
A Framework for Guided Test Case Generation in
Constraint Logic Programming

José Miguel Rojas1 and Miguel Gómez-Zamalloa2

1 Technical University of Madrid, Spain
2 DSIC, Complutense University of Madrid, Spain

Abstract. Performing test case generation by symbolic execution on large
programs becomes quickly impracticable due to the path explosion problem.
A common limitation that this problem poses is the generation of unneces-
sarily large number of possibly irrelevant or redundant test cases even for
medium-size programs. Tackling the path explosion problem and selecting
high quality test cases are considered major challenges in the software testing
community. In this paper we propose a constraint logic programming-based
framework to guide symbolic execution and thus test case generation towards
a more relevant and potentially smaller subset of paths in the program under
test. The framework is realized as a tool and empirical results demonstrate
its applicability and effectiveness. We show how the framework can help to
obtain high quality test cases and to alleviate the scalability issues that limit
most symbolic execution-based test generation approaches.

Keywords: Constraint Logic Programming, Guided Test Case Generation,
Software Testing, Symbolic Execution, Trace-abstraction

1 Introduction

Testing remains a mostly manual stage within the software development process [4].
Test Case Generation (TCG) is a research field devoted to the automation of a
crucial part of the testing process, the generation of input data. Symbolic Execution
is nowadays one of the predominant techniques to automate the generation of input
data. It is the underlying technique of several popular testing tools, both in academia
and software industry [4].

Symbolic execution [10] executes a program with the contents of variables be-
ing symbolic formulas over the input arguments rather than concrete values. The
outcome is a set of equivalence classes of inputs, each of them consisting of the
constraints that characterize a set of feasible concrete executions of a program that
takes the same path. A test suite is the set of test cases obtained from such path
constraints by symbolically executing a program using a particular coverage crite-
rion. Concrete instantiations of the test cases can be generated to obtain actual test
inputs for the program, amenable for further validation by testing tools.

In spite of its popularity, it is well known that symbolic execution of large pro-
grams can become quickly impracticable due to the large number and the size of
paths that need to be explored. This issue is considered a major challenge in the
fields of symbolic execution and TCG [12]. Furthermore, a common limitation of
TCG by symbolic execution is that it tends to produce an unnecessarily large num-
ber of test cases even for medium-size programs.

In previous work [1,8], we have developed a glass-box Constraint Logic Program-
ming (CLP)-based approach to TCG for imperative object-oriented programs, which

consists of two phases: First, the imperative program is translated into an equiva-
lent CLP program by means of partial evaluation [7]. Second, symbolic execution
is performed on the CLP-translated program, controlled by a termination criterion
(in this context also known as coverage criterion), relying on CLP’s constraint solv-
ing facilities and its standard evaluation mechanism, with extensions for handling
dynamic memory allocation.

In this paper we develop a framework to guide symbolic execution in CLP-based
TCG, dubbed Guided TCG. Guided TCG can serve different purposes. It can be
used to discover bugs in a program, to analyze reachability of certain parts of a
program, to lead symbolic execution to stress more interesting parts of the program,
etc. This paper targets selective and unit testing. Selective testing aims at testing
only specific paths of a program. Unit testing is a widely used software engineering
methodology, where units of code (e.g. methods) are tested in isolation to validate
their correctness. Incorporating the notion of selection criteria in our TCG frame-
work represents one step towards fully supporting both unit and integration testing,
a different methodology, where all the pieces of a system must be tested as a single
unit.

Our Guided TCG is a heuristics that aims at steering symbolic execution, and
thus TCG, towards specific program paths to generate more relevant test cases and
filter less interesting ones with respect to a given selection criterion. The goal is
to improve on scalability and efficiency by achieving a high degree of control over
the coverage criterion and hence avoiding the exploration of unfeasible paths. In
particular, we develop two instances of the framework: one for covering all the local
paths of a method, and the other to steer TCG towards a selection of program points
in the program under test. Both instances have been implemented and we provide
experimental results to substantiate their applicability and effectiveness.

The structure of the paper is as follows. Section 2 conveys the essentials of our
CLP-based approach to TCG. Section 3 introduces the framework for guided TCG.
Section 4 presents an instantiation of the framework based on trace-abstractions and
targeting structural coverage criteria. Section 5 reports on the implementation and
empirical evaluation of the approach. Section 6 discusses a complementary strategy
to further optimize the framework. Finally, Section 7 situates our work in the existing
research space, sketches ongoing and future work and concludes.

2 CLP-based Test Case Generation

Our CLP-based approach to TCG for imperative object-oriented programs essen-
tially consists of two phases: (1) the program is translated into an equivalent CLP
counterpart through partial evaluation; and (2) symbolic execution is performed on
the CLP-translated program by relying on the CLP standard evaluation mechanisms.
Details on the methodology can be found elsewhere [1, 7, 8].

2.1 CLP-translated Programs

All features of the imperative object-oriented program under test are covered by its
equivalent executable CLP-translated counterpart. Essentially, there exists a one-to-
one correspondence between blocks in the control flow of the original program and
rules in the CLP counterpart:

Definition 1 (CLP-translated Program). A CLP-translated program consists
of a set of predicates, each of them defined by a set of mutually exclusive rules of the
form m(I,O,Hi, Ho, E, T) : −[Ḡ,]b1, . . . , bn., such that:

(i) I and O are the (possibly empty) lists of input and output arguments.

(ii) Hi and Ho are the input and output heaps.

(iii) E is an exception flag indicating whether the execution of m ends normally or
with an uncaught exception.

