sequences is defined. This order relation induces a set of equivalent
execution sequences, i.e., those sequences with the same happens-
before order belong to the same equivalence class. As a result, only
one of them needs to be explored.

2 STATE OF THE ART
Early POR algorithms [12, 14, 26] relied on static over-approximations
to detect possible future conflicts. The Dynamic-POR (DPOR) algo-
rithm, introduced by Flanagan and Godefroid [13] in 2005, was a
breakthrough in the area because it does not need to look at the
future. It keeps track of the independence races witnessed along
its execution and uses them to decide the required exploration
dynamically, without the need of static approximation. DPOR is
nowadays considered one of the most scalable techniques for con-
current software testing. The key of DPOR algorithms is in the
dynamic construction of two types of sets at each scheduling point:
the sleep set that contains processes whose exploration has been

433

https://doi.org/10.1145/3293882.3338987
https://doi.org/10.1145/3293882.3338987
https://doi.org/10.1145/3293882.3338987

ISSTA ’19, July 15–19, 2019, Beijing, China Miguel Isabel

proven to be redundant (and hence should not be selected), and
the backtrack set that contains the processes that have not been
proven independent with previously explored steps (and hence may
need to be explored). Source-DPOR (SDPOR) [1, 2] improves the
precision computing backtrack sets (named there source sets).

An extension of the DPOR algorithm, named Optimal DPOR
(ODPOR) [2], guarantees the optimality of the exploration, i.e., the
proposed DPOR algorithm never explores redundant states (they
are equivalent to others already explored). In addition to using
source sets, a major extension is needed to achieve optimality: the
use of wakeup trees to guide the initial steps in the exploration.
By means of these extensions, ODPOR guarantees that redundant
explorations are never even initiated, proving optimality for any
number of processes w.r.t. an unconditional independence relation.

Both the original DPOR and its extension ODPOR are based on
an unconditional dependency relation (also called unconditional
happens-before relation) which determines the partial order of
transitions, i.e., for two transitions be considered independent they
must commute in all possible contexts. Let us consider the following
three simple processes {p,q, r } and the initial state x = 0:

p: write(x=5), q: write(x=5), r : assert(x>0).
The transitions write(x=5) and write(x=5) are uncondi-

tionally independent but write(x=5) and assert(x>0) are
not. The latter are independent only if x > 0.

Conditional independence was earlier introduced in the context
of POR [19], where it was proven that only uniform conditional inde-
pendence can be used, i.e., independence must hold along the whole
trace. A notion of uniformity is needed because, unlike uncondi-
tional independence, pruning the DPOR search space by relying on
whether conditions like x > 0 above, called independence constraints
(ICs), are satisfiable in the explored state is unsound in general. The
ICs provide the conditions under which each pair of transitions com-
mutes, i.e., both execution orders leads to the same state. The first
algorithm that took advantage of independence constraints is [27],
but this algorithm can only ensure optimality between two threads,
(while DPOR ensures it among any number of threads) and infers
ICs for single instructions. The first algorithm that has used notions
of conditional independence within the state-of-the-art DPOR algo-
rithm is Context-Sensitive DPOR (DPORcs) [4]. However, DPORcs
does not use ICs (it rather checks state equivalence dynamically
during the exploration) and exploits conditional (context-sensitive)
independence only partially to extend the sleep sets. ODPOR with
Observers (ODPORob) [3] introduces the notion of observability,
where dependencies between execution steps p and t are condi-
tional to the existence of future steps, called observers, which read
the values modified by p and t . For the previous example, when
ODPORob explores the execution r .p.q, we have that p and q are
considered as independent, since there is not a observer executed
after them. This is because r is executed before, so it does not read
the value written by p and q.

3 GOALS OF THE RESEARCH
The overall goal of this PhD thesis is to be able to explote notions
of conditional independence –which ensure the commutativity of
the considered events p and t under certain conditions that can
be evaluated in the explored state– within DPOR algorithms in

order to alleviate the combinatorial explosion problem described
in Section 1. This goal is materialized in the following research
challenges:

i) combine and exploit the notions of Context-Sensitive DPOR,
Optimal DPOR with Observers and study their synergies to
gain further pruning,

ii) propose (sufficient) conditions that ensure uniformity and
enable new forms of pruning using ICs,

iii) integrate the notion of uniform conditional independence
(which requires to look ahead) to prune the search space in
a dynamic algorithm using ICs,

iv) statically synthesize ICs for atomic blocks of instructions in
a pre-analysis using a SMT approach,

v) extend the DPOR framework, that ensures optimality for any
number of processes, to exploit ICs during the exploration
in order to both reduce the backtrack sets and expand the
sleep sets as much as possible,

vi) carry out a thorough experimental evaluation to compare
the different extensions, and

vii) apply the techniques to a realistic setting.

