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Sinopsis

La investigaciones llevadas a cabo en esta tesis se centran en el análisis estático

de coste y el análisis de terminación. Mientras que el objetivo del análisis de coste

es estimar la cantidad de recursos consumida por un programa durante su eje-

cución, el análisis de terminación se centra en garantizar que la ejecución de un

programa terminará en un tiempo finito. Sin embargo, ambos análisis se encuen-

tran estrechamente relacionados, de hecho, muchas de las técnicas utilizadas para

el análisis de coste se basan en técnicas desarrolladas inicialmente para el análisis

de terminación.

La precisión, la escalabilidad y la aplicabilidad son aspectos clave para

cualquier análisis estático: un aumento de precisión mejora la calidad de la in-

formación inferida por el análisis; la escalabilidad del mismo hace referencia a la

capacidad de analizar programas de mayor tamaño; y la aplicabilidad a la clase de

programas que se pueden analizar satisfactoriamente (independientemente de la

precisión y escalabilidad). Esta tesis aborda todos estos aspectos en el contexto

del análisis de coste y de terminación, haciéndolo tanto desde una perspectiva

teórica como práctica.

Con respecto al análisis de coste, esta tesis aborda el problema de, dado un

sistema de relaciones de coste (una forma de relaciones de recurrencia), resolver

estas relaciones y expresarlas en forma de funciones de coste en forma cerrada,

permitiendo establecer tanto las cotas superiores como inferiores del consumo de

recursos del programa. Este problema es crucial para la mayora de los anal-

izadores de coste modernos, y en él radican muchas de las limitaciones de pre-

cisión y aplicabilidad de los análisis. En esta tesis se desarrollan y detallan los

fundamentos teóricos de nuevas técnicas para la resolución de relaciones de coste,

venciéndose las limitaciones de trabajos anteriores, y resultando en un aumento

tanto de la precisión obtenida, como en una mejora en la escalabilidad de los

análisis. Una caracterstica única de las técnicas descritas en esta tesis es la de

poder inferir tanto cotas superiores como cotas inferiores, solo con invertir las

nociones correspondientes en la teoŕıa subyacente.

En lo que respecta al análisis de terminación, nuestro trabajo se centra en el



estudio de la dificultad de decidir sobre la terminación de cierto tipo de bucles

sencillos que aparecen en el contexto del análisis de coste. Este estudio nos ayuda

a esclarecer los ĺımites teóricos de la aplicabilidad y de la precisión tanto de los

análisis de coste como de los análisis de terminación.

Palabras clave: Análisis estático de programas, Análisis de Coste, Análisis de

Terminación, Ecuaciones de Recurrencia, Complejidad Computacional.





Abstract

The research in this thesis is related to static cost and termination analysis.

Cost analysis aims at estimating the amount of resources that a given program

consumes during the execution, and termination analysis aims at proving that

the execution of a given program will eventually terminate. These analyses are

strongly related, indeed cost analysis techniques heavily rely on techniques devel-

oped for termination analysis. Precision, scalability, and applicability are essen-

tial in static analysis in general. Precision is related to the quality of the inferred

results, scalability to the size of programs that can be analyzed, and applicability

to the class of programs that can be handled by the analysis (independently from

precision and scalability issues). This thesis addresses these aspects in the context

of cost and termination analysis, from both practical and theoretical perspectives.

For cost analysis, we concentrate on the problem of solving cost relations (a

form of recurrence relations) into closed-form upper and lower bounds, which is

the heart of most modern cost analyzers, and also where most of the precision and

applicability limitations can be found. We develop tools, and their underlying

theoretical foundations, for solving cost relations that overcome the limitations of

existing approaches, and demonstrate superiority in both precision and applica-

bility. A unique feature of our techniques is the ability to smoothly handle both

lower and upper bounds, by reversing the corresponding notions in the underly-

ing theory. For termination analysis, we study the hardness of the problem of

deciding termination for a specific form of simple loops that arise in the context of

cost analysis. This study gives a better understanding of the (theoretical) limits

of scalability and applicability for both termination and cost analysis.

Keywords: Static analysis, Cost analysis, Termination analysis, Recurrence

equations, Complexity.
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Chapter 1

Introduction

Static program analysis aims at inferring runtime properties of a given program,

written in some programming language, without actually executing it. This in-

cludes non-quantitative properties, e.g., the value of a given variable lies in the

interval [1..10], or quantitative properties, e.g., the program does not consume

more than 100 memory units. Such properties are mainly used to prove, statically,

that programs do not reach erroneous states, or that they meet their correspond-

ing specifications. The research in this thesis is related to statically analyzing the

resource consumption (a.k.a. cost) and termination behavior of programs. Cost

and termination analysis are strongly related topics, indeed much of the research

in cost analysis in the last decade has benefited from techniques developed in the

context of termination analysis.

The research presented in this thesis has both practical and theoretical as-

pects. On the one hand it develops techniques in order to achieve practical,

precise and widely applicable resource usage analysis, and on the other hand it

studies the theoretical complexity of some termination analysis problems that

arise in the context of cost analysis. The rest of this chapter overviews the ob-

jectives (Section 1.1), contributions (Section 1.2), and organization (Section 1.3)

of this thesis.
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Figure 1.1: Phases of the classical approach to cost analysis.

1.1 Objectives

Having available information about the computational cost of programs ex-

ecution, i.e., the amount of resources that the execution will require, is clearly

useful for many different purposes, like for performance debugging, resource usage

verification/certification and for program optimization (see, e.g., [8]). In general,

reasoning about execution cost is difficult and error-prone. This is specially the

case when programs contain loops (either as iterative constructs or recursions),

since one needs to reason about the number of iterations that loops will perform

and the cost of each of them.

Static cost analysis aims at automatically inferring the resource consumption

(or cost) of executing a program as a function of its input data sizes. The classical

approach to cost analysis by Wegbreit dates back to 1975 [80], which consists of

two phases as depicted in Figure 1.1. In the first phase, given a program and a cost

model, the analysis produces cost relations, i.e., a system of recursive equations,

which capture the cost of the program in terms of (the size of) its input data.

A set of recursive equations can be seen as a constraints logic program (over the

integers domain), such that when executing it on a given (abstraction of the)

input it computes the cost of executing the corresponding source program on

that input. Thus, at this point, we still need some form of execution, although

simpler, in order to estimate the cost of executing the source program on a given

input. In order to get closer to fully static estimation of the program’s cost, in

a second phase, these recursive equations are solved into closed-form upper and

lower bounds, i.e., to nonrecursive functions which can be evaluated on a given

2



(abstraction of the) input to estimate the cost of executing the source program on

that input. Note that evaluation here does not involve any form of execution, it

is just an evaluation of simple mathematical expressions. It is worth mentioning

that the role of the cost model in Figure 1.1 is to specify the resource we are

measuring; cost models widely used are the number of executed instructions,

number of calls to selected methods, amount of memory allocated, etc.

In general, the first phase of cost analysis (i.e., the process of generating

cost relations from the program) heavily depends on the programming language

in which the program is written. In principle, it consists of applying several

static analyses in order to understand the control and data flow in the pro-

gram, e.g., how the data changes when a given loop goes from one iteration

to another, which is later used to bound the number of iterations of the loop.

Multiple analysis have been developed for different paradigms including for func-

tional [80, 54, 70, 79, 72, 20, 58, 45], logic [33, 66], and imperative [1, 8] program-

ming languages. Importantly, the resulting cost relations are a common target

of cost analyzers, i.e., they abstract away the particular features of the original

programming language and, at least conceptually, have the same form.

In the second phase of cost analysis, closed-form bounds, in terms of the input

arguments, for the cost relations generated in first phase are computed. Com-

puting such closed-form bound is challenging as the cost relations are usually

recursive equations (because the source program contains loops and/or recursive

methods) and hence computing such bounds require, for example, computing the

number of iterations of the recursive equations. This becomes even more compli-

cated in the presence of nondeterminism in cost relations (due to abstractions in

the first phase), since we have to account for all possible combinations. Moreover,

it is not always possible to compute an exact bound because of this nondeter-

ministic behavior of cost relations and hence analyzers try to infer closed-form

upper and lower bounds for such cost relation, which correspond, respectively, to

the worst-case and best-case costs.

Needless to say, precision is fundamental for most applications of cost analy-

sis. For instance, upper bounds are widely used to estimate the space and time

requirements of programs execution and provide resource guarantees [32]. Lack

of precision in such case can make the system fail to prove the resource usage

3



requirements imposed by the software client. For example, it even makes much

difference inferring the upper bound 1
2
n2 instead of n2 for a given method (where

n is an input integer value for example). With the latter, an execution with n=10

will be rejected if we have only 50 units of the corresponding resource, while with

the former one it is accepted. Precision is also important for lower bounds, for

example, when they are used for scheduling tasks in parallel execution in such

a way that it is not worth parallelizing a task unless its lower-bound resource

consumption is sufficiently large. Precision will be essential here to achieve a

satisfactory scheduling.

Precision issues in cost analysis can be divided into two categories: (i) pre-

cision issues related to the static analyses applied in the first phase; and (ii)

precision issues related to the process of solving cost relations into closed-form

bounds in the second phase. The former category is not particular to cost anal-

ysis, but rather a well-know issue in static analysis in general. It is common

to assume that precision issues in this category can, at least conceptually, be

solved using more expressive abstract domains, which might also come with some

performance overhead. The later category is very particular to cost analysis; ex-

isting techniques for solving cost relations are based on fundamentally different

concepts, and thus the precision issues of each technique are affected by conceptu-

ally different parameters. In addition, in this category, the notion of applicability

is also very important. This notion characterizes the set of cost relations that can

be handled by such solvers, independently of how precise the inferred bounds are.

The first objective of this thesis is to study precision and applicability limitations

of existing techniques for solving cost relations into upper and lower bounds, and,

develop new techniques that overcome these limitations and thus increase both

precision and applicability of cost analysis in general.

Achieving the first objective of this thesis results in techniques that leads to

precise and widely applicable cost analysis. However, it does not provide any

insight on the theoretical (or practical) limits of cost analysis in general. In

particular, one might be interested to know the degree of solvability of inferring

resource bounds for some class of programs. This leads to a better understanding

of the theoretical and practical limits of scalability and applicability when solving

cost relations. Note that understanding the limits set by inherent undecidability

4



or intractability of problems yields more profound information than evaluating

the performance of one particular algorithm.

The techniques developed in this thesis in order to achieve the first objective,

as well as other related techniques [5], heavily rely on problems from the field of

termination analysis. In particular, on the problem of bounding the number of

iterations that a loop can make and thus proving its termination. In fact, proving

termination of a given program can be seen as a special case of cost analysis, where

in every iteration of the program’s loops (or recursions) the contributed cost is

1, and non-iterative program instructions contribute cost 0. Due to this relation,

the theoretical and practical limits of proving termination, for a given class of

programs, give us some insights on the corresponding limits of cost analysis for

the same class of programs. For example, the undecidability of inferring cost

bounds can be reduced from the undecidability of the halting problem for Turing

equivalent computer programs. Since cost analysis is an inherently complex task,

in this thesis we restrict our interest to limitations that are inherited from the

corresponding termination problems. In particular, the second objective of this

thesis is to study the hardness of proving termination of some form of loops that

arise in the context of solving cost relations.

1.2 Summary of Contributions

The contributions of this thesis can be divided into two categories, following the

two objectives described in the previous section. As for the first objective, our

main contributions are:

1. We developed novel techniques for inferring upper bounds for cost relations.

These techniques demonstrate superiority on previous techniques with re-

spect to precision, and, at the same time, they are still widely applicable.

The techniques have been formalized and their soundness has been proven.

2. We extended our previous techniques for the case of inferring precise lower

bounds as well. The techniques have been formalized, using dual argu-

ments to those used for the upper bounds case, and their soundness has

5



been proven. Our techniques can obtain nontrivial lower bounds, which are

also very precise, and still widely applicable when compared to previous

approaches.

3. We have implemented our techniques in PUBS (Practical Upper Bound

Solver) [5], which is also used as backend solver in COSTA (a COSt and

Termination Analyzer for Java bytecode) [5]. We have experimentally eval-

uated them on cost relations obtained from a selected set of Java (bytecode)

programs.

The above contributions have been published in the following research papers:

• Elvira Albert, Samir Genaim, and Abu Naser Masud. More precise yet

widely applicable cost analysis. In Ranjit Jhala and David A. Schmidt,

editors, Verification, Model Checking, and Abstract Interpretation - 12th

International Conference, VMCAI 2011, Austin, TX, USA, January 23-

25, 2011. Proceedings, volume 6538 of Lecture Notes in Computer Science,

pages 38–53. Springer, January 2011.

• Elvira Albert, Samir Genaim, and Abu Naser Masud. On the inference of

resource usage upper and lower bounds. ACM Transactions on Computa-

tional Logic. To Appear.

As for the second objective, we have investigated the complexity of deciding

termination for some variations of simple integer loops. Our main contributions

are the following:

1. For some variations we have proved that it is undecidable, despite of their

simple form.

2. For some other variations we provided lower bounds on the complexity.

The above contributions have been published in the following research papers:

• Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. On the

termination of integer loops. In Viktor Kuncak and Andrey Rybalchenko,
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editors, Verification, Model Checking, and Abstract Interpretation - 13th In-

ternational Conference, VMCAI 2012, Philadelphia, USA, January 25-27,

2012. Proceedings, Lecture Notes in Computer Science. Springer, January

2012.

• Amir M. Ben-Amram, Samir Genaim, and Abu Naser Masud. On the ter-

mination of integer loops. ACM Transactions on Programming Langauges

and Systems. To Appear.

1.3 Organization

Our research was performed between September 2009 and September 2012, and

is presented in this thesis in three parts.

Part I

This part presents the research related to the first objective, which deals with

developing sound and precise techniques for inferring lower and upper bounds for

cost relations. This part is organized as follows

• In Chapter 2, we describe the problems and challenges for inferring lower

and upper bounds for cost relations, provide an informal but enough intu-

itive details, and discuss the overview of the corresponding contributions.

• In Chapter 3, we define some mathematical notations that we use through-

out Part I of this thesis.

• In Chapter 4, we develop our techniques for inferring precise upper bounds

for cost relations.

• In Chapter 5, we generalize the techniques of Chapter 4 for the case of lower

bounds.

• In Chapter 6, we describe our implementation and a corresponding experi-

mental evaluation.

7



Part II

This part presents the research related to the second objective, which deals with

deciding termination of some variations of integer loops. This part is organized

as follows

• In Chapter 7, we describe the problems and challenges for deciding termina-

tion of integer loops, and provide an informal overview of the contributions.

• In Chapter 8, we define several variations of integer loops, whose termi-

nation we are interested in, and recall some definitions and mathematical

background required in this part of the thesis.

• In Chapter 9, we study the complexity of deciding termination of several

variations of integer loops.

Part III

This part includes an overview of related research, in Chapter 10, and conclusions

and possible future extensions of our work, In Chapter 11.

8
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Inference of Precise Upper and

Lower Bounds for Cost Relations
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Chapter 2

Overview of the Problems,

Challenges, and Contributions

In this chapter we overview the problems and challenges for solving cost rela-

tions into closed form lower and upper bounds, informally present our proposed

solutions, and detail the organization of part I of the thesis.

2.1 Problems and Challenges

The classical approach to cost analysis [80] consists of two phases. In the first

phase, given a program and a cost model, the analysis produces cost relations

(CRs for short), i.e., a system of recursive equations which capture the cost of

the program in terms of the size of its input data. In the second phase, these

CRs are solved into closed-form bounds. Part I of this thesis focuses on the

second phase of cost analysis, i.e., in developing widely applicable techniques for

precisely solving CRs into closed-form lower and upper bounds (LBs and UBs for

short).

The following example illustrates informally how high-level programs are

translated to CRs , and also the syntax and semantic of CRs .

EXAMPLE 2.1.1. Let us consider the Java program depicted in Figure 2.1,

which we will be using as a running example throughout the first part of the

11



1void fun heapConsume(int q) {
2 List l = null;

3 int i=0;

4 while (i < q) {
5 int j=0;

6 while ( j < i ) {
7 for(int k=0; k < q+j; k++)

8 l=new List(i∗k∗j,l);
9 j=j+random() ? 1:3;

10 }
11 i=i+random() ? 2:4;

12 }
13}

Figure 2.1: Running Example

thesis. It is sufficiently simple in order to explain the main technical parts, but still

interesting to understand the challenges and our achievements. For this program

and the memory consumption cost model, the cost analysis of [8] generates the

CR which appears in Figure 2.2. This cost model estimates the number of objects

allocated in the memory. Note that in this thesis we ignore the effect that compiler

optimizations might have on the resource consumption; handling this is out of

the scope of this thesis. Observe that the structure of the Java program and its

corresponding CR match. The equations for C correspond to the for loop, those

of B to the inner while loop and those of A to the outer while loop. The recursive

equation for C states that the memory consumption of executing the inner loop

with 〈k, j, q〉 such that k+1 ≤ q+j is 1 (one object) plus that of executing the loop

with 〈k′, j, q〉 where k′ = k+1. The recursive equation for B states that executing

the loop with 〈j, i, q〉 costs as executing C(0, j, q) plus executing the same loop with

〈j′, i, q〉 where j + 1 ≤ j′ ≤ j + 3. While, in the Java program, j′ can be either

j + 1 or j + 3, due to the static analysis, the case for j + 2 is added in order to

over approximate j′ = j+ 1∨ j′ = j+ 3 by the polyhedron j+ 1 ≤ j′ ≤ j+ 3 [31].