(iv) If predicate m is defined by multiple rules, the guards in each one contain mu-
tually exclusive conditions. We denote by mk the k−th rule defining m.

(v) Ḡ is a sequence of constraints that act as execution guards on the rule.

(vi) b1, . . . , bn is a sequence of instructions, including arithmetic operations, calls to
other predicates, and built-ins operations to handle the heap.

(vii) T is the trace term for m of the form m(k, 〈Tci , . . . , Tcm〉), where k is the index
of the rule and Tci , . . . , Tcm are free logic variables representing the trace terms
associated to the subsequence ci, . . . , cm of calls to other predicates in b1, . . . , bn.

Notice that the trace term T is a not a cardinal element in the translated program,
but rather a supplementary argument with a central role in this paper.

2.2 Symbolic Execution

CLP-translated programs are symbolically executed using the standard CLP execu-
tion mechanism with special support for the use of dynamic memory [8].

Definition 2 (Symbolic Execution). Let M be a method, m be its corresponding
predicate from its associated CLP-translated program P , and P ′ be the union of P
and a set of built-in predicates to handle dynamic memory. The symbolic execution
of m is the CLP derivation tree, denoted as Tm, with root m(I,O,Hi, Ho, E, T) and
initial constraint store θ = {} obtained using P ′.

2.3 Test Case Generation

The symbolic execution tree of programs containing loops or recursion is in gen-
eral infinite. To guarantee termination of TCG it is therefore essential to impose a
termination criterion that makes the symbolic execution tree finite:

Definition 3 (Finite symbolic execution tree, test case, and TCG). Let m
be the corresponding predicate for a method M in a CLP-translated program P , and
let C be a termination criterion.

– T C
m is the finite and possibly incomplete symbolic execution tree of m with root
m(I,O,Hi, Ho, E, T) w.r.t. C. Let B be the set of the successful (terminating)
branches of T C

m.

– A test case for m w.r.t. C is a tuple 〈θ, T 〉, where θ and T are, resp., the constraint
store and the trace term associated to one branch b ∈ B.

– TCG is the process of generating the set of test cases associated to all branches
in B.

int lcm(int a,int b) {
if (a < b) {

int aux = a;

a = b;

b = aux;

}
int d = gcd(a,b);

try {
return abs(a*b)/d;

} catch (Exception e) {
µ© return -1;

}
}
int gcd(int a,int b) {

int res;

while (b != 0) {
res = a%b;

a = b;

b = res;

}
return abs(a);

}
int abs(int a) {

if (a >= 0)

κ© return a;

else

return -a;

}

lcm([A,B],[R], , ,E,lcm(1,[T])) :-

A #>= B, cont([A,B],[R], , ,E,T).

lcm([A,B],[R], , ,E,lcm(2,[T])) :-

A #<= B, cont([B,A],[R], , ,E,T).

cont([A,B],[R], , ,E,cont(1,[T,V])) :-

gcd([A,B],[G], , ,E,T),

check([A,B,G],[R], , ,E,V).

check([A,B,G],[R], , ,E,check(1,[T,V])) :-

M #= A*B, abs([M],[S], , ,E,T),

div([S,G],[R], , ,E,V).

check([A,B,G],[R], , ,exc,check(2,[])).

div([A,B],[R], , ,ok,div(1,[])) :-

B #\= 0, R #= A/B.

div([A,0],[-1], , ,exc caught,div(2,[])). µ©

gcd([A,B],[D], , ,E,gcd(1,[T])) :-

loop([A,B],[D], , ,E,T).

loop([A,0],[F], , ,E,loop(1,[T])) :-

abs([A],[F], , ,E,T).

loop([A,B],[E], , ,G,loop(2,[T])) :-

B #\= 0, body([A,B],[E], , ,G,T).

body([A,B],[R], , ,E,body(1,[T])) :-

B #\= 0, M #= A mod B,

loop([B,M],[R], , ,E,T).

body([A,0],[R], , ,exc,body(2,[])).

abs([A],[A], , ,ok,abs(1,[])) :- A #>= 0. κ©
abs([A],[-A], , ,ok,abs(2,[])) :- A #< 0.

Fig. 1: Motivating Example: Java (left) and CLP-translated (right) programs.

Each test case produced by TCG represents a class of inputs that will follow the same
execution path, and its trace is the sequence of rules applied along such path. In a
subsequent step, it is possible to produce actual values from the obtained constraint
stores (e.g., by using labeling mechanisms in standard clpfd domains) therefore ob-
taining concrete and executable test cases. However, this is not an issue of this paper
and we will comply with the above abstract definition of test case.

Example 1. Fig. 1 shows a Java program consisting of three methods: lcm calculates
the least common multiple of two integers, gcd calculates the greatest common
divisor of two integers, and abs returns the absolute value of an integer. The right
side of the figure shows the equivalent CLP-translated program. Observe that each
Java method corresponds to a set of CLP rules, e.g., method lcm is translated into
predicates lcm, cont, check and div. The translation preserves the control flow of
the program and transforms iteration into recursion (e.g. method gcd). Note that the
example has been chosen deliberately small and simple to ease comprehension. For
readability, the actual CLP code has been simplified, e.g., input and output heap
arguments are not shown, since they do not affect the computation. Our current
implementation [2] supports full sequential Java.