4 CURRENT STATE OF THE RESEARCH
At the Conference ISSTA 2019 [6], we have presented Optimal
Context-Sensitive DPOR with Observers which addresses the first
challenge. We have formulated Context-Sensitive DPOR over Op-
timal DPOR, which is named Optimal Context-Sensitive DPOR
(ODPORcs), and it includes the extension of wakeup trees used to
ensure optimality. Furthermore, we have also integrated the notion
of observability into ODPORcs and the resulting algorithm is called
Optimal Context-Sensitive DPOR with Observers (ODPORobcs). To il-
lustrate this, let us consider again the previous example. ODPORobcs
detectsp.q.r andq.p.r as redundant, because in both sequences r ob-
serves the same result (the assert holds). Consequently, ODPORobcs
only needs to explore one of them, whereas ODPORob explores
both executions. Finally, we have implemented this new algorithm
and perform an experimental evaluation that shows it can explore
exponentially less sequences than DPORcs and ODPORobcs .

At the Conference CAV 2018 [5], we have presented Constrained
Dynamic Partial Order Reduction (CDPOR) which addresses the sec-
ond, third and fourth challenges. As a result, we have introduced
sufficient conditions –that can be checked dynamically– to soundly
exploit ICs within the DPOR framework. Moreover, we have ex-
tended the state-of-the-art DPOR algorithm with new forms of
pruning (by means of expanding sleep sets and reducing backtrack
sets). We have also presented an SMT-based approach to automat-
ically synthesize ICs for atomic blocks, whose applicability goes
beyond the DPOR context. For write(x) and write(x), it in-
fers true as IC (that is, they are unconditional independent) and, for
write(x) and assert(x>0) it infers x > 0. During the explo-
ration, CDPOR detects p and r as dependent in the execution p.r .q
(because the condition does not hold in the initial state) and as inde-
pendent in the execution q.p.r (since after q, the IC holds), avoiding
the exploration of q.r .p. Moreover, we have experimentally shown
the exponential gains achieved by CDPOR.

However, CDPOR extends Source-DPOR only with sound ways
of exploiting ICs and, although it has experimentally shown to

434

Conditional DPOR and Optimality Results ISSTA ’19, July 15–19, 2019, Beijing, China

achieve exponential reductions, they have not been proven optimal
w.r.t. the equivalence classes induced by a conditional happens-
before relation. Currently, we are working on a new direction to
address the fifth challenge. We aim at characterizing the properties
of a conditional happens-before relation which allows defining the
equivalence classes to be explored by an optimal DPOR algorithm
as a disjunction of partial orders. Furthermore, we aim at defining
a provably Optimal Constrained DPOR algorithm that varies from
unconditional ODPOR in the construction of the sequences to be
explored when races are detected. We plan to use a conditional
happens-before relation that can be checked efficiently during the
execution of the DPOR algorithm and is sufficiently accurate to
detect redundancies that can only be captured using a conditional
relation. Finally, wewill perform an experimental evaluation against
ODPOR and CDPOR to show the gains of this new approach.

5 EXPERIMENTS
The thesis will be backed up by a thorough experimental evalua-
tion that addresses goal vi). Namely, in [5], we have reported on
experimental results that compare the performance of three DPOR
algorithms: SDPOR [1, 2], DPORcs [4] and our proposal CDPOR [5].
We have implemented and experimentally evaluated CDPORwithin
the SYCO tool [4], a systematic testing tool for message-passing
concurrent programs. SYCO can be used online through its web in-
terface available at http://costa.fdi.ucm.es/syco. To generate the ICs,
SYCO calls a new feature of the VeryMax program analyzer [10]
which uses Barcelogic [9] as SMT solver.

As benchmarks, we have borrowed the examples from [4] (avail-
able online from the previous url) that were used to compare SDPOR
with DPORcs (see Table 1). They are classical concurrent applica-
tions: a concurrent sorting algorithm (QS), concurrent Fibonacci
(Fib) and several distributed workers (Pi, PS). These benchmarks
feature the typical concurrent programming methodology in which
computations are split into smaller atomic subcomputations which
concurrently interleave their executions, and which work on the
same shared data. Therefore, the concurrent processes are highly in-
terfering, and both inferring ICs and applying DPOR algorithms on
them becomes challenging. We have executed each benchmark with
size increasing input parameters. As it can be observed in the table,
he results show that the gains of CDPOR increase exponentially in
all examples respect to the size of the input. When compared with
DPORcs , we achieve reductions up to 4 orders of magnitude for
the largest inputs on which DPORcs terminates. W.r.t. SDPOR, we
achieve reductions of 4 orders of magnitude even for smaller inputs
for which SDPOR terminates. In QS and PS, though the gains are
linear for the small inputs, when the size of the problem increases
both SDPOR and DPORcs time out, while CDPOR can still handle
them efficiently. As regards the time to infer ICs, we observe that in
most cases it is negligible compared to the exploration time of the
other methods. Let us also notice that the inference is a pre-process
which does not add complexity to the actual DPOR algorithm.