Though CRs are simpler than the programs they originate from, in several
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F (q) = A(0, q) {}

A(i, q) = 0 {i ≥ q}
A(i, q) = B(0, i, q) + A(i′, q) {i+ 1 ≤ q, i+ 2 ≤ i′ ≤ i+ 4}

B(j, i, q) = 0 {j ≥ i}
B(j, i, q) = C(0, j, q) +B(j′, i, q) {j + 1 ≤ i, j + 1 ≤ j′ ≤ j + 3}

C(k, j, q)= 0 {k ≥ q + j}
C(k, j, q)= 1 + C(k′, j, q) {k′ = k + 1, k + 1 ≤ q + j}

Figure 2.2: CRs for the program of Figure 2.1

respects they are not as static as one would expect from the result of a static

analysis. One reason is that they are recursive and thus we may need to iterate

for computing their value for concrete input values. Another reason is that even

for deterministic programs, the loss of precision introduced by the abstraction of

data structures and arrays may result in CRs which are nondeterministic. This is

because arrays are abstracted to their length, and data structures to their depth.

Thus, when generating CRs , instructions accessing array elements or elements

of data structures are abstracted to true in most cases and hence making the

corresponding equations not mutually exclusive. As an example, if we have the

instruction “if (A[i]>A[j]) A else B” where A and B are sequences of instructions,

its abstraction generates two not mutually exclusive equations, one that includes

A and the other includes B. In our example the nondeterminism happens, e.g.,

because j′ can be either j + 1, j + 2 or j + 3, and they become nondeterministic

choices when applying the second equation defining B. In general, for finding the

worst-case and best-case cost we may need to compute and compare (infinitely)

many results. For both reasons, it is clearly essential to compute closed-form

bounds for the CR, i.e., bounds which are not in recursive form.

Two main approaches exist for automatically solving CRs into closed-form
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bounds:

1. Since CRs are syntactically quite close to standard (linear) recurrence re-

lations (RRs for short), most cost analysis frameworks rely on existing

Computer Algebra Systems (CAS for short) for finding closed-form func-

tions. The main problem of this approach is that CAS only accept as input

a small subset of CRs which have a single argument, a single recursive equa-

tion, and a single base-case equation. This seldom happens. Thus, CAS

are very precise when applicable, but handle only a restricted class of CRs .

2. Instead of the previous approach, specific UB solvers developed for CRs

try to reason on the worst-case cost and obtain sound UBs of the resource

consumption. This is the approach taken in [5]. As regards LBs, due in

part to the difficulty of inferring under-approximations, general solvers for

CRs which are able to obtain useful approximations of the best-case cost

have not yet been developed.

Let us see the application of the above approaches to our running example.

As regards 1, note that, for example, in the CR B, variable j′ can increase by one,

two or three at each iteration. Therefore, an exact cost function which captures

the cost of any possible execution does not exist. Thus, we cannot use CAS since

an exact solution does not exist. As regards 2, since the cost accumulated in CR

B varies from one iteration to another (because the value of C(0, j, q) depends

on j), this approach assumes the same worst-case cost for all iterations which

results in a lose of precision as we explain in the next section. Similar precision

loss happens when solving CR A.

Our challenge is to develop novel techniques for solving CRs into closed-form

bounds that overcome the limitations of the two approaches described above,

but at the same time take advantage of the underlying theory developed in the

corresponding contexts. Importantly, and unlike previous approaches, we want

that the developed techniques work for inferring both UBs and LBs.
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2.2 Informal Overview of the Contributions

In this section we discuss our contributions by explaining the basics of our ap-

proach for solving CRs into closed-form bounds (both UBs and LBs) and compare

it to previous approaches. In particular, we compare to [5] since we heavily rely

on some of their techniques. For this, we use a very simple CR, instead of the

one in Figure 2.2 since it requires further knowledge that is not available to the

reader yet.

Consider a CR in its simplest form with one base-case equation and one

recursive equation with a single recursive call:

〈C(x) = 0, {x < 0}〉
〈C(x) = ‖x‖+ C(x′), {x− 3 ≤ x′ ≤ x− 1, x ≥ 0}〉

An evaluation for C(x0) (where x0 denotes the initial value of x) might invoke (if

x0 ≥ 0) a recursive call C(x1) with x0 − 3 ≤ x1 ≤ x0 − 1, which in turn might

invoke C(x2) with x1−3 ≤ x2 ≤ x1−1, etc. Assume that the last recursive call is

C(xκ) and that it is solved using the base-case equation (i.e., xκ < 0). Note that

the recursive equation is applied κ times. In each of these invocations, except

the last one, the recursive equation is applied and we accumulate ei = ‖xi−1‖ to

the cost (here ‖v‖ = max(0, v), but it is not important at this point). Thus, the

total cost is e1 + · · ·+ eκ.

Clearly, C(x0) has many possible evaluations, depending on the choice of x′

in each recursive call, which also determines the number of times we apply the

recursive equation, and thus the number of ei expressions and their values. This

means that different evaluations might also have different costs. Our challenge is

to accurately estimate the cost of C for any input, i.e., to infer a function Cub(x0)

(resp. C lb(x0)) such that Cub(x0) is larger (resp. C lb(x0) is smaller) than the cost

e1 + · · ·+ eκ of any possible evaluation.

CAS aim at obtaining the exact cost function, and thus it is not possible

to apply it to the above example since C(x0) has multiple solutions (one for

each possible evaluation). Instead, the goal of static cost analysis is to infer

approximations in terms of closed-form LBs and UBs for C. Our starting point is

the general approximation for UBs proposed by [5] which is based on the following
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two dimensions:

1. Number of applications of the recursive case: The first dimension is to infer

an UB κ̂ on the number of times the recursive equation can be applied

(which, for loops, corresponds to the number of iterations); and

2. Cost of applications: The second dimension is to infer an UB ê on the cost

of all loop iterations, i.e., ê ≥ ei for all i.

For the above example it infers κ̂ = ‖x0 + 1‖ and ê = ‖x0‖. Then, Cub(x0) =

κ̂∗ ê = ‖x0‖∗‖x0 + 1‖ is guaranteed to be an UB for C. Note that if the relation

C had two recursive calls, then the UB would be an exponential function of the

form 2κ̂∗ ê. The most important point to notice is that the cost of all iterations ei

is approximated by the same worst-case cost ê, which is the source of imprecision

of [5] that we will improve on. Technically, [5] solves the above two dimensions

using programming language techniques (see Section 3.1), which makes it widely

applicable in practice.

Our challenge is to improve the precision of [5] while still keeping a similar

applicability for UBs and, besides, be able to apply our approach to infer useful

LBs. The fundamental idea is to generate a sequence of non-negative elements

〈u1, . . . , uκ̂〉, with κ̂ ≥ κ, such that for any concrete evaluation 〈e1, . . . , eκ〉, each

ei has a corresponding different uj satisfying uj ≥ ei (observe that the subindexes

do not match as κ̂ ≥ κ). This guarantees soundness since u1 + · · ·+ uκ̂ is an UB

of e1 + · · ·+ eκ. Moreover, it is potentially more precise than [5] since the ui’s are

not required to be all equal. For the above example, we generate the sequence

〈‖x0‖, ‖x0 − 1‖, . . . , 0〉. This allows inferring the UB ‖x0‖∗‖x0+1‖
2

which is more

precise than that of [5] shown before.

Technically, we compute the approximation by transforming the CR into a

(worst-case) RR whose closed-form solution is u1 + · · ·+ uκ̂. When e is a simple

linear expression such as e ≡ ‖l‖, the novel idea is to view u1, · · · , uκ̂ as an

arithmetic sequence (can be geometric or any other sequence) that starts from

uκ̂ ≡ ê and each time decreases by ď where ď is an under-approximation of all

di = ei+1−ei, i.e., ui = ui−1 + ď. When e is a complex non-linear expression, e.g.,

‖l‖ ∗ ‖l′‖, it cannot be precisely approximated using sequences. For such cases,
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our novel contribution is a method for approximating e by approximating its ‖.‖
sub-expressions (which are linear) separately.

An important advantage of our approach w.r.t. previous ones [5, 42, 45], is

that the problem of inferring LBs is dual. In particular, we can infer a LB κ̌ on

the length of chains of recursive calls, the minimum value ě to which e can be

evaluated, and then sum the sequence 〈`1, . . . , `κ̌〉 where `i = `i−1 + ď and `1 = ě.

For the above example, we have ě = 0, ď = 1 and κ̌ = ‖x0+1
3
‖ and thus the LB we

infer is: C lb(x0) = 1
2
∗ ‖x0+1

3
‖ ∗ (‖x0+1

3
‖ + 1). In addition, our techniques can be

applied to cost expressions with any progression behavior that can be modeled

using sequences, and not only a linear progression behavior.

In summary, the main achievement in this part of the thesis is a seamless

and not-trivial integration of two approaches of solving cost relations, so that

we get the best of both worlds: precision as the one based on solving recurrence

relations, whenever possible, while applicability as close to the approach of [5].

Technically, the main contributions are:

• We propose an automatic transformation from a CR with multiple ar-

guments and a single recursive equation, which possibly accumulates a

non-constant cost at each application, into a worst-case/best-case single-

argument RR that can be solved using CAS . Soundness of the transforma-

tion requires that we are able to infer the so-called progression parameters,

which describe the relation between the contributions (to the total cost) of

two consecutive applications of the recursive equations.

• As a further step, we consider CRs in which we have several recursive equa-

tions defining the same relation. We propose an automatic transformation

of these CRs into a worst-case/best-case RR that can be solved using ex-

isting CAS .

• As another contribution, we present a technique for inferring LBs on the

number of iterations, which has similarities with that of [51]. Then, the

problem of inferring LBs on the cost becomes dual to the UBs, with some

additional conditions for soundness.
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• We report on a prototype implementation within the COSTA system [7].

Preliminary experiments on Java (bytecode) programs confirm the good

balance between the accuracy and applicability of our analysis.

To the best of our knowledge, this is the first general approach to inferring LBs

from CRs and, as regards UBs, the one that achieves a better precision vs. ap-

plicability balance.

2.3 Organization

The rest of part I of the thesis is organized as follows. Chapter 3 recalls some

preliminary notions and introduces some more notations. It formalizes the notion

of cost relation and single-argument recurrence relation. Chapter 4 presents the

main technical details of this part of the thesis, which describes how to transform

a CR into a RR for the sake of inferring UBs. Chapter 5 presents the dual

problem of inferring LBs from the CRs . The main focus of this section is then

on obtaining such LBs on loop iterations. Given such bounds, the techniques

proposed in Chapter 4 dually apply to the automatic inference of LBs from CRs .

Chapter 6 describes the implementation of our approach and evaluates it on a

series of benchmarks programs that contain loops whose cost in not constant,

e.g., sorting algorithms. In these cases, the fact that we accurately approximate

the cost of each loop iterations is reflected in the more precise UB that we can

obtain. Each chapter ends with some concluding remarks.
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Chapter 3

Background on Cost and

Recurrence Relations

In this chapter, we fix some notation and recall preliminary definitions. The sets

of integer, rational, non-negative integer, and non-negative rational values are

denoted respectively by Z, Q, Z+, and Q+. A linear expression over Z has the

form v0 + v1x1 + . . .+ vnxn, where vi ∈ Q, and x1, . . . , xn are variables that range

over Z. A linear constraint over Z has the form l1 ≤ l2, where l1 and l2 are linear

expressions. We use l1 = l2 as an abbreviation for l1 ≤ l2 ∧ l2 ≤ l1. We use t̄ to

denote a sequence of entities t1, . . . , tn, and vars(t) to refer to the set of variables

that appear syntactically in an entity t. We use ϕ, ψ and Ψ (possibly subscripted

and/or superscripted) to denote (conjunctions of) linear constraints. A set of

linear constraints {ϕ1, . . . , ϕn} denotes the conjunction ϕ1 ∧ · · · ∧ ϕn. A solution

for ϕ is an assignment σ : vars(ϕ) 7→ Z for which ϕ is satisfiable. The set of all

solutions (assignments) of ϕ is denoted by JϕK. We use ϕ1 |= ϕ2 to indicate that

Jϕ1K ⊆ Jϕ2K. We use σ(t) or tσ to bind each x ∈ vars(t) to σ(x), ∃x̄.ϕ for the

elimination of the variables x̄ from ϕ, and ∃̄x̄.ϕ for the elimination of all variables

but x̄ from ϕ. We use t[X/Y ] to replace all occurrences of X by Y in a syntactic

object t.
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3.1 Cost Relations: The Common Target of

Cost Analyzers

Let us now recall the general notion of CRs as defined in [5]. The basic building

blocks of CRs are the so-called cost expressions which are generated using this

grammar:

e ::= r | ‖l‖ | e+ e | e ∗ e | er | log(‖l‖+ 1) | n‖l‖ | max(S)

where r ∈ Q+, n ∈ Q+ and n ≥ 1, l is a linear expression over Z. S is a nonempty

set of cost expressions and ‖.‖ : Q → Q+ is defined as ‖v‖= max({v, 0}). Note

that ‖.‖ is read as “nat” (for natural numbers) and ‖l‖ as “nat of l”. Impor-

tantly, linear expressions are always wrapped by ‖.‖ in order to avoid negative

evaluations. For instance, as we will see later, an UB for C(k, j, q) in Figure 2.2

is ‖q + j − k‖. Without the use of ‖.‖, the evaluation of C(5, 5, 11) results in

the negative cost −1 which must be lifted to zero, since it corresponds to an

execution in which the for loop is not entered (i.e., k ≥ q + j). Moreover, ‖.‖
expressions provide a compact representation for piecewise functions, in which

each ‖l‖ is represented by two cases for l ≥ 0 and l < 0. Observe that cost

expressions are monotonic in their ‖.‖ sub-expressions, i.e., replacing ‖l‖ ∈ e by

‖l′‖ such that l′ ≥ l results in a cost expression e′ such that e′ ≥ e. This property

is fundamental for the correctness of our approach.

DEFINITION 3.1.1 (Cost Relation). A CR C is defined by a set of equations

of the form E ≡ 〈C(x̄) = e+
∑m

i=1Di(ȳi) +
∑n

j=1 C(z̄j), ϕ〉 where m ≥ 0; n ≥ 0;

C and Di are cost relation symbols with Di 6= C; all variables x̄, ȳi and z̄j are

distinct; e is a cost expression; and ϕ is a set of linear constraints over vars(E).

W.l.o.g., we make two assumptions on the CR that we will be using in the rest

of this part of the thesis:

1. Direct recursion: all recursions are direct (i.e., cycles in the call graph are

of length one). Direct recursion can be automatically achieved by applying

partial evaluation as described in [5]; and
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2. Standalone cost relations: CRs do not depend on any other CR, i.e., the

equations do not contain external calls, and thus have the form 〈C(x̄) =

e+
∑n

j=1C(z̄j), ϕ〉.

The second assumption can be made because our approach is compositional.

We start by computing bounds for the CRs which do not depend on any other

CRs , e.g., C in Figure 2.2 is solved to the UB ‖q + j − k‖. Then, we continue

by substituting the computed bounds in the equations which call such relation,

which in turn become standalone. For instance, substituting the above UB in the

relation B results in the equation 〈B(j, i, q) = ‖q + j‖+B(j′, i, q), {j < i, j+1 ≤
j′ ≤ j + 3}〉. This operation is repeated until no more CR need to be solved.

In what follows, CR refers to standalone CRs in direct recursive form, unless we

explicitly state otherwise.

The evaluation of a CR C for a given valuation v̄ (integer values), denoted

C(v̄), is based on the notion of evaluation trees [5], which is similar to SLD trees

in the context of Logic Programming [53].

DEFINITION 3.1.2 (Evaluation Trees). The set of evaluation trees for C(v̄)

is defined as follows

T (C(v̄)) =

Tree(σ(e), [T1, . . . , Tn])

∥∥∥∥∥∥∥
(1) 〈C(x̄) = e+

∑n
j=1C(z̄j), ϕ〉 ∈ C

(2) σ ∈ Jv̄ = x̄ ∧ ϕK
(3) Tj ∈ T (C(σ(z̄j)))


A possible evaluation tree for C(v̄) is generated as follows: In (1) we chose

a matching equation from those defining the CR C; In (2) we chose a so-

lution for v̄ = x̄ ∧ ϕ, which indicates that the chosen equation is applica-

ble; In (3) we recursively generate an evaluation tree Tj for each recursive call

C(σ(z̄j)); and then we construct an evaluation tree Tree(σ(e), [T1, . . . , Tn]) for

C(v̄), which has σ(e) as the root and T1, . . . , Tn as sub-trees. Note that due

to the non-deterministic choices in (1) and (2) we might have several evalua-

tion trees for C(v̄). Note also that trees might be infinite. The sum of all

nodes of T ∈ T (C(v̄)) is denoted by sum(T ), and the set of answers for C(v̄)

is defined as answ(C(v̄)) = {sum(T ) | T ∈ T (C(v̄))}. A closed-form function
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C∗(x̄0) = e is an UB (resp. LB) for C, if for any valuation v̄ it holds that

C∗(v̄) ≥ max(answ(C(v̄))) (resp. C∗(v̄) ≤ min(answ(C(v̄)))). Note that even if

the original program is deterministic, due to the abstractions performed during

the generation of the CR, it might happen that several results can be obtained for

a given C(v̄). Correctness of the underlying analysis used to obtain the CR must

ensure that the actual cost is one of such solutions [5]. This makes it possible to

use CRs to infer both UBs and LBs from them.