Coverage Criteria. By Def. 3, so far we have been interested in covering all
feasible paths of the program under test w.r.t. a termination criterion. Now, our
goal is to improve on efficiency by taking into account a selection criterion as well.
First, let us define a coverage criterion as a pair of two components 〈TC, SC〉. TC
is a termination criterion that ensures finiteness of symbolic execution. This can be
done either based on execution steps or on loop iterations. In this paper, we adhere
to loop-k, which limits to a threshold k the number of allowed loop iterations and/or
recursive calls (of each concrete loop or recursive method). SC is a selection criterion
that steers TCG to determine which paths of the symbolic execution tree will be
explored. In other words, SC decides which test cases the TCG must produce. In
the rest of the paper we focus on the following two coverage criteria:

– all-local-paths: It requires that all local execution paths within the method under
test are exercised up to a loop-k limit. This has a potential interest in the context
of unit testing, where each method must be tested in isolation.

– program-points(P): Given a set of program points P, it requires that all of them
are exercised by at least one test case up to a loop-k limit. Intuitively, this crite-
rion is the most appropriate choice for bug-detection and reachability verification
purposes. A particular case of it is statement coverage (up to a limit), where all
statements in a program or method must be exercised.

3 A Generic Framework for Guided TCG

The TCG framework as defined so far has been used in the context of coverage
criteria only consisting of a termination criterion. In order to incorporate a selection
criterion, one can employ a post-processing phase where only the test cases that are
sufficient to satisfy the selection criterion are selected by looking at their traces. This
is however not an appropriate solution in general due to the exponential explosion
of the paths that have to be explored in symbolic execution.

In what follows, we develop a methodology where the TCG process is driven
towards satisfying the selection criterion, stressing to avoid as much as possible the
generation of irrelevant and/or redundant paths. The key idea that allows us to
guide the TCG process is to use the trace terms of our CLP-translated program as
input arguments. Let us observe also that we could either supply fully or partially
instantiated traces, the latter ones represented by including free logic variables within
the trace terms. This allows guiding, completely or partially, the symbolic execution
towards specific paths.

Definition 4 (trace-guided TCG). Given a method M , a termination criterion
TC, and a (possibly partial) trace π, trace-guided TCG generates the set of test cases
with traces, denoted tgTCG(M,TC, π), obtained for all successful branches in T TC

m

with root m(Argsin,Argsout,Hin,Hout,E,π). We also define the firstOf-tgTCG(M,TC, π)
to be the set corresponding to the leftmost successful branch in T TC

m .

Observe that the TCG guided by one trace either generates: (a) exactly one test
case if the trace is complete and corresponds to a feasible path, (b) none if it is
unfeasible, or, (c) possibly several test cases if it is partial. In this case the traces of
all test cases are instantiations of the partial trace.

Now, relying on trace-guided TCG and on the existence of a trace generator we
define a generic scheme of guided TCG.

Definition 5 (guided TCG). Given a method M ; a coverage criterion CC =
〈TC, SC〉; and a trace generator TraceGen, that generates, on demand and one
by one, (possibly partial) traces according to CC. Guided TCG is defined as the
following algorithm:

Input: M, 〈TC, SC〉, TraceGen

TestCases = {}
while TraceGen has more traces and TestCases does not satisfy SC

Invoke TraceGen to generate a new trace in Trace

TestCases ← TestCases ∪ firstOf-tgTCG(M,TC,Trace)
Output: TestCases

The intuition is as follows: The trace generator generates a trace satisfying SC and
TC. If the generated trace is feasible, then the first solution of its trace-guided TCG
is added to the set of test cases. The process finishes either when SC is satisfied, or
when the trace generator has already generated all possible traces allowed by TC. If
the trace generator is complete (see below), this means that SC cannot be satisfied
within the limit imposed by TC.

Example 2. Let us consider the TCG for method lcm with program-points for points
µ© and κ© as selection criterion. Observe the correspondence of these program points
in both the Java and CLP code of Fig. 1. Let us assume that the trace generator
starts generating the following two traces:

t1 : lcm(1,[cont(1,[G,check(1,[A,div(2,[])])])])

t2 : lcm(2,[cont(1,[G,check(1,[A,div(2,[])])])])

The first iteration does not add any test case since trace t1 is unfeasible. Trace t2 is
proved feasible and a test case is generated. The selection criterion is now satisfied
and therefore the process finishes. The obtained test case is shown in Example 7.

On Soundness, Completeness and Effectiveness: Intuitively, a concrete in-
stantiation of the guided TCG scheme is sound if all test cases it generates satisfy
the coverage criterion, and complete if it never reports that the coverage criterion is
not satisfied when it is indeed satisfiable. Effectiveness is related to the number of
iterations the algorithm performs. Those three features depend solely on the trace
generator. We will refer to trace generators as being sound, complete or effective.
The intuition is that a trace generator is sound if every trace it generates satisfies
the coverage criterion, and complete if it produces an over-approximation of the set
of traces satisfying it. Effectiveness is related to the number of unfeasible traces it
generates, the larger the number, the less effective the trace generator.

4 Trace Generators for Structural Coverage Criteria

In this section we present a general approach for building sound, complete and effec-
tive trace generators for structural coverage criteria by means of program transfor-
mations. We then instantiate the approach for the all-local-paths and program-points
coverage criteria and proposes Prolog implementations of the guided TCG scheme
for both of them. Let us first define the notion of trace-abstraction of a program
which will be the basis for defining our trace generators.

Definition 6 (trace-abstraction of a program). Given a CLP-translated pro-
gram with traces P , its trace-abstraction is obtained as follows: for every rule of P ,
(1) remove all atoms in the body of the rule except those corresponding to rule calls,
and (2) remove all arguments from the head and from the surviving atoms of (1)
except the last one (i.e., the trace term).