In [6], we have reported on an experimental comparison of the
performance of DPORcs , ODPORob and our proposal ODPORobcs .
We have used two sets of benchmarks: the same set described above,
and a subset of the synthetic examples used in [3] to compare
Optimal DPOR and Optimal DPOR with Observers. In general, we
obtain speedups with respect to both methods, although when

the reduction in explored sequences is small, the overhead of the
complex context-sensitive checks does not pay off. Furthermore,
our proposal obtains gains, scaling by several orders of magnitude.

In summary, we conclude that our experimental results in [5]
and [6] show exponential reductions of explored executions and
our gains increase exponentially.

A potential hazard of using conditional independence within
DPOR algorithms is that it needs to check independence with re-
spect to states explored in the current execution sequence but not
in the current state. It does not need to revisit states that have been
completely explored and backtracked, but only those in the cur-
rent execution sequence. There are several strategies to confront
this challenge: on-demand recomputing, all states are recomputed
following the same events order that led to them (and then no mem-
ory usage is needed); full storage, all states are stored to be used
until the state is backtracked; and state caching [23], where states
are stored until the memory is approaching full utilization. Our
current implementation follows the second strategy. To the light of
our experimental results, full storage performs efficiently, since the
number of stored states is limited by the number of events in each
execution sequence and it remains quite low for the experiments.

6 FOR THE VERIFICATION OF
SOFTWARE-DEFINED NETWORKS

To address the vii) challenge, we want to apply our techniques
for the verification of Software-Defined Network (SDN). SDN is a
relatively recent networking paradigm which is now widely used
in industry, with many companies—such as Google and Facebook—
using SDN to control their backbone networks and data-centers.
The core principle in SDN is the separation of control and data
planes—there is a centralized controller which operates a collection
of distributed interconnected switches. Hosts communicate with
each other by sending packets to their switches. Each switch checks
if its own flow table contains the destination of the packet. If it does,
the packet is sent to the next switch or to the final host. Otherwise,
it sends a message to the controller in order to receive information
about the destination of the packet. The controller answers by
means of messages and dynamically updates switches’ policies
depending on the observed flow of packets, which is a simple but
powerful way to react to unexpected events in the network.

Network verification has become increasingly popular since
SDN was introduced, because in this new paradigm the amount of
detailed information available about network events is rich enough
and can be centrally gathered to check for properties of the network
behavior. Moreover, the controller itself is a program which can be
analyzed and verified before deployment.

We have encoded all basic components of an SDN network
(switches, hosts, controller) into the message-passing concurrent
language ABS [17]. Furthermore, we have formalized the semantics
of SDN networks that allows us to prove soundness of the equiva-
lence between such semantics and the semantics of our encoding.
Furthermore, we have overcome one of themost challenging aspects
to encode SDN networks, which is the barrier messages, special
instructions used by the controller to force switches to execute all
their messages previously received. We have built a model checker
for our SDN models on top of SYCO (choosing the appropriate con-
figuration). This tool uses the DPOR algorithms proposed in this