EXAMPLE 3.1.3. Let us evaluate B(0, 3, 3) for the CR B of Figure 2.2. The

only matching equation is the second one for B. We choose an assignment σ.

Here we have a non-deterministic choice for selecting the value of j′ which can be

1, 2 or 3. We evaluate the cost of C(0, 0, 3). Finally, one of the recursive calls of

B(1, 3, 3), B(2, 3, 3) or B(3, 3, 3) will be made, depending on the chosen value for

j′. If we continue executing all possible derivations until reaching the base-cases,

the final result for B(0, 3, 3) is any of {9, 10, 13, 14, 15, 18}. The actual cost is

guaranteed to be one of such values.

Next we recall the essentials of the approach proposed in [5] for inferring

closed-form UBs for a given standalone CR C(x̄). We denote by m the maximum

number of recursive calls in a single equation. This approach first infers the

following information:

1. Number of applications of the recursive case: The first dimension is to infer

an UB κ̂ on the number of times the recursive equations can be applied

(which, for loops, corresponds to the number of iterations). This bounds

the depth of the corresponding evaluation trees; and

2. Cost of applications: The second dimension is to infer an UB ê on the cost

of all loop iterations, i.e., ê ≥ ei for all i. This bounds the contribution of

each node in the evaluation tree.

Then, the closed-form function Cub(x̄) = mκ̂ ∗ ê is guaranteed to be an UB for C.

EXAMPLE 3.1.4. Let us consider the following CR again

〈C(x) = 0, {x < 0}〉
〈C(x) = ‖x‖+ C(x′), {x− 3 ≤ x′ ≤ x− 1, x ≥ 0}〉
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The approach of [5] infers κ̂ = ‖x0 + 1‖ and ê = ‖x0‖ for the above mentioned

dimensions. Then, it produces Cub(x0) = ‖x0‖ ∗ ‖x0 + 1‖ as an UB for the CR

C.

Technically, [5] solves the above two dimensions by relying on program analysis

techniques as follows:

1. The first dimension is solved by inferring a ranking function f , such that

for any recursive equation 〈C(x̄) = e+C(x̄1) + · · ·+C(x̄m), ϕ〉 in the CR,

it holds that ϕ |= f(x̄) ≥ f(x̄i) + 1 ∧ f(x̄) ≥ 0 for all 1 ≤ i ≤ m. This

guarantees that when evaluating C(x̄0), where variables x̄0 denote the initial

values, the length of any chain of calls to C cannot exceed f(x̄0). Thus,

f bounds the length of these chains, and thus the depth of all evaluation

trees.

2. The second dimension is solved by first inferring an invariant 〈C(x̄0) ;

C(x̄),Ψ〉, where Ψ is a set of linear constraints, which describes the relation

between the values that x̄ can take in any call to C and the initial values

x̄0. Then, it generates ê as follows: each ‖l‖ ∈ e is replaced by ‖l̂‖ where l̂

is a linear expression (over x̄0) that satisfies l̂ ≥ l. In practice, l̂ is obtained

by syntactically looking for an expression ξ ≤ l̂ in ∃̄x̄0 ∪{ξ}. Ψ∧ϕ1 ∧ ξ = l

where ξ is a new variable. Alternatively, we could use parametric integer

linear programming [40] in order to maximize l w.r.t. Ψ and with x̄0 as

parameters.

The use of the above automated techniques is what makes the tools of [5] widely

applicable.

Our approach for inferring UBs (resp. LBs) for a CR C heavily relies on the

above two dimensions, but uses them in a fundamentally different way. Thus,

in the rest of this thesis, we use the techniques of [5] for automatically inferring

ranking functions and maximizing linear expression.
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3.2 Single-Argument Recurrence Relations

It is fundamental for our work to understand the differences between CRs and

RRs . The following features have been identified in [5] as main differences, which

in turn justify the need to develop specific solvers to bound CRs :

1. CRs often have multiple arguments that increase or decrease over the rela-

tion. The number of evaluation steps (i.e., recursive calls performed) is often

a function of such several arguments (e.g., in A of Figure 2.2 it depends on

i and q).

2. CRs often contain inexact size relations, e.g., variables range over an inter-

val [a, b] (e.g., variable j′ in B of Figure 2.2). Thus, for a given input, we

might have several solutions which perform a different number of evaluation

steps.

3. Even if the original programs are deterministic, due to the loss of precision

in the first stage of the static analysis, CRs often involve several non-

deterministic equations.

As a consequence of 2 and 3, an exact solution often does not exist and hence

CAS just cannot be used in such cases. But, even if a solution exists, due to the

above features, CAS do not accept CRs as a valid input. Below, we define a class

of RRs that CAS can handle.

DEFINITION 3.2.1 (Single-argument RR). A single-argument RR P is de-

fined by at most one recursive equation 〈P (N) = E + m ∗ P (N − 1)〉 where E

is a function on N (and might have constant symbols) and m ∈ Z+ refers to

the number of recursive calls, and a base-case equation 〈P (0) = λ〉 where λ is a

constant symbol representing the value of the base-case.

A closed-form solution for P (N), if exists, is an arithmetic expression that de-

pends only on the variable N (more precisely on the initial value x0), the base-case

constant symbol λ, and might include constant symbols that appear in E. De-

pending on the number of recursive calls m in the recursive equation and the
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expression E, such solution can be of different complexity classes (exponential,

polynomial, etc.).

It is worth mentioning that computing the closed-form expression of a general

RR is undecidable [73]. However, there are decision algorithms for computing

closed-form solutions of Gosper-summable [41] and C-finite [39] RRs . Note that

if m = 1 and E is hypergeometric, the RR in Definition 3.2.1 becomes Gosper-

summable. Examples of hypergeometric sequences are polynomials with coeffi-

cients from Q or Z; and products of factorial, binomial or exponential expressions

over the recurrence variable N . If E = 0, the RR P (N) belongs to the C-finite

RRs and the closed-form solutions are called C-finite expressions. If E 6= 0

but a C-finite expression, P (N) can be transformed into C-finite RR and hence

computing its closed-form solution is decidable [52]. To summarize, closed-form

solutions of single-argument RR obtained from static cost analysis are decidable

in most cases.

It is easy to see that the notion of evaluation trees for CRs can be easily

adapted for RRs . The only difference is that for RRs , the call P (v) has only

one evaluation tree which is also complete (i.e., all levels are complete), while for

CRs , the call C(v̄) might have multiple trees with any shape.
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Chapter 4

Inference of Precise Upper

Bounds

In this chapter, we present our approach to accurately infer UBs for CRs in the

following steps:

1. In Section 4.1, we handle a subclass of CRs which are defined by a single

recursive equation and accumulate a constant cost.

2. In Section 4.2, we handle CRs which are still defined by a single recursive

equation but accumulate non-constant costs.

3. In Section 4.3, we treat CRs with multiple overlapping equations.

4. In sections 4.1, 4.2 and 4.3 we assume that base-case equations always

contribute cost zero, and in Section 4.4 we explain how to handle non-zero

base-case equations.

5. Finally, in Section 4.5, we finish with some concluding remarks.

4.1 Cost Relations with Constant Cost

We consider CRs defined by a single recursive equation as depicted in Figure 4.1,

where e contributes a constant cost, i.e., it is a constant number. As explained in
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〈C(x̄) = 0, ϕ0〉
〈C(x̄) = e+ C(x̄1) + · · ·+ C(x̄m), ϕ1〉

Figure 4.1: CR with single recursive equation.

Section 2.2, any chain of calls in C when starting from C(x̄0) is at most of length

f̂C(x̄0). We aim at obtaining an UB for C by solving a RR PC in which all chains

of calls are of length f̂C(x̄0). Intuitively, PC can be seen as a special case of a RR

such that its recursive equation has m recursive calls (as in C), where all chains

of calls are of length N , and each application accumulates the constant cost e. Its

solution can be then instantiated for the case of C by replacing N with f̂C(x̄0).

DEFINITION 4.1.1. The worst-case RR of the CR C of Figure 4.1, when e is

constant cost, is 〈PC(N)=e+m ∗ PC(N − 1)〉.

The main achievement of the above transformation is that, for CRs with constant

cost expressions, we get rid of their problematic features 1 and 2 described in

Section 3.2 which prevented us from relying on CAS to obtain a precise solution.

The following theorem explains how the closed-form solution of the RR PC can

be transformed into an UB for the CR C.

THEOREM 4.1.2. If E is a solution for PC(N) of Definition 4.1.1, then

Cub(x̄0) = E[N/f̂C(x̄0)] is an UB for its corresponding CR C.

Proof. For any initial values x̄0, the evaluation tree T1 of PC(f̂C(x̄0)) is a complete

tree such that any path (from the root to a leaf) has exactly f̂C(x̄0) internal nodes

(i.e., all nodes but the leaf) with cost e. Any evaluation tree T2 ∈ T (C(x̄0)) is

a (possibly not complete) tree such that any path (from the root to a leaf) has

at most f̂C(x̄0) internal nodes, and each internal node has cost e. Thus, since

the recursive equations of PC and C have m recursive calls each, it holds that

sum(T1) ≥ sum(T2) and therefore PC(f̂C(x̄0)) ≥ C(x̄0).

EXAMPLE 4.1.3. The worst-case RR of the CR C of Figure 2.2 is 〈PC(N)=1+

PC(N−1)〉, which is solved using CAS to PC(N)=N for any N ≥ 0. The UB for

C is obtained by replacing N by the corresponding ranking function f̂C(k0, j0, q0) =
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‖j0 + q0 − k0‖ which results in Cub(k0, j0, q0) = ‖j0 + q0 − k0‖. Recall that the

ranking function is automatically inferred using the techniques of [5].

4.2 Cost Relations with Non-Constant Cost

During cost analysis, in many cases we obtain CRs like the one of Figure 4.1,

but with a non-constant expression e which is evaluated to different values ei

in different applications of the recursive equation. The transformation in Def-

inition 4.1.1 would not be correct since in these cases e must be appropriately

related to N . In particular, the main difficulty is to simulate the accumulation

of the non-constant expressions ei at the level of the RR. In this section we

formalize the ideas intuitively explained in Section 2.2 which are based on using

sequences to simulate the behavior of e.

We distinguish two cases: CRs with linear (a.k.a., arithmetic) and CRs with

geometric progression behavior. In general, the cost expression e has a complex

form (e.g., exponential, polynomial, etc.). Therefore, even a simple cost expres-

sion like ‖x+ y‖ ∗ ‖x+ y‖ does not increase arithmetically or geometrically even

if the sub-expression x + y does. Therefore, limiting our approach to cases in

which e has a linear or geometric progression behavior would narrow its applica-

bility. Instead, a key observation in our approach is that, it is enough to reason

on the behavior of its ‖.‖ sub-expressions, i.e., we only need to understand how

each ‖l‖ ∈ e changes along a sequence of calls to C, which very often have a

linear or geometric progression behavior since l is a linear expression.

4.2.1 Linear Progression Behavior

This section describes how to obtain an UB for the CR of Figure 4.1, when e

includes ‖.‖ sub-expressions with linear progression behavior, using a RR that

simulates the behavior of each such ‖.‖ sub-expression separately. We first define

the notion of linear progression behavior of a ‖.‖ expression.

DEFINITION 4.2.1 (‖.‖ with linear progression behavior). Consider the CR

C of Figure 4.1. We say that ‖l‖ ∈ e has an increasing (resp. decreasing) linear
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progression behavior, if there exists a progression parameter ď > 0, such that for

any two consecutive contributions of e during the evaluation of C(x̄0), denoted e′

and e′′, it holds that l′′ − l′ ≥ ď (resp. l′ − l′′ ≥ ď) where ‖l′‖ ∈ e′ and ‖l′′‖ ∈ e′′

are the instances of ‖l‖.

For the case of the CR of Figure 4.1, the two consecutive instances e′ and e′′ in the

above definition refer to two consecutive nodes in the corresponding evaluation

tree (a node e′, and one of its children e′′). Note that there might be several

values for ď that satisfy the conditions of the above definition. For example, if

a ‖.‖ expression decreases at least by 2, then it also decreases at least by 1, and

therefore both ď = 1 and ď = 2 satisfy the conditions of the above definition.

Although taking ď = 1 is sound, it results in a loss of precision. Therefore, our

interest is in finding the maximum ď that satisfies the above definition. It is

important to note that this maximum value for (the minimum decrease/increase)

ď is different from the maximum decrease/increase. In practice, we compute such

ď for a given ‖l‖ ∈ e with an increasing (resp. decreasing) behavior as follows:

Let 〈C(ȳ) = e′ + C(ȳ1) + · · · + C(ȳm), ϕ′1〉 be a renamed apart instance of the

recursive equation of C such that l′ is the renaming of l, and for each 1 ≤ i ≤ m

let ďi be the result of minimizing the objective function l′ − l (resp. l − l′) with

respect to ϕ1∧ϕ′1∧ x̄i = ȳ using integer programming, then ď = min(ď1, . . . , ďm).

EXAMPLE 4.2.2. Consider again the cost relation B of Figure 2.2. Replac-

ing the call C(0, j, q) by the UB ‖q + j‖ computed in Example 4.1.3 results in

〈B(j, i, q) = ‖q + j‖+B(j′, i, q), ϕ1〉 where ϕ1 = {j < i, j + 1 ≤ j′ ≤ j + 3}. The

following is a renamed apart instance of the equation: 〈B(jr, ir, qr) = ‖qr + jr‖+

B(j′r, ir, qr), ϕ
′
1〉 where ϕ′1 = {jr < ir, jr + 1 ≤ j′r ≤ jr + 3}. Minimizing the objec-

tive function (qr + jr)− (q + j) with respect to ϕ1 ∧ ϕ′1 ∧ {j′ = jr, i = ir, q = qr}
results in ď1 = 1. Therefore, ‖q + j‖ has an increasing linear progression behavior

with a progression parameter ď = 1.

Intuitively, the goal is to use a linear sequence that starts from the maximum

value that a given ‖l‖ ∈ e can take, i.e., ‖l̂‖, and in each step decreases by the

minimum distance ď between two consecutive instances of ‖l‖. Let us explain how

our method works by focusing on a single ‖l‖ ∈ e within the relation C, assuming
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that it has a decreasing linear progress behavior with a progression parameter ď.

Recall that during the evaluation of an initial query C(x̄0), any chain of calls

has a length κ ≤ f̂C(x̄0). Let ‖l1‖, . . . , ‖lκ‖ be the instances of ‖l‖ contributed

in each call. Our aim is to generate a sequence of elements a1, . . . , aκ such that

ai ≥ ‖li‖. Then, each ai will be used instead of ‖li‖ in order to over-approximate

the total cost contributed by the i-th call.

Since li − li+1 ≥ ď, for the first κ elements of the sequence {a1 = ‖l̂‖, ai =

ai−1 − ď} it holds that a1 ≥ l1, . . . , aκ ≥ lκ. However, this does not imply that

ai ≥ ‖li‖ since when li < 0 we have ‖li‖ = 0 but the corresponding ai might be

negative. This mainly happens because κ is an over-approximation of the actual

length of the chain of calls. Therefore, an imprecise (too large) f̂C would lead to

a too large decrease and the smallest element ‖l̂‖− ď ∗ (f̂C(x̄0)− 1), and possibly

other subsequent ones, could be negative and would provide an incorrect result.

We avoid this problem by viewing this sequence in a dual way: we start from

the smallest value and in each step increase it by ď. Since still the smallest values

could be negative, assuming that f̂C(x̄0) = ‖l′‖, we start from ‖l̂ − ď ∗ l′‖+ď which

is guaranteed to be positive and greater than or equal to ‖l̂‖ − ď ∗ (f̂C(x̄0)− 1).

This mean that when the smallest value is negative, we shift the sequence and

start from a positive smallest value ď until the biggest value ‖l′‖ ∗ ď ≥ ‖l̂‖.
Therefore, using ai = ‖l̂ − ď ∗ l′‖+ (f̂C(x̄0)− i+ 1) ∗ ď, it is guaranteed that a1 ≥
‖l1‖, . . . , aκ ≥ ‖lκ‖. Similar reasoning can be done for the case in which ‖l‖ ∈ e is

linearly increasing by ď. The next definition, that generalizes Definition 4.1.1, uses

this intuition to replace each ‖.‖ by an expression that generates its corresponding

sequence at the level of RR.

DEFINITION 4.2.3. Consider the CR C of Figure 4.1, and let f̂C(x̄0) = ‖l′‖.
Its associated worst-case RR is 〈PC(N) = Êe + m ∗ PC(N − 1)〉 where Êe is

obtained from e by replacing each ‖l‖ ∈ e by lRR such that lRR ≡ ‖l̂ − ď ∗ l′‖ +

(‖l′‖ − N + 1) ∗ ď (resp. lRR ≡ ‖l̂ − ď ∗ l′‖ + N ∗ ď) if ‖l‖ is linearly increasing

(resp. decreasing) with a progression parameter ď; otherwise lRR ≡ ‖l̂‖.

EXAMPLE 4.2.4. Let us see how a given ‖l‖ ∈ e, which is linearly decreasing

by ď, is simulated in PC. If we apply PC on N = f̂C(x̄0) = ‖l′‖, i.e., on the

maximum depth of the evaluation tree, we get ‖l̂ − ď ∗ l′‖ + ‖l′‖ ∗ ď, then in the
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following iteration, when applying PC on N − 1, we get ‖l̂ − ď ∗ l′‖+ (‖l′‖− 1)∗ ď
which is smaller than the first one, and so forth. If ‖l‖ is linearly increasing by

ď, then in the first application of PC we get ‖l̂ − ď ∗ l′‖+ ď, in the second one we

get ‖l̂ − ď ∗ l′‖+ 2ď, and so forth.