Example 3. Fig. 2 shows the trace-abstraction of our CLP-translated program of
Fig. 1. Let us observe that it essentially corresponds to its control-flow graph.

lcm(lcm(1,[T])) :- cont(T).

lcm(lcm(2,[T])) :- cont(T).

cont(cont(1,[T,V])) :- gcd(T), check(V).

check(check(1,[T,V])) :- abs(T), div(V).

check(check(2,[])).

div(div(1,[])).

div(div(2,[])).

gcd(gcd(1,[T])) :- loop(T).

loop(loop(1,[T])) :- abs(T).

loop(loop(2,[T])) :- body(T).

body(body(1,[T])) :- loop(T).

body(body(2,[])).

abs(abs(1,[])).

abs(abs(2,[])).

Fig. 2: Trace-abstraction.

The trace-abstraction can be directly used as a trace-generator as follows: (1)
Apply the termination criterion in order to ensure finiteness of the process. (2)
Select, in a post-processing, those traces that satisfy the selection criterion. Such
a trace generator produces on backtracking a superset of the set of traces of the
program satisfying the coverage criterion. Note that this can be done as long as
the criteria are structural. The obtained trace generator is by definition sound and
complete. However, it can be very ineffective and inefficient due to the large number
of unfeasible and/or unnecessary traces that it can generate. In the following, we
develop two concrete, and more effective, schemes for the all-local-paths and program-
points coverage criteria. In both cases, this is done by taking advantage of the notion
of partial traces and the implicit information on the concrete coverage criteria.

4.1 An Instantiation for the all-local-paths Coverage Criterion

Let us start from the trace-abstraction program and apply a syntactic program
slicing which removes from it the rules that do not belong to the considered method.

Definition 7 (slicing for all-local-paths coverage criterion). Given a trace-
abstraction program P and an entry method M :

1. Remove from P all the rules that do not belong to method M .
2. For all remaining rules in P , remove from their bodies all the calls to rules which

are not in P .

The obtained sliced trace-abstraction, together with the termination criterion, can
be used as a trace generator for the all-local-paths criterion for a method. The gener-
ated traces will have free variables in those trace arguments that correspond to the
execution of other methods, if any.

lcm(lcm(1,[T])) :- cont(T).

lcm(lcm(2,[T])) :- cont(T).

cont(cont(1,[G,T])) :- check(T).

check(check(1,[A,T])) :- div(T).

check(check(2,[])).

div(div(1,[])).

div(div(2,[])).

lcm(1,[cont(1,[G,check(1,[A,div(1,[])])])])

lcm(1,[cont(1,[G,check(1,[A,div(2,[])])])])

lcm(1,[cont(1,[G,check(2,[])])])

lcm(2,[cont(1,[G,check(1,[A,div(1,[])])])])

lcm(2,[cont(1,[G,check(1,[A,div(2,[])])])])

lcm(2,[cont(1,[G,check(2,[])])])

Fig. 3: Slicing of method lcm for all-local-paths criterion.

Example 4. Fig. 3 shows on the left the sliced trace-abstraction for method lcm. On
the right is the finite set of traces that is obtained from such trace-abstraction for any
loop-K termination criterion. Observe that the free variables G, resp. A, correspond
to the sliced away calls to methods gcd and abs.

Let us define the predicates: computeSlicedProgram(M), that computes the
sliced trace-abstraction for method M as in Def. 7; generateTrace(M,TC,Trace),
that returns in its third argument, on backtracking, all partial traces computed
using such sliced trace-abstraction, limited by the termination criterion TC; and
traceGuidedTCG(M,TC,Trace,TestCase), which computes on backtracking the set
tgTCG(M,Trace,TC) in Def. 4, failing if the set is empty, and instantiating on success
TestCase and Trace (in case it was partial). The guided TCG scheme in Def. 5,
instantiated for the all-local-paths criterion, can be implemented in Prolog as follows:

(1) guidedTCG(M,TC) :-

(2) computeSlicedProgram(M),

(3) generateTrace(M,TC,Trace),

(4) once(traceGuidedTCG(M,Trace,TC,TestCase)),

(5) assert(testCase(M,TestCase,Trace)),

(6) fail.

(7) guidedTCG(,).

Intuitively, given a (possibly partial) trace generated in line (3), if the call in line
(4) fails, then the next trace is tried. Otherwise, the generated test case is asserted
with its corresponding trace which is now fully instantiated (in case it was partial).
The process finishes when generateTrace/3 has computed all traces, in which case
it fails, making the program exit through line (7).

Example 5. The following test cases are obtained for the all-local-paths criterion for
method lcm:

Constraint store Trace

{A>=B} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

check(1,[abs(1,[]),div(1,[])])])])

{A=B=0,Out=-1} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

check(1,[abs(1,[]),div(2,[])])])])

{B>A} lcm(2,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

check(1,[abs(1,[]),div(1,[])])])])

This set of three test cases achieves full code and path coverage on method lcm

and is thus a perfect choice in the context of unit-testing. In contrast, the original,
non-guided, TCG scheme with loop-2 as termination criterion produces nine test
cases.

4.2 An Instantiation for the program-points Coverage Criterion

Let us first consider a simplified version of the program-points criterion so that only
one program point is allowed, denoted as program-point. Starting again from the
trace-abstraction program, we apply a syntactic bottom-up program slicing algo-
rithm to filter away all the paths in the program that do not visit the program point
of interest.