435

http://costa.fdi.ucm.es/syco

ISSTA ’19, July 15–19, 2019, Beijing, China Miguel Isabel

Table 1: Experimental evaluation comparing SDPOR, DPORcs and CDPOR

SDPOR DPORcs CDPOR Speed-up

Bench. Tr S T Tr S T Tr S T Tsmt Gs Gcs Gsmt

Fib(7) >13k >160k 60.0 1 551 0.3 1 82 0.05 0.12 >1364 6 1.4
Fib(8) >8k >101k 60.0 1 2k 0.7 1 134 0.12 >527 6 3.0
Fib(9) >4k >51k 60.0 1 3k 2.8 1 218 0.25 >242 12 7.5
Fib(10) >2k >27k 60.0 1 8k 11.5 1 354 0.69 >88 17 14.3
Fib(14) >10 >3k 60.0 >1 >4k 60.0 1 3k 42.67 >2 >2 >1.5
QS(13) 5k 91k 29.5 1 29k 7.9 1 50 0.03 11.99 1474 395 0.7
QS(15) >7k >157k 60.0 1 115k 42.6 1 58 0.05 >1500 1064 3.6
QS(20) >4k >98k 60.0 >1 >148k 60.0 1 78 0.04 >1539 >1539 >5.0
QS(25) >3k >96k 60.0 >1 >133k 60.0 1 98 0.06 >1017 >1017 >5.0
QS(200) >5 >2k 60.0 >1 >87k 60.0 1 798 4.45 >14 >14 >3.7
Pi(8) >10k >105k 60.0 264 5k 1.7 1 26 0.02 0.05 >4616 128 26.9
Pi(9) >11k >120k 60.0 2k 19k 7.0 1 29 0.02 >4000 465 108.9
Pi(10) >10k >128k 60.0 6k 91k 45.2 1 32 0.02 >3530 2655 683.7
Pi(12) >9k >122k 60.0 >7k >128k 60.0 1 38 0.03 >2400 >2400 >810.9
Pi(20) >5k >101k 60.0 >5k >115k 60.0 1 62 0.09 >723 >723 >454.6
PS(5) 35k 156k 43.2 8 142 0.1 1 22 0.01 0.59 5391 5 0.1
PS(6) >32k >141k 60.0 72 2k 0.4 1 29 0.02 >4286 28 0.7
PS(7) >29k >130k 60.0 2k 28k 7.5 1 37 0.03 >2858 357 12.3
PS(9) >25k >109k 60.0 >11k >165k 60.0 1 56 0.06 >1053 >1053 >92.9
PS(11) >23k >103k 60.0 >9k >132k 60.0 1 79 0.09 >690 >690 >88.8

thesis to avoid exploring redundant executions and incorporates
visualization tools to view the exploration and execution diagram.

To evaluate this approach, we have modelled and analysed sev-
eral SDN scenarios: a controller with load balancer, a SSH controller,
a learning switch with authentication, and a firewall with migra-
tion. We have found bugs related to programming errors in the
controller [7], forwarding loops [15] and violation of safety policies
[7, 20]. SYCO needs to explore all possible reorderings of dependent
messages and packets, leading to a combinatorial explosion. Thanks
to the use of conditional independence within DPOR algorithms,
SYCO can handle networks larger than in related systems [20],
but without requiring simplifications to the SDN models. This is
achieved by means of ICs that are satisfied if two messages or pack-
ets are independent (for instance, they do not access to the same
entries of the flow table) and they can be proven automatically by
using SMT solvers, as in [5]. In our current experiments, we have
declared by-hand ICs which are valid for any SDN model. It is part
of our future work to infer them automatically.

7 RELATED AND FUTUREWORK
The work in [18, 27] generated for the first time ICs for processes
with a single instruction following some predefined patterns. This
is a problem strictly simpler than our inference of ICs both in the
type of IC generated (restricted to the patterns) and on the single-
instruction blocks they consider. Furthermore, our approach using
an AllSAT SMT solver is different from the CEGAR approach in
[8]. The ICs are used in [18, 27] for SMT-based bounded model
checking, an approach to model checking fundamentally different
from our stateless model checking setting. Consequently ICs are
used in a different way, in our case with no bounds on number
of processes, nor derivation lengths, but requiring a uniformity
condition on independence in order to ensure soundness.

It remains as future work the combination of Constrained DPOR
and Context-Sensitive ODPOR with Observers. To the best of our
knowledge, it has not been studied yet. We believe the integration
of both techniques can achieve exponential gains compared with

these approaches. Data-centric DPOR (DCDPOR) [11] presents a
new DPOR algorithm based on a different notion of dependency
according to which the equivalence classes of derivations are based
on the pairs read-write of variables. Let us consider again the run-
ning example with the three processes {p,q, r } and the initial state
x = 0. In DCDPOR, we have only three different observation func-
tions: (r ,x) (reading the initial value), (r ,p) (reading the value that
p writes), (r ,q) (reading the value that q writes). Therefore, this no-
tion of relational independence is finer grained than the traditional
one in DPOR. However, DCDPOR does not consider conditional
dependency, i.e., it does not realize that (r ,p) and (r ,q) are equiva-
lent, and hence only two explorations are required. In conclusion,
our approaches and DCDPOR can complement each other and it is
in our agenda to study this integration.

ACKNOWLEDGMENTS
This work was funded partially by the Spanish MECD FPU Grant
FPU15/04313, the MINECO/FEDER, UE project TIN2015-69175-
C4-3-R, the Spanish MINECO project TIN2015-69175-C4-2-R, the
Spanish MICINN/FEDER, UE projects RTI2018-094403-B-C31 and
RTI2018-094403-B-C33, and by the CM project P2018/TCS-4314.