Note that, in Definition 4.2.3, if ‖l‖ ∈ e does not have a linear progression

behavior then it is replaced by ‖l̂‖, exactly as in [5]. Note also that the distinction

between the decreasing and increasing case is of great importance when the CR

has more than one recursive call. This affects the number of times the element

‖l̂‖ is contributed: one time (in the root of the evaluation tree) in the decreasing

case, and 2(N−1) times (the last level of internal nodes in the evaluation tree) in

the increasing case. The following theorem explains how the closed-form solution

of the RR PC can be transformed into an UB for the CR C.

THEOREM 4.2.5. If E is a solution for PC(N) of Definition 4.2.3, then

Cub(x̄0) = E[N/f̂C(x̄0)] is an UB for its corresponding CR C.

Proof. We prove the theorem for the case when e is linearly decreasing. The case

of linearly increasing is dual. Let T1 ∈ T (C(x̄0)), and T2 be the evaluation tree

of PC(f̂C(x̄0)). Observe that: (1) The leaves have cost 0; (2) The number of

internal nodes in any path from the root to a leaf in T1 is at most f̂C(x̄0), and

in T2 is exactly f̂C(x̄0); (3) The RR PC and the CR C have the same number of

recursive calls in their recursive equation; and (4) Êe and e are identical up to

their ‖.‖ components since Êe is obtained from e by replacing each ‖l‖ ∈ e by

‖l̂ − l′ ∗ ď‖+N∗ď. These observations, together with the fact that cost expressions

are monotonic, implies that in order to prove the theorem, it is enough to prove

that for any ‖l‖ ∈ e and its corresponding L = ‖l̂ − l′ ∗ ď‖ + N ∗ ď in Êe, if

‖l1‖, . . . , ‖lκ‖ are instances of ‖l‖ in a given path in T1, and L1, . . . , Lf̂C(x̄0) are

those of L in T2, then Li ≥ ‖li‖ for any 1 ≤ i ≤ κ. Recall that κ ≤ f̂C(x̄0).

Base Case: L1 is obtained when N = f̂C(x̄0), therefore L1 = ‖l̂ − l′ ∗ ď‖ +

f̂C(x̄0) ∗ ď ≥ ‖l̂‖ − ‖l′‖ ∗ ď+ f̂C(x̄0) ∗ ď = ‖l̂‖ ≥ ‖l1‖. Recall that ‖l′‖ = f̂C(x̄0).

Inductive Case: First, we assume that Li ≥ ‖li‖. Next, we consider two

cases: (1) if li ≥ d̂, then ‖li+1‖ ≤ ‖li‖ − ď ≤ Li − ď = ‖l̂ − l′ ∗ ď‖ + (f̂C(x̄0) −
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PA(N) = 1
2 ∗ (‖i0−1‖+(‖ q0−i02 ‖−N+1) ∗ 2) ∗ (2 ∗ ‖q0−1‖+‖i0−1‖+(‖ q0−i02 ‖
−N + 1) ∗ 2 + 1)+PA(N−1)

PB(N) = ‖q0 + j0−1‖+ (‖i0−j0‖−N+1)∗1 + PB(N−1)
PC(N) = 1 + PC(N − 1)

Figure 4.2: Worst-Case RRs automatically obtained from CRs in Figure 2.2.

(i − 1)) ∗ ď − ď = ‖l̂ − l′ ∗ ď‖ + (f̂C(x̄0) − i) ∗ ď = Li+1; and (2) if li < d̂, then

‖li+1‖ = 0 ≤ ‖l̂ − l′ ∗ ď‖+ (f̂C(x̄0)− i) ∗ ď = Li+1.

EXAMPLE 4.2.6. Consider the standalone CR B of Example 4.2.2, and recall

that ‖q + j‖ increases linearly with a progression parameter ď = 1. Function

f̂B(j0, i0, q0) = ‖i0 − j0‖ is a ranking function for CR B. Maximizing ‖q + j‖
results in ‖q0 + i0 − 1‖. Then, using Definition 4.2.3 we generate the worst-case

RR PB(N) depicted in Figure 4.2 whose solution (computed by CAS) is:

PB(N) = ‖q0 + j0 − 1‖ ∗N + ‖i0 − j0‖ ∗N +
N

2
− N2

2

By Theorem 4.2.5, replacing N by f̂B(j0, i0, q0) results in:

Bub(j0, i0, q0) = ‖q0 + j0 − 1‖ ∗ ‖i0 − j0‖+
‖i0 − j0‖

2
∗ (‖i0 − j0‖+ 1)

Substituting this UB in the cost relation A of Figure 2.2 results in the CR:

〈A(i, q) = ‖q − 1‖ ∗ ‖i‖+
‖i‖
2
∗ (‖i‖+ 1) +A(i′, q), {i+ 1 ≤ q, i+ 2 ≤ i′ ≤ i+ 4}〉

Note that in this CR the expression ‖q − 1‖ always evaluates to the same value,

while ‖i‖ has an increasing linear progression behavior with progression parameter

ď = 2. Given that: (1) f̂A(i0, q0) = ‖ q0−i0
2
‖; (2) the maximization of ‖q − 1‖ is

‖q0 − 1‖; and (3) the maximization of ‖i‖ is ‖q0 − 1‖, by applying Definition

4.2.3, we generate the worst-case RR PA(N) depicted in Figure 4.2, which is

solved by CAS to:

PA(N) = N
6
∗ [4 ∗N2 + 3 ∗ ‖i0 − 1‖ ∗ (2 ∗N + ‖i0 − 1‖+ 3)+

6 ∗ ‖q0 − 1‖ ∗ (‖i0 − 1‖+N + 1) + 9 ∗N + 5]
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By Theorem 4.2.5, replacing N by f̂A(i0, q0) results in:

Aub(i0, q0) = 1
6 ∗ ‖

q0−i0
2 ‖ ∗ (4 ∗ ‖

q0−i0
2 ‖ ∗ ‖

q0−i0
2 ‖+ 3 ∗ ‖i0 − 1‖ ∗ (2 ∗ ‖ q0−i02 ‖

+‖i0 − 1‖+3) + 6∗‖q0 − 1‖∗(‖i0 − 1‖+‖ q0−i02 ‖+1)+9∗‖ q0−i02 ‖+5)

Finally, substituting Aub(0, q0) in the CR F , we obtain the UB:

F ub(q0)=
1

6
∗‖q0

2
‖∗(4∗‖q0

2
‖∗‖q0

2
‖+ 6∗‖q0 − 1‖∗(‖q0

2
‖+ 1) + 9∗‖q0

2
‖+ 5)

whereas [5] obtains 2 ∗ ‖ q0+1
2
‖ ∗ ‖q0 − 1‖2, which is much less precise.

4.2.2 Geometric Progression Behavior

The techniques of Sections 4.1 and 4.2.1 can solve a wide range of CRs . However,

in practice, we find also CRs that do not have constant or linear progression

behavior, but rather a geometric progression behavior. This is typical in programs

that implement divide and conquer algorithms, where the problem (i.e., the input)

is divided into sub-problems which are solved recursively.

EXAMPLE 4.2.7. Consider the following implementation of the merge-sort

algorithm:

1void msort(int a[], int low, int hi) {
2 if ( hi > low ) {
3 int mid=(hi+low)/2;

4 msort(a,low,mid);

5 msort(a,mid+1,hi);

6 merge(a,low,mid,hi);

7 }
8}

where, for simplicity, we omit the code of merge and assume that its cost, for

example, is 10∗‖hi− low + 1‖, when counting the number of executed (bytecode)

instructions. Using this UB, COSTA [6] automatically generates the following CR

for msort:

〈msort(a, low, hi) = 0, ϕ1〉
〈msort(a, low, hi) = 20+10 ∗ ‖hi−low+1‖+msort(a, low,mid)+msort(a,mid′, hi), ϕ2〉
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where

ϕ1 = {hi ≥ 0, low ≥ 0, hi ≤ low}
ϕ2 = {hi ≥ 0, low ≥ 0, hi ≥ low+1,mid′=mid+1, low+hi−1 ≤ 2∗mid ≤ low+hi}

The constant 20 corresponds to the cost of executing the comparison, the sum and

division, and invoking the methods. The constraint low + hi − 1 ≤ 2 ∗ mid ≤
low+hi in ϕ2 is used to model the behavior of the integer division mid=(low+hi)/2

with linear constraints. The progression behavior of ‖hi− low + 1‖ is geometric,

i.e., if ‖li‖ and ‖li+1‖ are two instances of ‖hi− low + 1‖ in two consecutive

calls, then li ≥ 2 ∗ li+1 − 1 holds, which means that the value of ‖hi− low + 1‖
is reduced almost by half at each iteration. It is not reduced exactly by half since

li ≥ 2 ∗ li+1 does not hold when the input array is of odd size, in such case it is

divided into two sub-problems with different (integer) sizes.

The above example demonstrates that: (1) there is a practical need for handling

CRs with geometric progression behavior; and (2) the geometric progression in

programs that manipulate integers does not comply the standard definition ui =

c ∗ ri of geometric series, but rather it should consider small shifts around those

values in order to account for examples like divide-and-conquer algorithms. The

following definition specifies when a ‖.‖ expression has a geometric progression

behavior.

DEFINITION 4.2.8 (‖.‖ with geometric progression behavior). Consider the

CR C of Figure 4.1. We say that ‖l‖ ∈ e has an increasing (resp. decreasing)

geometric progression behavior, if there exist progression parameters ř > 1 and

p̌ ∈ Q, such that for any two consecutive contributions of e during the evaluation

of C(x̄0), denoted e′ and e′′, it holds that l′′ ≥ ř ∗ l′ + p̌ (resp. l′ ≥ ř ∗ l′′ + p̌)

where ‖l′‖ ∈ e′ and ‖l′′‖ ∈ e′′ are the instances of ‖l‖.

Note that the above increasing and decreasing conditions could be equivalently

written as l′′

ř
+ p̌ ≥ l′ and l′′ ≤ l′

ř
+ p̌ respectively. This might be more common in

the literature, however, it does not lead to a simpler formalism. Thus, we prefer

to use those of the above definition to keep the notation simpler.

As in the case of ď in the linear progression behavior, we are interested in

values for ř and p̌ that are as close as possible to the minimal progression of
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‖l‖. This happens when ř is maximal, and for that maximal ř, the value of

|p̌| is minimal. In practice, computing such ř and p̌ for a given ‖l‖ ∈ e with an

increasing (resp. decreasing) behavior is done as follows: Let 〈C(ȳ) = e′+C(ȳ1)+

· · ·+C(ȳm), ϕ′1〉 be a renamed apart instance of the recursive equation of C such

that l′ is the renaming of l, then we look for ř and p̌ such that for each 1 ≤ i ≤ m

it holds that ϕ1∧ϕ′1∧ x̄i = ȳ |= l′ ≥ ř∗ l+ p̌ (resp. ϕ1∧ϕ′1∧ x̄i = ȳ |= l ≥ ř∗ l′+ p̌).
This can be done using Farkas’ Lemma [74], which provides a systematic way to

derive all implied inequalities of a given set of linear constraints [71]. However,

systematically checking the conditions taking the coefficients and the constants

that appear in ϕ1 as candidates for ř and p̌, respectively, works very well in

practice.

EXAMPLE 4.2.9. For the CR of Example 4.2.7, we have that ‖hi− low + 1‖
is decreasing geometrically, with progression parameters ř = 2 and p̌ = −1. Note

that 2 and −1 explicitly appear as coefficient and constant, respectively, in ϕ1.

Similarly to the case of linear progression behavior in Section 4.2.1, the progres-

sion parameters ř and p̌ are used in order to over-approximate the contributions

of a given ‖l‖ ∈ e expression along a chain of calls. For example, if ‖l‖ ∈ e has a

decreasing geometric progression behavior, and ‖l1‖, . . . , ‖lκ‖ are instances of ‖l‖
along any chain of calls where κ ≤ f̂C(x̄0), then first κ elements of the sequence

ui =
‖l̂‖
ři−1

+ ‖−p̌‖∗
i−1∑
j=1

1

řj

satisfy ui ≥ ‖li‖. We use ‖−p̌‖ in order to lift the negative value −p̌ (when

p̌ > 0) to zero and avoid that ui goes into negative values. The following defini-

tion extends Definition 4.2.3, by handling the translation of ‖.‖ expression with

geometric behavior. First, to simplify the notation, let us denote the sum
∑i

j=1
1
řj

by Ŝ(i), which is also equal to 1
ři
∗ 1

1−ř −
1

1−ř .

DEFINITION 4.2.10. We extend Definition 4.2.3 for the geometric progres-

sion case as follow: if ‖l‖ ∈ e has an increasing (resp. decreasing) geometric

progression behavior, then its corresponding lRR is defined as

lRR ≡
‖l̂‖

ř(N−1)
+‖−p̌‖∗Ŝ(N−1)

[
resp. lRR ≡

‖l̂‖
ř(f̂C(x̄0)−N)

+ ‖−p̌‖ ∗ Ŝ(fC(x̄0)−N)

]
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Note that value of ‖l̂‖
ř(N−1) + ‖−p̌‖ ∗ Ŝ(N − 1) decreases along the iterations of PC ,

i.e., when N decreases. Similarly, the value of ‖l̂‖
ř(f̂C (x̄0)−N)

+ ‖−p̌‖ ∗ Ŝ(fC(x̄0)−N)

increases. Note also that the distinction between the decreasing and the increasing

cases is fundamental, and it is for the same reasons as in Definition 4.2.3. The

following theorem explains how the closed-form solution of the RR PC can be

transformed into an UB for the CR C.

THEOREM 4.2.11. If E is a solution for PC(N) of Definition 4.2.3, together

with the extension of Definition 4.2.10, then Cub(x̄0) = E[N/f̂C(x̄0)] is an UB

for its corresponding CR C.

Proof. The proof is similar to the one of Theorem 4.2.5. We prove the theorem

for the case when e is geometrically decreasing. The case of geometrically in-

creasing is dual. Let T1 ∈ T (C(x̄0) and T2 be the evaluation tree of PC(f̂C(x̄0)).

The observations about T1, T2 and the monotonicity property in the proof of

Theorem 4.2.5 also hold for this case, and therefore it is enough to prove that for

any ‖l‖ ∈ e and its corresponding L = ‖l̂‖
ř(f̂C (x̄0)−N)

+ ‖−p̌‖ ∗ Ŝ(f̂C(x̄0)−N) in Êe,

if ‖l1‖, . . . , ‖lκ‖ are instances of ‖l‖ in a given path in T1, and L1, . . . , Lf̂C(x̄0) are

those of L in T2, then Li ≥ ‖li‖ for any 1 ≤ i ≤ κ.

Base Case: L1 is obtained when N = f̂C(x̄0), therefore L1 = ‖l̂‖
ř(f̂C (x̄0)−f̂C (x̄0))

+

‖−p̌‖ ∗ Ŝ(f̂C(x̄0)− f̂C(x̄0)) = ‖l̂‖ ≥ ‖l1‖ since Ŝ(0) = 0.

Inductive Case: We assume that Li ≥ ‖li‖ and will prove that Li+1 ≥ ‖li+1‖.
We have Ŝ(i) = 1

ř(i) ∗ 1
1−ř −

1
1−ř = 1

ř
∗ ( 1

ř(i−1) ∗ 1
1−ř −

1
1−ř ) + 1

ř∗(1−ř) −
1

(1−ř) =

1
ř
∗ Ŝ(i− 1) + 1

ř
. We also have Li = ‖l̂‖

ři−1 + ‖−p̌‖ ∗ Ŝ(i− 1). Then, the following

equations hold:

Li+1 = ‖l̂‖
ři

+ ‖−p̌‖ ∗ Ŝ(i)

= 1
ř
∗ ‖l̂‖
ři−1 + ‖−p̌‖ ∗ (1

ř
∗ Ŝ(i− 1) + 1

ř
)

= 1
ř
∗ ( ‖l̂‖

ři−1 + ‖−p̌‖ ∗ Ŝ(i− 1)) + ‖−p̌‖ ∗ 1
ř

= 1
ř
∗ (Li + ‖−p̌‖)

≥ 1
ř
∗ (‖li‖+ ‖−p̌‖)

≥ ‖li+1‖ [Since ‖−p̌‖ ≥ −p̌ and ϕ1 |= li ≥ ř ∗ li+1 + p̌]
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Algorithm 1: compute UB

Input: Statndalone CR C, as in Figure 4.1

Output: Close-form UB Cub(x̄0) for C

Compute a loop bound f̂C(x̄0);1

Compute an invariant 〈C(x̄0) ; C(x̄),Ψ〉;2

Êe = e;3

foreach ‖l‖ ∈ e do4

Let l̂ be the result of maximizing l w.r.t Ψ ∧ ϕ1 and the parameter x̄0;5

Compute the progeression parameters ď or 〈ř, p̌〉 for l;6

Compute lRR as in definitions 4.2.3 and 4.2.10;7

Êe = Êe[‖l‖/lRR];8

end9

Solve 〈PC(N) = Êe +m ∗ PC(N − 1)〉 into a closed-form expression E10

using CAS ;

Cub(x̄0) = E[N/f̂C(x̄0)];11

EXAMPLE 4.2.12. Consider the CR of Example 4.2.7, and recall that the

expression ‖hi− low + 1‖ decreases geometrically with progression parameters

ř = 2 and p̌ = −1 (see Example 4.2.9). Moreover, the ranking function for

the CR msort is f̂msort(a0, low0, hi0) = log2(‖hi0 − low0‖+1)+1, and maximiza-

tion of ‖hi− low + 1‖ results in ‖hi0 + 1‖. According to Definition 4.2.10, the

associated worst-case RR (after simplifying Êe for clarity) is:

Pmsort(N) = 30 + 10 ∗ ‖hi0 + 1‖ − 1

2(log2(‖hi0−low0‖+1)+1−N)
+ 2 ∗ Pmsort(N − 1)

Obtaining a closed-form solution for Pmsort(N) using CAS, and then replacing N

by f̂msort(a0, hi0, low0) results in the following UB for the CR msort:

msortub(a0, low0, hi0) = 30+60∗‖hi0−low0‖+10∗(log2(‖hi0−low0‖+1)+1)∗(‖hi0+1‖−1) .