Definition 8 (slicing for program-point coverage criterion). Given a trace-
abstraction program P , a program point of interest pp, and an entry method M , the
sliced program P ′ is computed as follows:

1. Initialize P ′ to be the empty program, and a set of clauses L with the clause
corresponding to pp.

2. For each c in L which is not the clause for M , add to L all clauses in P whose
body has a call to the predicate of clause c, and iterate until the set L stabilizes.

3. Add to P ′ all clauses in L.
4. Remove all calls to rules which are not in P ′ from the bodies of the rules in P ′.

The obtained sliced program, together with the termination criterion, can be used
as a trace generator for the program-point criterion. The generated traces can have
free variables representing parts of the execution which are not related (syntactically)
to the paths visiting the program point of interest.

lcm(lcm(1,[T])) :- cont(T).

lcm(lcm(2,[T])) :- cont(T).

cont(cont(1,[G,T])) :- check(T).

check(check(1,[A,T])) :- div(T).

div(div(2,[])). µ©

lcm(1,[cont(1,[G,check(1,[A,div(2,[])])])])

lcm(2,[cont(1,[G,check(1,[A,div(2,[])])])])

Fig. 4: Slicing for program-point coverage criterion with pp= µ© from Fig. 1.

Example 6. Fig. 4 shows on the left the sliced trace-abstraction program (using
Def. 8) for method lcm and program point µ© from Fig. 1, i.e. the return statement
within the catch block. On the right of the same figure, the traces obtained from
such slicing using loop-2 as termination criterion.

Consider again predicates computeSlicedProgram/2, generateTrace/4 and
traceGuidedTCG/4 with the same meaning as in Section 4.1, but being the first
two now based on Def. 8 and extended with the program-point argument PP. The
guided TCG scheme in Def. 5, instantiated for the program-points criterion, can be
implemented in Prolog as follows:

(1) guidedTCG(M,[],TC) :- !.

(2) guidedTCG(M,[PP|PPs],TC) :-

(3) computeSlicedProgram(M,PP),

(4) generateTrace(M,PP,TC,Trace),

(5) once(traceGuidedTCG(M,Trace,TC,TestCase)), !,

(6) assert(testCase(M,TestCase,Trace)),

(7) removeCoveredPoints(PPs,Trace,PPs’),

(8) guidedTCG(M,PPs’,TC).

(9) guidedTCG(M,[PP|],TC) :- .

Intuitively, given the first remaining program point of interest PP (line 2), a trace
generator is computed and used to obtain a (possibly partial) trace that exercises
PP (lines 3–4). Then, if the call in line 5 fails, another trace for PP is requested on
backtracking. When there are not more traces (i.e., line 4 fails) the process finishes
through line 9 reporting that PP is not reachable within the imposed TC. If the call
in line 5 succeeds, the generated test case is asserted with its corresponding trace
(now fully instantiated in case it was partial), the remaining program points which
are covered by Trace are removed obtaining PPs’ (line 7), and the process continues
with PPs’. Note that a new sliced program is computed for each program point in
PPs’. The process finishes through line 1 when all program points have been covered.

The above implementation is valid for the general case of program-points criteria
with any finite set size. The trace generator, instead, has been deliberately defined
for just one program point since this way the program slicing can be more aggressive,
hence eluding the generation of unfeasible traces.

Example 7. The following test case is obtained for the program-points criterion for
method lcm and program points µ© and κ©:

Constraint store Trace

{A=B=0,Out=-1} lcm(1,[cont(1,[gcd(1,[loop(1,[abs(1,[])])]),

check(1,[abs(1,[]),div(2,[])])])])

This particular case exemplifies specially well how guided TCG can reduce the num-
ber of produced test cases through adequate control of the selection criterion.

5 Experimental Evaluation

We have implemented the guided TCG schemes for both all-local-paths and program-
points coverage criteria as proposed in Section 4, and integrated them within PET [2,
8], an automatic TCG tool for Java bytecode, which is available at http://costa.
ls.fi.upm.es/pet. In this section we report on some experimental results which
aim at demonstrating the applicability and effectiveness of guided TCG. The ex-
periments have been performed using as benchmarks a selection of classes from the
net.datastructures library [9], a well-known library of algorithms and data-structures
for Java. In particular, we have used as “methods-under-test” the most relevant pub-
lic methods of the classes NodeSequence, SortedListPriorityQueue, BinarySearchTree
and HeapPriorityQueue, abbreviated respectively as Seq, PQ, BST and HPQ.

Table 1 aims at demonstrating the effectiveness of the guided TCG scheme for
the all-local-paths coverage criterion. This is done by comparing it to standard way
of implementing the all-local-paths coverage criterion, i.e., first generating all paths
up to the termination criterion using standard TCG by symbolic execution, and
then applying a filtering so that only the test cases that are necessary to meet the
all-local-paths selection criterion are kept. Each row in the table corresponds to the
TCG of one method using standard TCG vs. using guided TCG. For each method
we provide: The number of reachable bytecode instructions (BCs) and the time of
the translation of Java bytecode to CLP (Tt), including parsing and loading all
reachable classes ; the time of the TCG process (T), the number of generated test
cases before the filtering (N), and the code coverage achieved using standard TCG
(CC); and the time of the TCG process (Tg), the number of generated test cases
(Ng), the code coverage achieved (CCg), and the number of generated/unfeasible