REFERENCES
[1] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.

Source sets: A foundation for optimal dynamic partial order reduction. J. ACM,
64(4):25:1–25:49, 2017.

[2] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos F. Sagonas.
Optimal Dynamic Partial Order Reduction. In POPL, pages 373–384, 2014.

[3] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. Optimal
dynamic partial order reduction with observers. In Tools and Algorithms for the
Construction and Analysis of Systems - 24th International Conference, TACAS 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, pages
229–248, 2018.

[4] Elvira Albert, Puri Arenas, Maria Garcia de la Banda, Miguel Gómez-Zamalloa,
and Peter J. Stuckey. Context-sensitive dynamic partial order reduction. In CAV,
pages 526–543, 2017.

[5] Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, and Albert Rubio. Con-
strained Dynamic Partial Order Reduction. In CAV, volume 10982 of - Lecture
Notes in Computer Science, pages 392–410. Springer, 2018.

436

Conditional DPOR and Optimality Results ISSTA ’19, July 15–19, 2019, Beijing, China

[6] Elvira Albert, Maria Garcia de la Banda, Miguel Gómez-Zamalloa, Miguel Isabel,
and Peter J. Stuckey. Optimal Context-sensitive Dynamic Partial Order reduction
with Observers. In ISSTA, 2019.

[7] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Kar-
byshev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. Vericon: towards
verifying controller programs in software-defined networks. In PLDI, pages
282–293, 2014.

[8] Kshitij Bansal, Eric Koskinen, and Omer Tripp. Commutativity condition refine-
ment, 2015.

[9] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell,
and Albert Rubio. The barcelogic SMT solver. In CAV, pages 294–298, 2008.

[10] Cristina Borralleras, Daniel Larraz, Albert Oliveras, José Miguel Rivero, Enric
Rodríguez-Carbonell, and Albert Rubio. VeryMax: Tool description for term-
COMP 2016. In WST, 2016.

[11] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Kapil Vaidya, and
Nishant Sinha. Data-centric dynamic partial order reduction. In POPL 2018, 2018.

[12] Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron A. Peled. State
space reduction using partial order techniques. STTT, 2(3):279–287, 1999.

[13] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121, 2005.

[14] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of LNCS. Springer,
1996.

[15] Ahmed El-Hassany, JeremieMiserez, Pavol Bielik, Laurent Vanbever, andMartin T.
Vechev. Sdnracer: concurrency analysis for software-defined networks. In POPL,
pages 402–415, 2016.

[16] Shiyou Huang and Jeff Huang. Speeding up maximal causality reduction with
static dependency analysis. In ECOOP, pages 16:1–16:22, 2017.

[17] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In Proc. FMCO’10, LNCS 6957,
pp. 142-164. Springer, 2012.

[18] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic partial order reduction:
An optimal symbolic partial order reduction technique. In CAV, pages 398–413,
2009.

[19] Shmuel Katz and Doron A. Peled. Defining conditional independence using
collapses. TCS, 101(2):337–359, 1992.

[20] Rupak Majumdar, Sai Deep Tetali, and Zilong Wang. Kuai: A model checker for
software-defined networks. In FMCAD, pages 163–170, 2014.

[21] Antoni W. Mazurkiewicz. Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad
Honnef, Germany, 8-19 September 1986. pages 279–324, 1986.

[22] Huyen T. T. Nguyen, César Rodríguez, Marcelo Sousa, Camille Coti, and Laure
Petrucci. Quasi-optimal partial order reduction. CoRR, abs/1802.03950, 2018.

[23] César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening.
Unfolding-based partial order reduction. In CONCUR, pages 456–469, 2015.

[24] Koushik Sen and Gul Agha. Automated Systematic Testing of Open Distributed
Programs. In FASE, pages 339–356, 2006.

[25] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and G. Agha.
TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing
Actor Programs. In FMOODS/FORTE, volume 7273 of Lecture Notes in Computer
Science, pages 219-234. Springer, 2012.

[26] Antti Valmari. Stubborn Sets for Reduced State Space Generation. In Advances
in Petri Nets, pages 491–515, 1990.

[27] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole partial
order reduction. In TACAS, pages 382–396, 2008.

437

	Abstract
	1 Introduction
	2 State of the Art
	3 Goals of the research
	4 Current State of the research
	5 Experiments
	6 For the verification of Software-Defined Networks
	7 Related and Future Work
	Acknowledgments
	References