Algorithm 1 summarizes the process of solving standalone CR of the form

given in Figure 4.1, as described in sections 4.1 and 4.2. As we have explained

in Section 3.1, non-standalone CRs are solved in a modular way. We first apply
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〈C(x̄) = 0, ϕ0〉
〈C(x̄) = e1 + C(x̄1) + · · ·+ C(x̄m1), ϕ1〉

...

〈C(x̄) = eh + C(x̄1) + · · ·+ C(x̄mh), ϕh〉

Figure 4.3: CRs with multiple recursive equations.

Algorithm 1 to the CR that does not call any other CRs (i.e., it is standalone),

then we continue by substituting the computed bounds in the equations that call

such relation, which in turn become standalone, and thus can be solved using

Algorithm 1. This process is applied until all CRs are solved.

4.3 Non-constant Cost Relations with Multiple

Equations

Any approach for solving CRs that aims at being practical has to consider CRs

with several recursive equations as the one depicted in Figure 4.3. This kind of

CRs is very common during cost analysis, and they mainly come from conditional

statements inside loops. For instance, the instruction if (x[i]>0)A else B, may

lead to two nondeterministic equations which accumulate the costs of A and B.

This is because arrays are typically abstracted to their length and, hence, the

condition x[i]>0 is abstracted to true, i.e., we do not keep this information in the

corresponding CR. Hence, ϕ1, . . . , ϕh are not necessarily mutually exclusive. In

what follows, w.l.o.g., we assume that m1 ≥ · · · ≥ mh, i.e., the first (resp. last)

recursive equation has the maximum (resp. minimum) number of recursive calls

among all equations.

As a first solution to the problem of inferring an UB for the CR of Figure 4.3,

we simulate its worst-case behavior using another single-recursive CR Ĉ whenever

possible. We refer to Ĉ as the worst-case CR of C. Namely, we generate the

following CR

〈Ĉ(x̄) = e+ Ĉ(x̄1) + . . .+ Ĉ(x̄m1), ϕ〉
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such that the evaluation trees of Ĉ(x̄0) up to depth f̂C(x̄0) over-approximate

the evaluation trees of C(x̄0). Then, we will infer an UB on the evaluation

trees of Ĉ(x̄0) up to such depth, by generating a corresponding RR, which is

then guaranteed to be an UB for C(x̄0). The process of constructing Ĉ will be

discussed later in this section. Let us start by formalizing the conditions that Ĉ

should satisfy, and how we approximate its evaluation trees up to a given depth.

DEFINITION 4.3.1. We say that 〈Ĉ(x̄) = e + Ĉ(x̄1) + · · · + Ĉ(x̄m1), ϕ〉 is a

worst-case CR for the CR C of Figure 4.3, if for any valuation v̄ it holds that

max({sum(T, f̂C(v̄)) | T ∈ T (Ĉ(v̄))}) ≥ max(answ(C(v̄)))

where sum(T, f̂C(v̄)) denotes the sum of all nodes in T up to depth f̂C(v̄).

Intuitively, we require that when evaluating Ĉ(v̄) until the maximum depth of

the trees of C(v̄), i.e., until depth f̂C(v̄), we already get a larger cost than when

evaluating C(v̄). Note that we do not require the evaluation trees of Ĉ(v̄) to be

finite, and indeed in some cases they are not, i.e., the loops of Ĉ are possibly non-

terminating. This is because, when generating Ĉ, we usually generalize ϕ1, . . . , ϕh

into ϕ which might affect the termination behavior. The following definition

explains how to construct a worst-case RR for Ĉ, that we use to approximate its

cost up to depth f̂C(v̄).

DEFINITION 4.3.2. Given the CR C of Figure 4.3, a corresponding worst-

case CR Ĉ as in Definition 4.3.1, and a ranking function f̂C(x̄0) for C. The

worst-case RR of Ĉ is defined as 〈PĈ(N) = Êe + m1 ∗ PĈ(N − 1)〉, where Êe

is generated as in definitions 4.2.3 and 4.2.10, with the only difference of using

f̂C(x̄0) instead of f̂Ĉ(x̄0).

Let us clarify how we compute Êe from e in the above definition. In principle,

it is computed as in definitions 4.2.3 and 4.2.10 but using f̂C(x̄0) = ‖l′‖, and

not f̂Ĉ(x̄0) = ‖l′‖, in order to account only for paths of at most length f̂C(x̄0).

Apart from this difference, it is important to note that when computing lRR for

‖l‖ ∈ e: (1) the progression parameters are computed using Ĉ (i.e., using the

constraints ϕ); and (2) ‖l̂‖ is computed by considering an invariant of Ĉ, i.e.,

〈Ĉ(x̄0) ; Ĉ(x̄),Ψ〉.
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In what follows, we describe how to construct a worst-case CR Ĉ. The set

of constraints ϕ is simply constructed as the convex-hull of ϕ1, . . . , ϕh, taking

into account that each ϕi might include local variables that do not occur in

other ϕj. Next we describe how to compute e. Observe that any cost expression

(that does not include max) can be normalized to the form Σn
i=1Πni

j=1bij (i.e.,

sum of multiplications) where each bij is a basic cost expression of the form

{r, ‖l‖,m‖l‖, log(‖l‖+1)}. This normal form allows constructing e by considering

the basic components of e1, . . . , eh. For simplicity, we assume that e1, . . . , eh

are given in this normal form, otherwise they could be normalized first. The

following definition introduces the notion of a generalization operator for basic

cost expressions. W.l.o.g., we consider that e1, . . . , eh have the same number

of multiplicands n, and that all multiplicands have the same number of basic

cost expressions m. This is not a restriction since otherwise, we just add 1 in

multiplication and 0 in sum to achieve this form.

DEFINITION 4.3.3 (generalization of cost expressions). A generalization op-

erator t is a mapping from pairs of basic cost expressions to cost expressions such

that it satisfies atb ≥ a and atb ≥ b. The t-generalization of two CR expressions

e1 = Σn
i=1Πm

j=1aij and e2 = Σn
i=1Πm

j=1bij is defined as e1t e2 = Σn
i=1Πm

j=1(aij t bij).

The above definition does not provide an algorithm for generalizing two cost

expressions, but rather a general method which is parametrized in: (1) the actual

generalization operator t; and (2) the order of the multiplicands and the order

of their basic cost expressions (since we generalize basic cost expressions with the

same indexes). It is important to notice that there is no best-solution for these

points, and that in practice heuristic-based solutions should be used. Below we

describe such solution.

As regards (1), any generalization operator should try first to prove that

aij ≥ bij or aij ≤ bij, and take the bigger one as the result. Such comparison

is feasible due to the simple forms of the basic cost expressions, which are also

known a priori. This means that one could generate a set of rules that specify

conditions under which it is guaranteed that one cost expression is bigger than

another one. E.g., ‖l1‖ ≥ ‖l2‖ if l1 ≥ l2. In [4], such rules are defined for

comparing cost expressions in general. When the comparison fails, a possible
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Algorithm 2: compute UB MulEqn 1

Input: CR C with multiple equations, as in Figure 4.3

Output: Close-form upper bound Cub(x̄0)

Compute a loop bound f̂C(x̄0);1

Compute e = e1 t · · · t eh;2

Generalize ϕ1, · · · , ϕh into ϕ;3

Let 〈Ĉ(x̄) = e+ Ĉ(x̄1) + . . .+ Ĉ(x̄m1), ϕ〉 be a wrost-case CR for C;4

Compute an invariant 〈Ĉ(x̄0) ; Ĉ(x̄),Ψ〉;5

Êe = e;6

foreach ‖l‖ ∈ e do7

Let l̂ be the result of maximizing l w.r.t Ψ ∧ ϕ and the parameter x̄0;8

Compute the progeression parameters ď or 〈ř, p̌〉 for l using Ĉ;9

Compute lRR as in definitions 4.2.3 and 4.2.3, using f̂C(x̄0);10

Êe = Êe[‖l‖/lRR];11

end12

Solve 〈PĈ(N) = Êe +m1 ∗ PĈ(N − 1)〉 into a closed-form expression E13

using CAS ;

Cub(x̄0) = E[N/f̂C(x̄0)];14

sound solution is to take aij + bij. However, this might often results in too

imprecise generalization. Again, the simple structure of such expressions makes

it possible to build a set of generalization rules that obtain precise results. E.g.,

‖2 ∗ y0 + z0‖ and ‖y0 + 2 ∗ z0‖ can be generalized into ‖2 ∗ y0 + 2 ∗ z0‖, by taking

the maximum of the coefficients that correspond to the same variables.

THEOREM 4.3.4. Let E be a solution for PĈ(N) of Definition 4.3.2. Then,

Cub(x̄0) = E[N/f̂C(x̄0)] is an UB for the CR C.

Proof. Let us consider an evaluation tree T1 ∈ T (C(x̄0)). Since Ĉ(x̄0) is the

worst-case CR of C, for each evaluation tree T1 of C, there exists an evaluation

tree T2 ∈ T (Ĉ(x̄0)) such that sum(T2, f̂C(x̄0)) ≥ sum(T1) holds according to

definition 4.3.1. The theorem is not applicable if this fundamental property does

not hold. Now the CR 〈Ĉ(x̄) = e+Ĉ(x̄1)+ · · ·+Ĉ(x̄m1), ϕ〉 where e = e1t· · ·teh
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is similar to the CR in figure 4.1. Its corresponding worst-case RR is 〈PĈ(N) =

Êe + m1 ∗ PĈ(N − 1)〉. Now observe that: (1) We consider the evaluation tree

T2 until the depth f̂C(x̄0) and the number of internal nodes in any path from the

root to a leaf in the evaluation tree T3 of PĈ(f̂C(x̄0)) is exactly f̂C(x̄0); and (2)

The number of child nodes of any internal node in both T2 and T3 are exactly m1.

By considering these observations and according to theorems 4.2.5 and 4.2.11, we

have that if E is closed-form solution of PĈ(N), then E[N/f̂C(x̄0)] is the UB

of Ĉ(x̄0). So, for any T2 ∈ T (Ĉ(x̄0)), E[N/f̂C(x̄0)] ≥ sum(T2, f̂C(x̄0)). Since

sum(T2, f̂C(x̄0)) ≥ sum(T1) and this holds for any T1 ∈ T (C(x̄0)), E[N/f̂C(x̄0)]

is also the UB of C(x̄0).

Algorithms 2 summarizes the approach that we have discussed so far for solv-

ing CRs with multiple equations. Let us now apply it to a concrete example.

EXAMPLE 4.3.5. Let us add the following recursive equation to the CR B:

B(j, i, q) = ‖j‖2 +B(j′, i, q) {j + 1 ≤ i, j′ = j + 1}

Note that B has a nondeterministic choice for accumulating either e1 = ‖q + j‖
or e2 = ‖j‖2, and that both ‖q + j‖ and ‖j‖ have increasing linear progression

behavior with ď = 1. Next, we compute e = e1 t e2 = ‖q + j‖ ∗ ‖j‖ and the

worst-case CR B̂ is

B̂(j, i, q) = ‖q + j‖ ∗ ‖j‖+ B̂(j′, i, q) {j + 1 ≤ i, j + 1 ≤ j′ ≤ j + 3}

Next we compute Êe = (‖q0 + j0 − 1‖ + (‖i0 − j0‖ − N + 1)) ∗ ((‖j0 − 1‖ +

(‖i0 − j0‖ −N + 1))). Now we generate

〈PB̂(N)=(‖j0−1‖+‖i0−j0‖−N+1)∗(‖q0+j0 − 1‖+‖i0−j0‖−N+1)+PB̂(N−1)〉

which is solved by CAS to

PB̂(N) = N
6 ∗ (2 ∗N

2 + 6 ∗ ‖i0 − j0‖2 − 6 ∗N ∗ ‖i0 − j0‖+ 3 ∗ ‖j0 − 1‖+ 6∗
‖i0 − j0‖ ∗ (‖j0 − 1‖+ 1) + 3 ∗ ‖q0 + j0 − 1‖ ∗ (2 ∗ ‖j0 − 1‖+ 2∗
‖i0 − j0‖+ 1)− 3 ∗N ∗ (‖j0 − 1‖+ ‖q0 + j0 − 1‖+ 1) + 1)

and finally instantiating N with ‖i0 − j0‖ gives (with simplification for clarity):

Bub(j0, i0, q0) = 1
6 ∗ ‖i0 − j0‖ ∗ [2 ∗ ‖i0 − j0‖ ∗ ‖i0 − j0‖+ 3 ∗ ‖i0 − j0‖ ∗ ‖j0 − 1‖
+3 ∗ ‖i0 − j0‖ ∗ ‖q0 + j0 − 1‖+ 3 ∗ ‖i0 − j0‖+ 3 ∗ ‖q0 + j0 − 1‖
+6 ∗ ‖q0 + j0 − 1‖ ∗ ‖j0 − 1‖+ 3 ∗ ‖j0 − 1‖+ 1]
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The above approach works very well in practice, since in many cases the cost

expressions contributed by the different equations have very similar structure, and

they differ only in constant expressions. However, there are some cases where this

approach fails to precisely generalize expressions e1, . . . , eh, and thus might infer

imprecise UBs.

EXAMPLE 4.3.6. Consider the following CR

C(z, y) = 0 {z < 1, y < 1}
C(z, y) = ‖z‖+ C(z′, y) {z′ = z − 1, z > 0}
C(z, y) = ‖y‖+ C(z, y′) {y′ = y − 1, y > 0}

Generalizing ‖z‖ and ‖y‖ results in ‖z + y‖. This leads to inferring the UB

Cub(z0, y0) = ‖z0 + y0‖ ∗ ‖z0 + y0‖, which is not precise enough.

In what follows we present an alternative approach for solving (some cases

of) CRs with multiple equations, which is able to handle the one of the above

example. The main idea is to concentrate on the contribution of each equation,

independently from the rest. We start by defining the projection of a CR C on

its i-th equation, which is used later to compute an UB on the contributions of

the i-th equation.

DEFINITION 4.3.7. Given the CR C of Figure 4.3, we denote by Ci the CR

obtained by replacing each ej when j 6= i by 0.

Clearly, if Cub
i (x̄0) is an UB for CR Ci, then Cub(x̄0) =

∑h
i=1C

ub
i (x̄0) is an UB

for CR C. The challenge is to compute a precise UB for each Ci. Of course one

can use the generalization-based approach to solve each Ci, however this does not

lead to precise UB. E.g., for the CR of Example 4.3.6 we obtain ‖y0‖∗‖z0 + y0‖+

‖z0‖ ∗ ‖z0 + y0‖.
Let us consider a path in an arbitrary evaluation tree of Ci(x̄0), and concen-

trate on the contributions of a single ‖l‖ ∈ ei in this path. As we have done so

far, we aim at simulating these contributions using a corresponding arithmetic or

geometric sequence, and then use this sequence to generate a corresponding RR

whose solution can be transformed into an UB for Ci. There are two important

issues that should be taken into account: (1) a ranking function for C (which is
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Algorithm 3: compute UB MulEqn 2

Input: CR C of Figure 4.3 with m1 = 1

Output: Close-form upper bound Cub(x̄0)

Compute an invariant 〈C(x̄0) ; C(x̄),Ψ〉;1

for i = 1 → h do2

Generate CR Ci as in Definition. 4.3.7;3

Compute a bound f̂Ci(x̄0) on the number of visits to the i-the equation;4

Eei = ei;5

foreach ‖l‖ ∈ ei do6

Let l̂ be the result of maximizing l w.r.t Ψ ∧ ϕi and the parameter7

x̄0;

Compute ď or 〈ř, p̌〉 for l (considering subsequent visits to the i-th8

equation);

Compute lRR as in definitions 4.2.3 and 4.2.3, using f̂Ci(x̄0);9

Êei = Êei [‖l‖/lRR];10

end11

Solve 〈PĈi(N) = Êei + PĈi(N − 1)〉 into a closed-form expression Ei12

using CAS ;

Cub
i (x̄0) = Ei[N/f̂Ci(x̄0)] ;13

end14

Cub(x̄0) = Cub
1 (x̄0) + · · ·+ Cub

h (x̄0) ;15

also valid for Ci) does not precisely bound the number of instances of ‖l‖ ∈ ei,
since it also accounts for visits to other equations; and (2) when computing the

progression parameters of ‖l‖ ∈ ei, it is not safe to consider only consecutive ap-

plications of the i-th equation, since between two applications of the i-th equation

we might apply any other equations.

The above two issues can be solved as follows: (1) instead of using the ranking

function f̂C(x̄0), we use a function f̂Ci(x̄0) which approximates the number of

applications of the i-th equation only. Inferring such function can be done by

instrumenting the CR with a counter that counts the number of visits to the i-th

equation, and then infer an invariant that relates this counter to x̄0; and (2) when

45



inferring the progression parameters ď or 〈r̂, p̂〉, we consider the increase/decrease

in two subsequent applications of the i-th equation (rather than of two consecutive

ones). Again, this can be inferred by means of an appropriate invariant.