http://costa.ls.fi.upm.es/pet
http://costa.ls.fi.upm.es/pet

Method Info Standard TCG Guided TCG

Class.Name BCs Tt T N CC Tg Ng CCg GT/UT

Seq.elemAt 98 45 18 24 100% 9 5 100% 6/1
Seq.insertAt 220 85 41 39 100% 14 6 100% 8/2
Seq.removeAt 187 76 35 36 100% 10 4 100% 5/1
Seq.replaceAt 163 66 35 36 100% 9 4 100% 5/1
PQ.insert 357 144 148 109 100% 10 3 100% 4/1
PQ.remove 158 69 8 12 100% 20 7 100% 15/8
BST.addAll 260 125 1491 379 100% 22765 18 100% 151/133
BST.find 228 113 76 62 100% 82 5 100% 7/2
BST.findAll 381 178 1639 330 100% 1266 4 100% 6/2
BST.insert 398 184 2050 970 100% 1979 9 100% 18/9
BST.remove 435 237 741 365 98% 3443 26 98% 204/178
HPQ.insert 322 132 215 43 100% 26 5 100% 6/1
HPQ.remove 394 174 1450 40 100% 100 8 100% 19/11

Table 1: Experimental results for the all-local-paths criterion

traces using guided TCG (GT/UT). All times are in milliseconds and are obtained
as the arithmetic mean of five runs on an Intel(R) Core(TM) i5-2300 CPU at 2.8GHz
with 8GB of RAM, running Linux Kernel 2.6.38. The code coverage measures, given
a method, the percentage of its bytecode instructions which are exercised by the
obtained test cases. This is a common measure in order to reason about the quality
of the obtained test cases. As expected, the code coverage is the same in both
approaches, and so is the number of obtained test cases. Otherwise, this would
indicate a bug in the implementation.

Let us observe that the gains in time are significant for most benchmarks (col-
umn T vs. column Tg). There are however three notable exceptions for methods
PQ.remove, BST.addAll and BST.remove, for which the guided TCG scheme be-
haves worse than the standard one, especially for BST.addAll. This happens in
general when the control-flow of the method is complex, hence causing the trace
generator to produce an important number of unfeasible traces (see last column).
Interestingly, these cases could be statically detected using a simple syntactic anal-
ysis which looks at the control flow of the method. Therefore the system could
automatically decide which methodology to apply. Moreover, Section 6 presents a
trace-abstraction refinement that will help in improving guided TCG for programs
whose control-flow is determine mainly by integer linear constraints. Other classes of
programs, e.g. BST.addAll, require a more sophisticated analysis, since their control-
flow are strongly determined by object types and dynamic dispatch information. This
discussion and further refinement is left out of the scope of this paper.

Table 2 aims at demonstrating the effectiveness of the guided TCG scheme for the
program-points coverage criterion. For this aim, we have implemented the support in
the standard TCG scheme to check the program-points selection criterion dynamically
while the test cases are generated, in such a way that the process terminates when all
program points are covered. Note that, in the worst case this will require generating
the whole symbolic execution tree, as the standard TCG does. Table 2 compares the
effectiveness of this methodology against that of the guided TCG scheme. Again,
each row in the table corresponds to the TCG of one method using standard TCG
vs. using guided TCG, providing for both schemes the time of the TCG process (T

Method Info Standard TCG Guided TCG

Class.Name T N CC Tg Ng CCg GT/UT

Seq.elemAt 9 10 100% 6 3 100% 3/0
Seq.insertAt 39 36 100% 8 3 100% 3/0
Seq.removeAt 19 16 100% 8 3 100% 3/0
Seq.replaceAt 19 16 100% 8 3 100% 3/0
PQ.insert 149 109 100% 9 3 100% 3/0
PQ.remove 9 12 100% 5 3 100% 3/0
BST.addAll 1501 379 100% 284 2 100% 4/2
BST.find 77 62 100% 10 3 100% 3/0
BST.findAll 1634 330 100% 8 3 100% 3/0
BST.insert 2197 969 100% 35 3 100% 3/0
BST.remove 238 104 98% 61 3 98% 28/25
HPQ.insert 209 43 100% 24 3 100% 3/0
HPQ.remove 1385 38 100% 15 3 100% 3/0

Table 2: Experimental results for the program-points criterion

vs Tg), the number of generated test cases (N vs Ng), the code coverage achieved
(CC vs CCg), and the number of generated/unfeasible traces using guided TCG
(GT/UT). We have selected three program points for each method with the aim
of covering as much code as possible. In all cases, such selection of program points
allows obtaining the same code coverage as with the standard TCG even without the
selection criterion (i.e. 100% coverage for all methods except 98% for BST.remove
because of dead code). Let us observe that the gains in time are huge (column T vs.
column Tg), ranging from one to two orders of magnitude, except for the simplest
methods, for which the gain, still being significant, is not so notable. These results
are witnessed by the low number of unfeasible traces that are obtained (column
GT/UT), hence demonstrating the effectiveness of the trace-generator defined in
Section 4.2.

Overall, we believe our experimental results support our initial claims about
the potential interest of guiding symbolic execution and TCG by means of trace-
abstractions. With the exception of some particular cases that deserve further study,
our results demonstrate that we can achieve high code coverage without having to
explore many unfeasible paths, with the additional advantage of discovering high
quality (less in number and better selected) test cases.

6 Trace-Abstraction Refinement

As the above experimental results suggest, there are still cases where the trace-
abstraction as defined in Def. 6 may still compromise the effectiveness of the guided
TCG, because of the generation of too many unfeasible paths. This section discusses
a complementary strategy to further optimize the framework. In particular, we pro-
pose a heuristics that aims to refine the trace-abstraction with information taken
from the original program that will help reduce the number of unfeasible paths at
symbolic execution. The goal is to reach a balanced level of refinement in between
the original program (full refinement) and the trace-abstraction (empty refinement).
Intuitively, the more information we include, the less unfeasible paths symbolic ex-
ecution will explore, but the more costly it becomes.