Now let us see how to use f̂Ci(x̄0) and the progression parameters (computed

as in (2) above) in order to compute a precise UB for Ci, assuming that it has

at most one recursive call, i.e., m1 = 1 (later we discuss this restriction): (i) we

generate a worst-case RR PCi(N) = Eei + PCi(N − 1) where Eei is computed

as in definitions 4.2.3 and 4.2.10, but using f̂Ci(x̄0) instead of f̂C(x̄0), and by

computing the progression parameters as in point (2) above; (ii) we solve PCi(N)

into a closed-form solution E using CAS ; and (iii) Cub
i (x̄0) = E[N/f̂Ci(x̄0)] is

guaranteed to be a correct UB for Ci. Algorithm 3 summarizes this approach.

Let us apply it to the CR of Example 4.3.6.

EXAMPLE 4.3.8. Consider the following CR

C(z, y) = 0 {z < 1, y < 1}
C(z, y) = ‖z‖+ C(z′, y) {z′ = z − 1, z > 0}
C(z, y) = ‖y‖+ C(z, y′) {y′ = y − 1, y > 0}

Generalizing ‖z‖ and ‖y‖ results in ‖z + y‖, which in turn leads to inferring the

imprecise UB Cub(z0, y0) = ‖z0 + y0‖ ∗ ‖z0 + y0‖. Using the above approach, we

generate C1 and C2 as follows

C1(z, y) = 0 {z < 1, y < 1}
C1(z, y) = ‖z‖+ C1(z′, y) {z′ = z − 1, z > 0}
C1(z, y) = 0 + C1(z, y′) {y′ = y − 1, y > 0}

C2(z, y) = 0 {z < 1, y < 1}
C2(z, y) = 0 + C2(z′, y) {z′ = z − 1, z > 0}
C2(z, y) = ‖y‖+ C2(z, y′) {y′ = y − 1, y > 0}

Observe that (1) ‖z‖ and ‖y‖ are linearly decreasing with a progression parameter

ď = 1; (2) the maximization of ‖z‖ and ‖y‖ are ‖z0‖ and ‖y0‖ respectively; and

(3) the number of applications of the first (resp. second) recursive equations of

C1 (resp. C2) is f̂C1(z0, y0) = ‖z0‖ (resp. f̂C2(z0, y0) = ‖y0‖). We generate the
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RR for C1 according to Definition 4.2.3 as follows:

〈PC1(N) = ‖z0 − z0 ∗ 1‖+N + PC1(N − 1)〉

The solution of PC1(N) obtained by CAS is PC1(N) = 1
2
∗N2 + 1

2
∗N and the UB

of C1 according to Theorem 4.2.5 is

C1
ub(z0, y0) =

1

2
∗ ‖z0‖ ∗ ‖z0‖+

1

2
∗ ‖z0‖

Similarly, the RR for C2 according to Definition 4.2.3 is as follows

〈PC2(N) = ‖y0 − y0 ∗ 1‖+N + PC2(N − 1)〉

The solution of PC2(N) obtained from CAS is PC2(N) = 1
2
∗N2 + 1

2
∗N and the

UB of C2 according to Theorem 4.2.5 is

C2
ub(z0, y0) =

1

2
∗ ‖y0‖ ∗ ‖y0‖+

1

2
∗ ‖y0‖

So, the computed UB of C here is

Cub(z0, y0) =
1

2
∗ ‖z0‖ ∗ ‖z0‖+

1

2
∗ ‖z0‖+

1

2
∗ ‖y0‖ ∗ ‖y0‖+

1

2
∗ ‖y0‖

which is more precise than ‖z0 + y0‖ ∗ ‖z0 + y0‖.

It is important to note that this last approach is correct only when m1 = 1,

it might infer incorrect UBs if m1 > 1. Let us intuitively see why. Suppose we

change the RR PCi such that it has m1 > 1 recursive calls, then an evaluation

tree for PCi(f̂Ci(v̄0)) might include less nodes than those contributed by the i-th

equation in a corresponding evaluation tree for C(v̄0). This is because deeper

levels in an evaluation tree has more nodes, and since we have shortened the

depth, by using f̂Ci(x̄0) instead of f̂C(x̄0), we might also reduce the number of

such nodes. However, this approach is still practical since with m1 = 1 we can

handle all programs with iterative constructs and/or a single recursive call (per

method).
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4.4 Non-zero Base-case Cost

So far, we have considered CRs with only one base-case equation, and moreover,

we have assumed that its contributed cost is always 0. In practice, many CRs

that originate from real programs have several non-zero base-case equations and,

besides, the cost contributed by such equations is not necessarily constant. In

this section, we describe how to handle such CRs .

Consider the CR C of Figure 4.3 and assume that, instead of one base-case

equation, it has n base-case equations, where the i-th equation is defined by

〈C(x̄) = e′i, ϕ
i
0〉. In order to account for these base-case equations, we first extend

the worst-case RR PC of Definition 4.1.1, 4.2.3 and 4.2.10 to include a generic

base-case equation 〈PC(0) = λ〉. Due to this extension, any solution E for PC

must involve the base-case symbol λ to account for all applications of the base-

case equation.

In a second step, the base-case symbol λ in E is replaced by a cost expression

eλ that involves only x̄0 (i.e., it does not involve the parameter of PC), and is

greater than or equal to any value to which any ê′i is evaluated to during the

evaluation of C(x̄0). The cost expression eλ is simply defined as eλ = ê′1 t
. . . ,tê′n, where ê′i is the maximization of e′i as defined in Section 2.2, and t is

a generalization operator of cost expressions like the one of RR expressions in

Section 4.3.

EXAMPLE 4.4.1. Let us replace the base-case equation 〈B(j, i, q) = 0, {j ≥ i}〉
of Figure 2.2 by the equations 〈B(j, i, q) = ‖j‖, {j ≥ i}〉 and 〈B(j, i, q) =

‖i‖, {j ≥ i}〉. Maximizations of such base-case costs are, respectively, ê′1 =

‖i0 + 2‖, ê′2 = ‖i0‖ and thus their generalization is eλ = ‖i0 + 2‖. Solving PB of

Example 4.2.6, together with a base-case equation PB(0) = λ, results in:

PB(N) = ‖q0 + j0 − 1‖ ∗N + ‖i0 − j0‖ ∗N +
N

2
− N2

2
+ λ

Then, replacing N by the ranking function ‖i0 − j0‖ and λ by eλ we get

Bub(j0, i0, q0) = ‖q0+j0−1‖ ∗ ‖i0−j0‖+
‖i0−j0‖

2
∗ (‖i0−j0‖+1)+‖i0+2‖ .
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4.5 Concluding Remarks

We have presented a practical and precise approach for inferring UBs on CRs .

When considering CRs with a single recursive equation, in practice, our approach

achieves an optimal precision. As regards CRs with multiple recursive equations,

we have presented a solution which is effective in practice. Note that, although

we have concentrated on arithmetic and geometric behavior of ‖.‖ expression, our

techniques are not limited to such behavior, and can be adapted to any behavior

that can be modeled with sequences.

It is important to point out that in some cases the output of CAS , when

solving a RR, might not comply with the grammar of cost expressions as specified

in Section 3.1. Concretely, after normalization, it might include sub-expressions

of the form −e where e is a multiplication of basic cost expression. Converting

them to valid cost expressions can be simply done by removing such negative

parts and obviously still have a sound UB. In practice, these negative parts are

asymptotically negligible when compared to the other parts of the UB, and thus,

removing them does not significantly affect the precision. In addition, in many

cases, the negative parts can be rewritten in order to push the minus sign inside

a ‖.‖ expression, e.g., ‖l1‖ − ‖l2‖ is over-approximated by ‖l1 − l2‖.
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Chapter 5

Inference of Precise Lower

Bounds

In this chapter we aim at applying the approach from Chapter 4 in order to

infer lower bounds, i.e., under-approximations of the best-case cost. In addition

to the traditional applications for performance debugging, program optimization

and verification, such LBs are useful in granularity analysis to decide if tasks

should be executed in parallel. This is because the parallel execution of a task

incurs various overheads, and therefore the LB cost of the task can be useful to

decide if it is worth executing it concurrently as a separate task. Due in part to

the difficulty of inferring under-approximations, a general framework for inferring

LBs from CR does not exist. When trying to adapt the UB framework of [5] to

LB, we only obtain trivial bounds. This is because the minimization of the cost

expression accumulated along the execution is in most cases zero and, hence,

by assuming it for all executions we would obtain a trivial (zero) LB. In our

framework, even if the minimal cost could be zero, since we do not assume it for

all iterations, but rather only for the first one, the resulting LB is not trivial. In

what follows, in Section 5.1 we develop our method for inferring LBs for CRs

with single recursive equation as the one of Figure 4.1, and, in Section 5.2 we

handle CRs with multiple recursive equations as the one of Figure 4.3. Finally,

in Section 5.3 we finish with some concluding remarks.
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5.1 Cost Relations with Single Recursive Equa-

tion

The basic ideas for inferring LBs are dual to those described in Section 4 for

inferring UBs, i.e., they are based on simulating the behavior of ‖.‖ expressions

with corresponding linear or geometric sequences. For example, if a given ‖l‖ ∈ e
is linearly increasing with a progression parameter ď ≥ 0, then it is simulated with

an arithmetic sequence that starts from the minimum value to which ‖l‖ can be

evaluated, and increases in each step by ď. In addition, the number of elements

that we consider in such sequence is an under-approximation of the length of any

chain of calls when evaluating C(x̄0). In what follows, we develop our approach

for inferring LBs on the CR of Figure 4.1 as follows: we first describe how to infer

a lower-bound on the length of any chain of calls; then we describe how to infer

the minimum value to which a ‖l‖ expression can be evaluated; and finally we

use this information in order to build a best-case RR that under-approximates

the best-case cost of the CR C.

The following definition provides a practical algorithm for inferring an under-

approximation on the length of any chain of calls when evaluating C(x̄0) using

the CR of Figure 4.3, which is also applicable for the CR of Figure 4.1.

DEFINITION 5.1.1. Given the CR of Figure 4.3, a lower-bound on the length

of any chain of calls during the evaluation of C(x̄0) denoted as f̌C(x̄0) is computed

as follows:

1. Instrumentation: Replace each head C(x̄) by C(x̄, lb), each recursive call

C(x̄j) by C(x̄j, lb
′), and add {lb′ = lb+ 1} to each ϕi;

2. Invariant: Infer an invariant 〈C(x̄0, 0) ; C(x̄, lb),Ψ〉 for the new CR, such

that the linear constraints Ψ hold between (the variables of) the initial call

C(x̄0, 0) and any recursive call C(x̄, lb); and

3. Synthesis: compute l as the result of minimizing lb w.r.t Ψ∧ϕ0 and the pa-

rameters x̄0, using parametric integer programming; or alternatively, com-

pute l by syntactically looking for lb ≥ l in ∃̄x̄0 ∪ {lb}. Ψ ∧ ϕ0.

52



Then, f̌C(x̄0) = ‖l‖.

Let us explain intuitively the different steps of the above definition. In step 1,

the CR C is instrumented with an extra argument lb which computes the length

of the corresponding chain of calls, when starting the evaluation from C(x̄0, 0).

This instrumentation reduces the problem of finding a lower-bound on the length

of any chain of calls to the problem of finding a (symbolic) minimum value for lb

for which the base-case equation is applicable (i.e., the chain of calls terminates).

This is exactly what steps 2 and 3 do. In 2, we infer an invariant Ψ on the

arguments of any call C(x̄, lb) encountered during the evaluation of C(x̄0, 0). This

is done exactly as for the invariant described in Section 3.1 when maximizing cost

expressions. In 3, from all states described by Ψ, we are interested only in those

in which the base-case equation is applicable, i.e., in Ψ ∧ ϕ0. Then, within this

set of states, we take the minimum value l (in terms x̄0) of lb. Such l is the

lower-bound we are interested in.

COROLLARY 5.1.2. Function f̌C(x̄0) of Definition 5.1.1 is a lower-bound on

the length of any chain of calls during the evaluation of C(x̄0).

EXAMPLE 5.1.3. Applying step 1 of Definition 5.1.1 on the CR B of Exam-

ple 4.2.2 results in

〈B(j, i, q, lb) = 0 {j ≥ i}〉
〈B(j, i, q, lb) = ‖q+j‖+B(j′, i, q, lb′) {j < i, j+1 ≤ j′ ≤ j+3, lb′ = lb+ 1}〉

The invariant for this CR is Ψ = {j−j0−lb ≥ 0, j0 +3∗lb−j ≥ 0, i = i0, q = q0}.
Projecting Ψ∧{j ≥ i} on 〈j0, i0, q0, lb〉 results in {j0+3∗lb−i0 ≥ 0} which implies

lb ≥ (i0−j0)
3

, from which we can synthesize f̌B(j0, i0, q0) = ‖ i0−j0
3
‖. Similarly,

for CRs C and A of Figure 2.2 we obtain f̌C(k0, j0, q0) = ‖q0 + j0 − k0‖ and

f̌A(i0, q0) = ‖ q0−i0
4
‖.

Inferring the minimum value to which ‖l‖ ∈ e can be evaluated is done in a

dual way to that of inferring the maximum value to which it can be evaluated (see

Section 2.2). Namely, using the invariant Ψ of Definition 5.1.1, we syntactically

look for an expression ξ ≥ ľ in ∃̄x̄0 ∪ {ξ}. Ψ ∧ ϕ1 ∧ ξ = l where ξ is a new

variable. As in the case of maximization, the advantage of this approach is that
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it can be implemented using any tool for manipulation of linear constraints such

as PPL [11]. Alternatively, we can also use parametric integer programming [40]

in order to minimize ξ w.r.t. Ψ ∧ ϕ1 ∧ ξ = l and the parameters x̄0.

Now that we have all ingredients for under-approximating the behavior of

a given ‖l‖ ∈ e. In the following definition, we generate the best-case RR PC

of CR C. Let us first explain the idea intuitively. Let ‖l1‖, . . . , ‖lκ‖ be the

first κ ≤ f̌C(x̄0) elements contributed by a given ‖l‖ ∈ e along a chain of calls,

and assume that li ≥ 0 for all 1 ≤ i ≤ κ. If ‖l‖ is linearly increasing (resp.

decreasing) with a progression parameter ď > 0, then the elements of the sequence

{`1 = ‖ľ‖, `i = `i−1 + ď} satisfy `i ≤ ‖li‖ (resp. `i ≤ ‖lκ−i+1‖). Similarly, if ‖l‖
is geometrically increasing (resp. decreasing) with progression parameters ř and

p̌, then the elements of the sequence {`1 = ‖ľ‖, `i = ř ∗ `i−1 + p̌} satisfy `i ≤ ‖li‖
(resp. `i ≤ ‖lκ−i+1‖). The following definition uses these sequences in order to

under-approximate the behavior of ‖l‖. Note that the condition li ≥ 0 is essential,

otherwise, the sequences `i is not a sound under-approximation.

DEFINITION 5.1.4. Let C be the CR of Figure 4.1, and f̌C(x̄0) a lower-bound

function on the length of any chain of calls generated during the evaluation of

C(x̄0). Then, the best-case RR of C is PC(N) = Ěe + m ∗ PC(N − 1) where Ěe

is obtained from e by replacing each ‖l‖ ∈ e by lRR such that ľ ≥ 0 where:

1. lRR ≡ ‖ľ‖+ (f̌C(x̄0)−N) ∗ ď, if it is linearly increasing;

2. lRR ≡ ‖ľ‖+ (N − 1) ∗ ď, if it is linearly decreasing;

3. lRR ≡ ř(f̌C(x̄0)−N) ∗ ‖ľ‖+ p̌ ∗ Š(f̌C(x̄0)−N), if it is geometrically increasing;

4. lRR ≡ ř(N−1) ∗ ‖ľ‖+ p̌ ∗ Š(N − 1), if it is geometrically decreasing;

5. lRR ≡ ‖ľ‖, otherwise.

where Š(i) = ři−1
ř−1

THEOREM 5.1.5. If E is a solution for PC(N) of Definition 5.1.4, then

C lb(x̄0) = E[N/f̌C(x̄0)] is a LB for C(x̄0).
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Proof. In order to prove the above theorem, it is enough to prove that if the

costs contributed by C(x̄0) and PC(N) along any corresponding chain of calls are

e1, · · · , eκ0 and Ěe1 , · · · , Ěeκ respectively, it holds that Ěei ≤ ei for all 1 ≤ i ≤ κ

and κ ≤ κ0. Since N is instantiated by f̌C(x̄0) to the solution E of PC(N),

any chain of calls of PC(N) is exactly f̌C(x̄0) (i.e. κ = f̌C(x̄0)). According to

Corollary 5.1.2, f̌C(x̄0) is the lower-bound on the length of any chain of C(x̄0) and

hence κ ≤ κ0 holds in general. Again, since cost expression e (and hence its corre-

sponding RR expression Ěe) follows the monotonicity property, in order to prove

Ěei ≤ ei, it is enough to prove the relation for their ‖.‖ sub-component. That

means, if ‖l1‖, · · · , ‖lκ0‖ are instances of ‖l‖ ∈ e in the chain of calls e1, · · · , eκ0

and L1, · · · , Lf̌C(x̄0) are the instances of the replacements of ‖l‖ in Ěe according

to Definition 5.1.4 along the chain of calls Ěe1 , · · · , Ěeκ , it is enough to prove that

Li ≤ ‖li‖ for all 1 ≤ i ≤ f̌C(x̄0).