The refinement algorithm consists of two steps: First, in a fixpoint analysis we
approximate the instantiation mode of the variables in each predicate of the CLP-
translated program. In other words, we infer which variables will be constrained or
assigned a concrete value at symbolic execution time. In a second step, by program
transformation, the trace-abstraction is enriched with clause arguments correspond-
ing to the inferred variables, and with those goals in which they are involved.

6.1 Approximating instantiation modes

We develop a static analysis, similar to [5, 6], to soundly approximate the instanti-
ation mode of the input argument variables in the program at symbolic execution
time. The analysis is implemented as a fixpoint computation over the simple abstract
domain {static, dynamic}. Namely, dynamic means that nothing was inferred about
a variable and it will therefore remain a free unconstrained variable during symbolic
execution; and static means that the variable will unify with a concrete value or will
be constrained during symbolic execution. The analysis’s result is a set of assertions
in the form 〈P,V〉 where P is a predicate name and V is the set of variables in P ,
each associated with an abstract value from the domain.

This analysis receives as input a CLP-translated program and a set of initial
entries (predicate names). An event queue Q is initialized with this set of initial
entries. The algorithm starts to process the events of Q until no more events are
scheduled. In each iteration, an event p is removed from Q and processed as follows:
Retrieve previously stored information ψ ≡ 〈p,V〉 if any exists; else set ψ ≡ 〈p, ∅〉.
For each rule r defining p, a new Vr is obtained by evaluating the body of r. The
joint operation on the underlying abstract domain is performed to obtain V ′ ⇐
joint(V,Vr). If V 6≡ V ′ then set V ⇐ V ′ and reschedule every predicate that calls p;
else, if ψ′ ≡ ψ there is no need to recompute the calling predicates and the algorithm
continues. That will ensure backward propagation of approximated instantiation
modes. To propagate forward, the evaluation of r will schedule one event per call
within its body. The process continues until a fixpoint is reached.

6.2 Constructing the trace-abstraction refinement

This is a syntactic program transformation step of the refinement. It takes as input
the original CLP-program and the instantiation information inferred in the first step
and outputs a trace-abstraction refinement program. For each rule r of a predicate
p in the program, the algorithm retrieves 〈p,V〉. We denote Vs the projection of all
variables in V whose inferred abstract value is static. The algorithm adds to the
trace-abstraction refinement a new rule r′ whose list of arguments is Vs. The body
of r′ is constructed by traversing the body b1, . . . , bn of r and including 1) all guards
and arithmetic operations bi involving Vs, and 2) all calls to other predicates, with
the corresponding projection of Vs over the arguments of the calls.

Example 8. Consider the Java example of Fig. 5 (left side). Function power imple-
ments a exponentiation algorithm for positive integer exponents. Its CLP counter-
part is shown at the right of the figure. The instantiation modes inferred by the
first stage of our algorithm is presented at the right-bottom part of the figure. One
can observe that variable B (the base of the exponentiation) remains dynamic all
along the program, because it is never assigned any concrete value nor constrained
by any guard. On the other hand, variable E’s final abstract value is static, since it

void arraypower(int a[],int e) {
int i=0;

int n=a.length;

for (i=0; i<n; i++)

if (i%2==0)

a[i]=power(a[i],e);

}
int power(int b, int e) {

if (e >= 0) {
int pow = 1;

while (i <= e) {
pow *= b;

i++;

}
return pow;

} else return -1;

}

power([B,E],[R], , ,F,power(1,[T])) :-

if([B,E],[R], , ,F,T).

if([B,E],[-1], , ,F,if(1,[])) :-

E #< 0.

if([B,E],[R], , ,F,if(2,[T])) :-

E #>= 0), loop([B,E,1,1],[R], , ,F,T).

loop([B,E,I,P],[P], , ,ok,loop(1,[])) :-

I #> E.

loop([B,E,I,P],[R], , ,F,loop(2,[T])) :-

I #=< E, Pp #= P*B, Ip #= I+1,

loop([B,E,Ip,Pp],[R], , ,F,T).

Inferred instantiation modes:
〈power, {B= dynamic,E= static}〉
〈if, {B= dynamic,E= static}〉
〈loop, {B= dynamic,E= static,

I= static,P= dynamic}〉

Fig. 5: Trace-abstraction refinement.

is constrained by 0 and the also static variable I in rules if and loop. The following
is the refined trace-abstraction that our algorithm constructs:

power([E],power(1,[T])) :- if([E],T).

if([E],if(1,[])) :- E #< 0.

if([E],if(2,[T])) :- E #>= 0, loop([E,1],T).

loop([E,I],loop(1,[])) :- I #> E.

loop([E,I],loop(2,[T])) :- I #=< E, Ip #= I+1, loop([E,Ip],T).

To illustrate how the trace-abstraction refinement can improve on effectiveness of
the guided TCG, let us observe method arraypower. It iterates over the elements of
an input array a and calls function power to update all even positions of the array by
raising their values to the power of the integer input argument e. We report on the
following performance results for this example and a coverage criterion 〈loop-2, {}〉:

– Standard non-guided TCG (i.e., full refinement) generates 11 test cases.

– Trace-abstraction guided TCG with the empty refinement generates 497 possibly
(un)feasible traces.