Base Case: The comparison of L1 and ‖l1‖ are done by the following case

analysis as done for the replacement of ‖l‖ in Definition 5.1.4.

1. We obtain L1 when N = f̌C(x̄0) since ‖l‖ is linearly increasing. L1 =

‖ľ‖+ (f̌C(x̄0)− f̌C(x̄0)) ∗ ď = ‖ľ‖ ≤ ‖l1‖.

2. In this case N = 1 since ‖l‖ is linearly decreasing and L1 = ‖ľ‖+(1−1)∗ď =

‖ľ‖ ≤ ‖l1‖.

3. Here, N = f̌C(x̄0) and L1 = ř(f̌C(x̄0)−f̌C(x̄0)) ∗ ‖ľ‖+ p̌ ∗ Š(f̌C(x̄0)− f̌C(x̄0)) =

‖ľ‖ ≤ ‖l1‖ since Š(0) = 0.

4. Here, N = 1 and L1 = ř(1−1) ∗ ‖ľ‖+ p̌ ∗ Š(1− 1) = ‖ľ‖ ≤ ‖l1‖.

5. ‖ľ‖ ≤ ‖l1‖.

Inductive Case: Here we assume that Li ≤ ‖li‖ and will prove that Li+1 ≤
‖li+1‖. We do the similar case analysis.

1. For Li, we have N = f̌C(x̄0)− i+ 1. So, Li = ‖ľ‖+ (f̌C(x̄0)− (f̌C(x̄0)− i+

1)) ∗ ď = ‖ľ‖ + (i − 1) ∗ ď. Then Li+1 = ‖ľ‖ + (f̌C(x̄0) − f̌C(x̄0) + i) ∗ ď =
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PA(N) = 1
2 ∗ (‖

i0
3 ‖+ (‖ q0−i04 ‖−N) ∗ 2

3) ∗ (‖
i0
3 ‖+(‖ q0−i04 ‖−N) ∗ 2

3+2 ∗ ‖q0 − 1
2‖)

+PA(N−1)
PB(N)=‖q0 + j0‖+ (‖ i0−j03 ‖−N)∗1 + PB(N−1)
PC(N) = 1 + PC(N − 1)

Figure 5.1: Best-Case RRs automatically obtained from CRs in Fig. 2.2.

‖ľ‖+ i ∗ ď = ‖ľ‖+ (i− 1) ∗ ď+ ď = Li + ď ≤ ‖li‖+ ď ≤ ‖li+1‖ since ď is the

minimum distance of ‖l‖ and ľ ≥ 0.

2. Here, we have N = i for Li and N = i + 1 for Li+1. Then the proof is

similar to the proof of case (1).

3. For Li and Li+1, N = f̌C(x̄0)− i+ 1 and N = f̌C(x̄0)− i respectively. Thus

we obtain Li = ř(i−1) ∗ ‖ľ‖ + p̌ ∗ Š(i − 1) and Li+1 = ři ∗ ‖ľ‖ + p̌ ∗ Š(i).

We also have Š(i) = ři−1
ř−1

= ř ∗ ři−1−1
ř−1

+ 1 = ř ∗ Š(i − 1) + 1. Then

Li+1 = ři ∗ ‖ľ‖+ p̌ ∗ Š(i) = ř ∗ (ř(i−1) ∗ ‖ľ‖+ p̌ ∗ Š(i− 1)) + p = ř ∗Li + p̌ ≤
ř ∗ ‖li‖ + p̌ ≤ ‖li+1‖ [since ľ ≥ 0 and ‖l‖ has the geometric progression

behavior as defined in Definition 4.2.8].

4. For Li and Li+1, N = i and N = i+ 1 respectively and the proof is similar

to the proof of case (3).

5. ‖ľ‖ ≤ ‖li+1‖.

An algorithm that summarizes the above approach can be derived in a very

similar way to Algorithm 1, simply by considering the dual notions to l̂ and

f̂C(x̄0).

EXAMPLE 5.1.6. Consider again the LBs on the length of chains of calls as

described in Example 5.1.3. Since C(k0, j0, q0) accumulates a constant cost 1,

its LB cost is ‖q0 + j0 − k0‖. We now replace the call C(0, j, q) in B by its LB

‖q + j‖ and obtain the following recursive equation:

〈B(j, i, q) = ‖q + j‖+B(j′, i, q), {j + 1 ≤ i, j + 1 ≤ j′ ≤ j + 3}〉
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Notice the need of the soundness requirement in Definition 5.1.4, i.e., q0 + j0 ≥
0 where q0 + j0 is the minimization of q + j for any call to B(j0, i0, q0). For

example, when evaluating B(−5, 5, 0) the first 5 instances of ‖q + j‖ are zero

since they correspond to ‖−5‖, . . . , ‖−1‖. Therefore, it would be incorrect to

start accumulating from 0 with a difference 1 at each iteration. However, in the

context of the CRs of Figure 2.2, it is guaranteed that q0 + j0 ≥ 0 (since it is

always called with j ≥ 0 and q ≥ 0). Using Definition 5.1.4, we generate the

best-case RR PB depicted in Figure 5.1 which is solved by CAS to

PB(N) = ‖q0 + j0‖ ∗N + ‖i0 − j0

3
‖ ∗N − N2

2
− N

2

Then, according to Theorem 5.1.5

Blb(j0, i0, q0) =
1

2
∗ ‖i0 − j0

3
‖ ∗ (‖i0 − j0

3
‖+ 2 ∗ ‖q0 + j0 −

1

2
‖)

Substituting this LB in the CR A of Figure 2.2 results in the CR

〈A(i, q) =
1

2
∗ ‖ i

3
‖ ∗ (‖ i

3
‖+ 2 ∗ ‖q − 1

2
‖) +A(i′, q), {i+ 1 ≤ q, i+ 2 ≤ i′ ≤ i+ 4}〉

In this CR, the expression 2∗‖q − 1
2
‖ is constant, while ‖ i

3
‖ has an increasing lin-

ear progression behavior with ď = 2
3
. According to Definition 5.1.4, the generated

best-case RR PA is depicted in Figure 5.1 which is solved using CAS to

PA(N) = N
54 ∗ (4 ∗N

2 + 6 ∗N + 18 ∗ ‖ i03 ‖ ∗ (N − 1) + 18 ∗ ‖q0 − 1
2‖ ∗ (N − 1)+

27 ∗ ‖ i03 ‖ ∗ ‖
i0
3 ‖+ 54 ∗ ‖ i03 ‖ ∗ ‖q0 − 1

2‖ − 12 ∗ ‖ q0−i04 ‖+ 2)

Then, according to Theorem 5.1.5, i.e., substituting N by ‖ q0−i0
4
‖, we obtain

Alb(i0, q0) = 1
54
∗ ‖ q0−i0

4
‖ ∗ (4 ∗ ‖ q0−i0

4
‖ ∗ ‖ q0−i0

4
‖+6 ∗ ‖ q0−i0

4
‖+18 ∗ ‖ i0

3
‖

∗(‖ q0−i0
4
‖−1)+18 ∗ ‖q0 − 1

2
‖ ∗ (‖ q0−i0

4
‖−1)+27 ∗ ‖ i0

3
‖ ∗ ‖ i0

3
‖

+54 ∗ ‖ i0
3
‖ ∗ ‖q0 − 1

2
‖ − 12 ∗ ‖ q0−i0

4
‖+ 2)

Finally, the LB of F (q0) is

F lb(q0) = 1
54
∗ ‖ q0

4
‖ ∗ (4 ∗ ‖ q0

4
‖ ∗ ‖ q0

4
‖+ 6 ∗ ‖ q0

4
‖+ 18 ∗ ‖q0 − 1

2
‖∗

(‖ q0
4
‖ − 1)− 12 ∗ ‖ q0

4
‖+ 2) .
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5.2 Cost Relations with Multiple Recursive Equa-

tions

We infer LBs for CRs with multiple recursive equations in a dual way to the

inference of UBs, namely: we first try to generate a best-case CR Č, for the

multiple recursive CRs C in Figure 4.3, in a similar way to the worst-case CR Ĉ.

If this is not possible (or not precise enough) and m1 = 1 (i.e. we have at most

one recursive call) then we can use the second approach, in which we compute a

LB for each Ci (the projection of C on the i-th equation), and then sum all these

LBs into a sound LB for C.

DEFINITION 5.2.1. We say that 〈Č(x̄) = e + Č(x̄1) + · · · + Č(x̄m1), ϕ〉 is a

best-case CR for the CR C of Figure 4.3, if for any valuation v̄ it holds that

min({sum(T, f̌C(v̄)) | T ∈ T (Č(v̄))} ≤ min(answ(C(v̄)))

where sum(T, f̌C(v̄)) denotes the sum of all nodes in T up to depth f̌C(v̄).

CR Č is generated in a similar way to Ĉ. The only difference is that in order to

generate the cost expression e, we use a reduction operator u instead of t that

appear in Definition 4.3.3. Such operator guarantees that au b ≤ a and au b ≤ b.

In practice, the reduction operator u is implemented by syntactically analyzing

the input cost expressions, in a similar way to the case of t.

THEOREM 5.2.2. Given the CR C of Figure 4.3, a corresponding f̌C(x̄0) as

defined in Definition 5.1.1, a best-case CR Č for C, and a solution E for the RR

〈PČ(N) = Ěe + mh ∗ PČ(N − 1)〉. Then C lb(x̄0) = E[N/f̌C(x̄0)] is a LB for the

CR C.

Proof. Intuitively, since the evaluation trees of Č up to depth f̌C(x̄0) under-

approximate those of C, then, by the construction of Ěe, it is guaranteed that

the evaluation tree of 〈PC(N) = Ěe +mh ∗PC(N −1)〉 up to depth f̌C(x̄0) under-

approximates C. Therefore, if E is a solution for PC then E[N/f̌C(x̄0)] is a LB

for C(x̄0).
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EXAMPLE 5.2.3. Consider the CR B in Example 4.3.5. We simulate its best-

case behavior by the following single recursive equation

〈B̌(j, i, q) = ‖j‖+ B̌(j′, i, q), {j + 1 ≤ i, j + 1 ≤ j′ ≤ j + 3}〉

Note that (1) ‖j‖ under-approximates both e1 and e2; and (2) ‖j‖ has an in-

creasing linear progression behavior with progression parameter ď = 1. Using

Definition 5.1.4, we generate the following best-case RR PB̌ for B̌

〈PB̌(N) = ‖j0‖+ (‖i0 − j0

3
‖ −N) ∗ 1 + PB̌(N − 1)〉

which is solved by CAS to

PB̌(N) = N ∗ ‖ i0 − j0

3
‖+N ∗ ‖j0‖ −

1

2
∗N2 − 1

2
∗N

According to Theorem 5.2.2, replacing N by f̌B(j0, i0, q0) = ‖ i0−j0
3
‖ results in

(after simplification) the following LB for B

Blb(j0, i0, q0) =
1

2
∗ ‖i0 − j0

3
‖ ∗ ‖ i0 − j0

3
− 1‖+ ‖i0 − j0

3
‖ ∗ ‖j0‖

When the best-case CR approach leads to imprecise bounds, which happens

when the reduction operator obtains trivial reductions (i.e., 0), we can apply the

alternative method that is based on analyzing each Ci separately. Namely, we

infer a LB Ci
lb(x̄0) for each CR Ci, and then C lb(x̄0) =

∑h
i=1Ci

lb(x̄0) is clearly a

sound LB for C. The technical details for solving each Ci
lb(x̄0) are identical to

those of the UB case: (1) instead of using f̌C(x̄0), we should use f̌Ci(x̄0) which

under-approximates the number of applications of the i-th equation. This is

done by modifying Definition 5.1.1 such that it counts only the applications of

the i-th equation instead of all equations; and (2) the progression parameter ď,

or 〈ř, p̌〉 are the same as in the case of UB, i.e., we consider subsequent, rather

than consecutive, applications of the i-th equation. It is important to note that

this approach can be applied only when m1 = 1. Algorithms that summarize the

above approaches can be derived in a very similar way to algorithms 2 and 3,

simply by considering the dual notions.
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5.3 Concluding Remarks

We have presented a practical and precise approach for inferring LBs on CRs .

When considering CRs with a single recursive equation, in practice, our approach

achieves an optimal precision. As regards CRs with multiple recursive equations,

we have presented a solution which is effective in many cases, however, it is less

effective than its UB counterpart. This is expected, as indeed, the problem of

inferring LBs is far more complicated than inferring UBs. It is important to note

that this is the first work that attempts to automatically infer LBs for CRs that

originate from real programs. Our approach for inferring LBs is not limited to

‖.‖ expressions with linear and geometric behavior, but can be adapted to any

behavior that can be modeled with sequences.

As in the case of UBs, the output of CAS , when solving a best-case RR,

might not comply with the grammar of cost expressions as specified in Section 3.

Concretely, after normalization, it might include sub-expressions of the form −e
where e is a multiplication of basic cost expressions. Unlike the case of UBs,

for LBs it is not sound to remove such expressions as it results in a bigger one.

Removing them requires changing other subexpressions in order to compensate

on −e. E.g., ‖x‖2 − ‖x‖ can be rewritten to ‖x− 1‖ ∗ ‖x‖.
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Chapter 6

Implementation and Experiments

In this chapter we describe an implementation of the techniques developed in

chapters 4 and 5, and its evaluation on some selected benchmarks. In Section 6.1

we discuss implementation issues. In Section 6.2 we describe the selected bench-

marks, their respective challenges, and the UBs and LBs that we obtain and

compare them to results of other available systems. We finish in Section 6.3 with

some concluding remarks.

6.1 Implementation of the Cost Relations Solver

We have implemented the techniques developed in chapters 4 and 5 as a compo-

nent in PUBS (Practical Upper Bound Solver) [5], which is also used as backend

solver in COSTA (a COSt and Termination Analyzer for Java bytecode) [5]. This

means that our solver can be used to solve (i) CRs that are automatically gen-

erated by COSTA from Java (bytecode) programs; or (ii) CRs provided by the

user. In our experiments we apply it on Java programs via COSTA.

The solver is written in Prolog, and can be compiled both in CIAO Prolog [44]

and SWI Prolog [81] on a LINUX based operating systems. The solver consists of

the following major components:

1. A component for computing the progression behaviour of a given (possibly

nonlinear) symbolic cost expression according to definitions 4.2.1 and 4.2.8;
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2. A component for maximizing and minimizing (possibly nonlinear) symbolic

cost expressions;

3. A component for computing the minimum number of chains of recursive

calls in CRs as described in Definition 5.1.1;

4. A component for generating the worst-case and best-case RRs for comput-

ing UBs and LBs respectively; and

5. A component for communicating with external RRs solvers in order to

solve the corresponding worst-case and best-case RRs , in particular with

MAXIMA [60] and PURRS [13].

In addition, the solver relies on PUBS [5] for computing linear ranking functions

and invariants, and uses the Parma Polyhedra Library (PPL) [11] for manipu-

lating linear constraints – such as checking for consistency, eliminating variables,

and solving linear programming problems.

The tool has both a command-line and a web interface. Using it from a

command-line is done as follow

pubs shell -file ProgramFile -computebound {ubseries,lbseries}

where Programfile is an ASCII text file that includes the corresponding CRs , and

the options ubseries and lbseries indicate if the user wants to compute UBs or

LBs respectively. The web interface is available at http://costa.ls.fi.upm.

es/pubs. The user can provide a CRs , select an appropriate setting, and ask the

solver to compute UBs or LBs for each CR. A screenshot is provided in Figure 6.1.

Alternatively, the solver can be used via the web interface of COSTA which is

available at http://costa.ls.fi.upm.es/costa. In this case the user is asked

to provide a Java (bytecode) program, then COSTA automatically generates the

corresponding CRs and passes them to the solver.

6.2 Experiments

As benchmarks, we use classical challenging examples from complexity analysis

and numerical methods. We avoid examples in which all iterations of a loop
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Figure 6.1: Web interface of the cost relations solver.
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pubs(c)
ub(c)
lb(c)

DetEval

pubs(b,c)
ub(b,c)
lb(b,c)

LinEqSolve

pubs(a)
ub(a)
lb(a)

MatrixInv

pubs(c)
ub(c)
lb(c)

MatrixSort
pubs(b)
ub(b)
lb(b)

InsertSort

pubs(b)
ub(b)
lb(b)

MergeSort
pubs(a)
ub(a)
lb(a)

SelectSort

pubs(a)
ub(a)
lb(a)

PascalTriangle
pubs(c)
ub(c)
lb(c)

BubbleSort

pubs(b)
ub(b)
lb(b)

NestedRecIter

Figure 6.2: Graphical comparisions of UBs and LBs.
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(or recursive calls) have the same worst-case or best-case costs, since in such

cases our method infers the same bounds as [5]. Our benchmarks are written

in Java, and we analyze them using COSTA which, for each benchmark, it first

generates a corresponding CRs and then it solves it into closed-form UBs and

LBs using our solver. We use a cost model that counts the “number of executed

(bytecode) instructions”. The (complete) source code and the generated CRs for

each benchmark are available at http://costa.ls.fi.upm.es/pubs. Next, for

each benchmark: we present the interesting parts of the source code; discuss its

interesting features for cost analysis; show the UB and LB that we infer using

our solver and compare our UB to that inferred by [5]. In order to facilitate the

comparison of the UBs and LBs of each benchmark, we also provide the graphical

representations for each benchmark in Figure 6.2 where pubs, ub, and lb represent

respectively the plots for the UBs obtained by [5], our UBs and LBs.