– Trace-abstraction guided TCG with our trace-abstraction refinement reduces the
number of possibly (un)feasible traces to 161.

These preliminary yet promising results, suggest the potential integrability of the
trace-abstraction refinement algorithm presented in this section within the general
guided TCG framework developed in this paper. The refinement is complementary to
the slicings schemes presented in Section 4 without any modification. Unfortunately,
the slicings could produce a loss of important information added by the refinement.
This could be however improved by means of simple syntactic analyses on the sliced
parts of the program. A deeper study of these issues remains as future work.

7 Related Work and Conclusions

Previous work also uses abstractions to guide symbolic execution and TCG by several
means and for different purposes. Fundamentally, abstraction aims to reduce large
data domains of a program to smaller domains [11]. One of the most relevant to ours
is [3], where predicate abstraction, model checking and SAT-solving are combined
to produce abstractions and generate test cases for C programs, with good code
coverage, but depending highly on an initial set of predicates to avoid infeasible
program paths. Rugta et al. [13] also proposes to use an abstraction of the program
in order to guide symbolic execution and prune the execution tree as a way to scale
up. Their abstraction is an under-approximation which tries to reduce the number
of test cases that are generated in the context of concurrent programming, where
the state explosion is in general problematic.

The main contribution of this paper is the development of a methodology for
Guided TCG that allows to guide the process of test generation towards achieving
more selective and interesting structural coverage. Implicit is the improvement in the
scalability of TCG by guiding symbolic execution by means of trace-abstractions,
since we gain more control over the symbolic execution state space to be explored.
Moreover, whereas the main goal of our CLP-based TCG framework has been the
exhaustive testing of programs, our new Guided TCG framework unveil new poten-
tial applications areas. Namely, the all-local-paths and program-points Guided TCG
schemes we have presented in this paper, enable us to explore on the automation
of other interesting software testing practices, such as selective and unit testing,
goal-oriented testing and bug detection.

The effectiveness and applicability of Guided TCG is substantiated by an im-
plementation within the PET system (http://costa.ls.fi.upm.es/pet), and en-
couraging experimental results. Nevertheless, our current and future work involves a
more thorough experimental evaluation of the framework and the exploration of the
new application areas in software testing. In a different line, a particularly challeng-
ing goal has been triggered which consists in developing static analysis techniques
to achieve optimal refinement levels of the trace-abstraction programs. Last but not
least, we plan to further study the generalization and integration of other interesting
coverage criteria to our Guided TCG framework.

Acknowledgments. This work was funded in part by the Information & Commu-
nication Technologies program of the European Commission, Future and Emerging
Technologies (FET), under the ICT-231620 HATS project, by the Spanish Ministry
of Science and Innovation (MICINN) under the TIN2008-05624, TIN2012-38137 and
PRI-AIBDE-2011-0900 projects, by UCM-BSCH-GR35/10-A-910502 grant and by
the Madrid Regional Government under the S2009TIC-1465 PROMETIDOS-CM
project.

References

1. E. Albert, M. Gómez-Zamalloa, and G. Puebla. Test Data Generation of Bytecode
by CLP Partial Evaluation. In Proc. of LOPSTR’08, volume 5438 of LNCS. Springer-
Verlag, 2009.

2. E. Albert, I. Cabañas, A. Flores-Montoya, M. Gómez-Zamalloa, and S. Gutiérrez.
jPET: an Automatic Test-Case Generator for Java. In Proc. of WCRE’11. IEEE
Computer Society, 2011.

http://costa.ls.fi.upm.es/pet

3. T. Ball. Abstraction-guided test generation: A case study. Technical Report MSR-TR-
2003-86, Microsoft Research, 2003.

4. C. Cadar, P. Godefroid, S. Khurshid, C. Pǎsǎreanu, K. Sen, N. Tillmann, and W. Visser.
Symbolic execution for software testing in practice: preliminary assessment. In Proc.
of ICSE’11. ACM, 2011.

5. S.-J. Craig, J. P. Gallagher, M. Leuschel, and K. S. Henriksen. Fully Automatic
Binding-Time Analysis for Prolog. In Proc. of LOPSTR’04, volume 3573 of LNCS.
Springer, 2004.

6. S. K. Debray. Static inference of modes and data dependencies in logic programs. ACM
Trans. Program. Lang. Syst., 11(3):418–450, July 1989.

7. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Decompilation of Java Bytecode to
Prolog by Partial Evaluation. Information and Software Technology, 51(10):1409–1427,
October 2009.

8. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test Case Generation for Object-
Oriented Imperative Languages in CLP. Theory and Practice of Logic Programming,
ICLP’10 Special Issue, 10 (4–6), 2010.

9. M. Goodrich, R. Tamassia, and E. Zamore. The net.datastructures package. http:

//net3.datastructures.net.
10. J. C. King. Symbolic Execution and Program Testing. Communications of the ACM,

19(7):385–394, 1976.
11. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by ab-

straction. In Proc. of TACAS’01, volume 2031 of LNCS. Springer-Verlag, 2001.
12. C. S. Pǎsǎreanu and W. Visser. A survey of new trends in symbolic execution for

software testing and analysis. Int. J. Softw. Tools Technol. Transf., 11(4):339–353,
2009.

13. N. Rungta, E.G. Mercer, and W. Visser. Efficient testing of concurrent programs with
abstraction-guided symbolic execution. In Proc. of SPIN’09, volume 5578 of LNCS.
Springer, 2009.

http://net3.datastructures.net
http://net3.datastructures.net

	A Framework for Guided Test Case Generation in Constraint Logic Programming