DetEval. This program computes the determinant of a matrix. The interesting

part is a method gaussian which converts a given matrix into an upper triangular

matrix. The code of this method is depicted in Figure 6.3. The interesting

part of this method is the loop that starts at line 19 and ends at line 39. Note

that the value of the outer loop counter j affects the number of iterations of the

inner loops, and thus the cost contributed by the inner loops is different in each

iteration of the outer loop. For this benchmark we obtain the following bounds

(A) 24 · ‖a−1‖3+36 · ‖a−1‖2+18 · ‖a‖2+30 · ‖a‖ · ‖a−1‖+35 · ‖a−1‖+72 · ‖a‖+54 1776

(B) 8 · ‖a−1‖3+18 · ‖a‖2+45 · ‖a−1‖2+72 · ‖a‖+102 · ‖a−1‖+54 3272

(C) 8 · ‖a−1‖3+16 · ‖a‖2+43 · ‖a−1‖2+55 · ‖a‖+96 · ‖a−1‖+54 2568

In the first column: (A) the UB obtained by [5]; (B) the UB obtained by our

approach; and (C) our LB. The second column is the runtime in milliseconds.

This notation will be used for all benchmarks that follows and thus we will not

explain it again later. Looking at the corresponding graph in Figure 6.2, we can

see that our UB is more precise than that of [5] and our LB is very tight.

LinEqSolve. This program solves a set of linear equations given as a matrix.

The main method solve of this program is depicted in Figure 6.4. Note that it
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1public static void gaussian(double a[][],

2 int index[]) {
3

4 int n=index.length;

5 double c[]=new double[n];

6

7 for (int i=0; i<n; ++i) index[i]=i;

8

9 for (int i=0; i<n; ++i) {
10 double c1=0;

11 for (int j=0; j<n; ++j) {
12 double c0=Math.abs(a[i][j]);

13 if (c0 > c1) c1=c0;

14 }
15 c[i]=c1;

16 }
17

18 int k=0;

19 for (int j=0; j<n−1; ++j) {
20 double pi1=0;

21 for (int i=j; i<n; ++i) {
22 double pi0=Math.abs(a[index[i]][j]);

23 pi0 /= c[index[i]];

24 if (pi0 > pi1) {
25 pi1=pi0;

26 k=i;

27 }
28 }
29

30 int itmp=index[j];

31 index[j]=index[k];

32 index[k]=itmp;

33 for (int i=j+1; i<n; ++i) {
34 double pj=a[index[i]][j]/a[index[j]][j];

35 a[index[i]][j]=pj;

36 for (int l=j+1; l<n; ++l)

37 a[index[i]][l] −= pj∗a[index[j]][l];
38 }
39 }
40}

Figure 6.3: Source code of the DetEval program.

calls (at line 6) method gaussian of Figure 6.3. Apart from the call to method

gaussian, the nested loops at lines 7-11 and 14-20 are challenging for cost analysis

since the number of iterations of the inner loops depends on the counters of the

outer loops. For this benchmark we obtain the following bounds

(A) 24 · ‖c−1‖3+18 · ‖c‖2+36 · ‖c−1‖2+30 · ‖c−1‖ · ‖c‖+35 · ‖c− 1‖+25 · ‖c‖+ 1870

48 · ‖b−1‖2+46 · ‖b−1‖+74

(B) 8 · ‖c−1‖3+18 · ‖c‖2+45 · ‖c−1‖2+25 · ‖c‖+102 · ‖c−1‖+24 · ‖b−1‖2+92 · ‖b−1‖ 3480

+74

(C) 8 · ‖c−1‖3+16 · ‖c‖2+43 · ‖c−1‖2+25 · ‖c‖+96 · ‖c−1‖+24 · ‖b−1‖2+92 · ‖b−1‖ 2796

+74
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1public static double[] solve(double a[][],

2 double b[], int ind[]) {
3

4 int n = b.length;

5 double x[] = new double[n];

6 gaussian(a, index);

7 for(int i=0; i<n−1; ++i) {
8 for(int j =i+1; j<n; ++j) {
9 b[ind[j]] −= a[ind[j]][i]∗b[ind[i]];

10 }
11 }

12 x[n−1] = b[ind[n−1]]/a[ind[n−1]][n−1];
13

14 for (int i=n−2; i>=0; −−i) {
15 x[i] = b[ind[i]];

16 for (int j=i+1; j<n; ++j) {
17 x[i] −= a[ind[i]][j]∗x[j];
18 }
19 x[i] /= a[ind[i]][i];

20 }
21 return x;

22}

Figure 6.4: Source code of the LinEqSolve program.

Looking at the corresponding graph in Figure 6.2, we can see that our UB is more

precise than that of [5] and our LB is very tight.

1public double[][] invert(double a[][]) {
2

3 int n = a.length;

4 double x[][] = new double[n][n];

5 double b[][] = new double[n][n];

6 int ind[] = new int[n];

7

8 for (int i=0; i<n; ++i) b[i][i] = 1;

9 gaussian(a, ind);

10 for (int i=0; i<n−1; ++i)

11 for (int j=i+1; j<n; ++j)

12 for (int k=0; k<n; ++k)

13 b[ind[j]][k] −=
14 a[ind[j]][i]∗b[ind[i]][k];

15 for (int i=0; i<n; ++i) {
16 x[n−1][i] =
17 b[ind[n−1]][i]/a[ind[n−1]][n−1];
18 for (int j=n−2; j>=0; −−j) {
19 x[j][i] = b[ind[j]][i];

20 for (int k=j+1; k<n; ++k) {
21 x[j][i] −= a[ind[j]][k]∗x[k][i];
22 }
23 x[j][i] /= a[ind[j]][j];

24 }
25 }
26

27 return x;

28}

Figure 6.5: Source code of the MatrixInverse program.
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MatrixInverse. This program computes the inverse of a matrix. The source

code is depicted in Figure 6.5. The cost analysis of this program is challenging

since it also has nested loops (at lines 10-14 and 15-25) in which the number of

iterations of the inner loops depends on the counter of the outer loop. For this

benchmark we obtain the following bounds

(A) 24 · ‖a−1‖3+56 · ‖a‖ · ‖a−1‖2+18 · ‖a‖2+46 · ‖a−1‖2+75 · ‖a‖+68 · ‖a‖ · ‖a−1‖ 3617

+49 · ‖a−1‖+62

(B) 8 · ‖a−1‖3+28 · ‖a‖ · ‖a−1‖2+18 · ‖a‖2+50 · ‖a−1‖2+92 · ‖a‖ · ‖a−1‖+75 · ‖a‖ 4620

+121 · ‖a−1‖+62

(C) 8 · ‖a−1‖3+28 · ‖a‖ · ‖a−1‖2+16 · ‖a‖2+48 · ‖a−1‖2+92 · ‖a‖ · ‖a−1‖+75 · ‖a‖ 3792

+115 · ‖a−1‖+62

Looking at the corresponding graph in Figure 6.2, we can see that our UB is more

precise than that of [5] and our LB is very tight.

InsertSort. This program implements the insertion sort algorithm as depicted

in Figure 6.6. This example is interesting from the point of view of complexity

analysis. We get the worst-case cost when the array is sorted in a reversed order

and the best-case cost when the array is already sorted. If the array is sorted, the

inner while loop will not be executed and hence the best-case cost will be linear

in terms of its input arguments. In case of worst-case cost, there is a precision

issue as the cost of the inner while loop is different for different values of i. For

this benchmark we obtain the following bounds

(A) 19 · ‖b−1‖2 + 25 · ‖b−1‖+ 7 110

(B) 19
2 · ‖b−1‖

2
+ 69

2 · ‖b−1‖+ 7 170

(C) 18 · ‖b−1‖+ 7 110

Looking at the corresponding graph in Figure 6.2, we can see the our UB is more

precise than that of [5] and we obtain linear LB.
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1void insertSort(int[] arr,int i0, int length) {
2 int i, j, newValue;

3 for (i = i0; i < length; i++) {
4 newValue = arr[i];

5 j = i;

6 while (j > 0 && arr[j − 1] > newValue) {
7 arr[j] = arr[j − 1];

8 j−−;
9 }

10 arr[j] = newValue;

11 }
12}
13

14public void matrixsort(int [][] A, int size) {
15 for(int i=0; i<size; i++)

16 insertsort(A,i,size);

17}

Figure 6.6: The source code of the InsertSort and MatrixSort programs.

MatrixSort. This program sorts the rows in the upper triangle of a matrix.

The source code is depicted in Figure 6.6. Note that method insertSort is called

for sorting each row. The important feature of this examples is that the call to

insertSort accumulates different worst-case and best-case cost in each iteration of

the loop. For this benchmark we obtain the following bounds

(A) 25 · ‖b‖2 · ‖b− 1‖+30 · ‖b‖2+16 · ‖b‖+6 130

(B) 25
3 · ‖b‖

3
+15 · ‖b‖2+ 68

3 · ‖b‖+6 200

(C) 21
2 · ‖b‖

2
+ 53

2 · ‖b‖+6 60

Looking at the corresponding graph in Figure 6.2, we can see that our UB is more

precise than that of [5] and our LB is very tight. Note that the LB is quadratic

while the UB is cubic.
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1public void bubbleSort(int arr[], int n) {
2 for(int j=0;j<n;j++) {
3 for (int i = 0; i < n − j; i++) {
4 if (arr[i] > arr[i + 1]) {
5 int tmp = arr[i];

6 arr[i] = arr[i + 1];

7 arr[i + 1] = tmp;

8 }
9 }

10 }
11}

1public static void selectionSort(int[] arr) {
2 for (int i=0; i<arr.length−1; i++) {
3 for (int j=i+1; j<arr.length; j++) {
4 if (arr[i] > arr[j]) {
5 int temp = arr[i];

6 arr[i] = arr[j];

7 arr[j] = temp;

8 }
9 }

10 }
11}

Figure 6.7: The source code of SelectSort and BubbleSort programs.

SelectSort and BubbleSort. These are classical sorting algorithms imple-

mented in java. The source code is depicted in Figure 6.7. These examples are

interesting since the cost contributed by the inner loops depends on the value of

the outer loops counters. For these benchmark we obtain the following bounds

SelectSort

(A) 27 · ‖a−1‖2 + 16 · ‖a−1‖+ 9 140

(B) 27
2 · ‖a−1‖

2
+ 59

2 · ‖a−1‖+ 9 224

(C) 13
2 · ‖a−1‖

2
+ 45

2 · ‖a−1‖+ 9 184

BubbleSort

(A) 34 · ‖c‖2 + 12 · ‖c‖+ 8 180

(B) 17 · ‖c‖2 + 29 · ‖c‖+ 8 320

(C) 8 · ‖c‖2 + 20 · ‖c‖+ 8 232

Looking at the corresponding graphs in Figure 6.2, we can see that our UBs are

more precise than those of [5] and our LBs are very tight.

MergeSort. This program implements the classical merge-sort algorithm. The

source code is depicted in Figure 6.8. It is an example of divide-and-conquer

algorithms which first divides the input list into two lists, sort each list and finally

merges the two sorted list into one list. This example illustrates the reason for

which the geometric progression behavior is required. In fact, as we have seen in

Section 4.2.2, we are able to infer a very tight bound of such divide-and-conquer

algorithms. For this benchmark we obtain the following bounds
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1void msort(int[] data) {
2 sort(data,0,data.length);

3}
4void sort(int[] data, int fm, int to) {
5 int mid;

6 if (fm < to) {
7 mid = (fm + to) / 2;

8 sort(data, fm, mid);

9 sort(data, mid + 1, to);

10 merge(data, fm, to, mid);

11 }
12}

13void merge(int[] data, int fm, int to, int mid) {
14 int i, From = fm, To = mid + 1;

15 int scratch[] = new int[data.length];

16 for (i = fm; i <= to; i++) {
17 if ((From <= mid) &&

18 ((To > to) || data[From]>data[To]))

19 scratch[i] = data[From++];

20 else scratch[i] = data[To++];

21 }
22 for (i = fm; i <= to; i++)

23 data[i]=scratch[i];

24}

Figure 6.8: The sorce code of the MergeSort program.

(A) 37 · ‖b+ 1‖ · ‖2b−1‖+ 53 · ‖2b−1‖+ 11 1235

(B) 37 · ‖b+1‖ · log2(‖2b−1‖+1) + 53 · ‖2b−1‖+ 11 2080

(C) 4 1248

We can clearly see that our UB is more precise than that of [5], however, our LB

is not precise in this case because our approach for inferring LB on the number

of iterations supports only linear functions (in this case it is logarithmic).

PascalTriangle. This program computes and prints Pascal’s Triangle as de-

picted in Figure 6.9. Note that in the nested loops at lines 8-10 and 11-16, the

cost accumulated by the inner loops depends on the value of the outer loops

counters. For this benchmark we obtain the following bounds

(A) 30 · ‖a‖2 + 27 · ‖a−1‖2 + 33 · ‖a‖+ 10 · ‖a−1‖+ 25 716

(B) 41
2 · ‖a‖

2
+ 27 · ‖a−1‖2 + 10 · ‖a−1‖+ 85

2 · ‖a‖+ 25 924

(C) 41
2 · ‖a‖

2
+ 27 · ‖a−1‖2 + 10 · ‖a−1‖+ 85

2 · ‖a‖+ 25 908

Looking at the corresponding graph in Figure 6.2, we can see the our UB is more

precise than that of [5], and our LB is very tight.

71



1public static void pt(int n) {
2 int trian[][] = new int[n][n];

3 for (int i = 0; i < n; i++)

4 for (int j = 0; j < n; j++)

5 trian[i][j] = 0;

6 for(int i = 0; i < n; i++)

7 trian[i][0] = 1 ;

8 for (int i = 1; i < n; i++)

9 for (int j = 1; j < n; j++)

10 trian[i][j]=trian[i−1][j−1]+trian[i−1][j];
11 for (int i = 0; i < n; i++) {
12 for(int j=0;j<=i;j++) {
13 System.out.print(trian[i][j]+ " ");

14 }
15 System.out.println();

16 }
17}

Figure 6.9: Source code of the PascalTriangle program.

1 void f(int n) {
2 for(int i=0;i<n;i++)

3 System.out.println(n+" "+i);

4 for(int i=n−1;i>=0;i−−)
5 f(i);

6 }

Figure 6.10: Source code of the NestedRecIter program.

NestedRecIter. This example uses a programming pattern, depicted in Fig-

ure 6.10, which we have found in the Java libraries. Note that the second loop

invokes n recursive calls, and each one with a different value for the argument,

and each such call will have a linear cost that is consumed by the first loop. Note
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that this programming pattern is similar to the pattern that one would use to

write a program that prints all permutations of a given array with n elements.

For this benchmark we obtain the following bounds

(A) 10 + 5 · ‖a‖+ (2‖a‖ − 1) · (17 + 5 · ‖a− 1‖) + 2 · 2‖a‖ 180

(B) 29 · 2‖a‖ − 17 650

(C) 29 · 2‖a‖ − 17 630

We can clearly see that our UB is asymptotically more precise than that of [5],

and our LB is very tight.

Let us summarize the results that we have obtained for the benchmarks above,

and see how good they are with respect to [5]. As regards UBs, we improve

the precision over [5] in all benchmarks. This improvement, in all benchmarks

except MergeSort, is due to nested loops where the inner loops bounds depend

on the outer loops counters. In these cases, we accurately bound the cost of each

iteration of the inner loops, rather than assuming the worst-case cost. Moreover,

our UBs are very close to the real cost (the difference is only in some constants).

In Figure 6.2, it can be seen that the precision gain is greater for larger values

of the inputs. This is because, for larger inputs, the length of chains of calls is

larger. Since, in our approach, at each iteration each ‖.‖ expression increases

towards the maximum (or decreases from the maximum) gradually, the overall

gain becomes larger. For MergeSort, we obtain a tight bound in the order of

b ∗ log(b). Note that [5] could obtain b ∗ log(b) only for simple cost models that

count the visits to a specific program point but not for number of instructions,

while ours works with any cost model.

As regards LBs, it can be observed from row C of each benchmark that we

have been able to prove the positive ‖.‖ condition and obtain nontrivial LBs in all

cases except in MergeSort. For MergeSort, the LB on loop iterations is logarithmic

which cannot be inferred by our linear invariant generation tool and hence we get

the trivial bound 4. Note that for InsertSort we infer a linear LB which happens

when the array is sorted. Our approach is slightly slower than [5] mainly due to

the overhead of connecting COSTA to the external CAS .
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Examples (A) Our UBs (B) UBs of RAML Time

appendAll (A) ‖a‖·‖b‖+ 2·‖a‖+ 1 64

(B) a·b+ 2·a+ 1 46

remove (A) ‖b‖·‖c‖+ 2·‖b‖+ 1 62

(B) b·c+ 2·b+ 1 70

nub (A) 1
2
·‖a‖2·‖b‖+ 1

2
·‖a‖·‖b‖+ ‖a‖2 + 3·‖a‖+ 1 105

(B) 1
2
·a2·b+ a2 − 1

2
·a·b+ a+ 1 120

insertsort (A) 1
2
·‖a‖2 + 5

2
·‖a‖+ 1 33

(B) 1
2
·a2 + 3

2
·a+ 1 74

lcs (A) 4·‖a‖·‖b‖+ ‖b‖+ 2·‖a‖+ 3 88

(B) 4·a·b+ b+ 2·a+ 3 116

isortlist (A) 1
2
·‖a‖2·‖b‖+ ‖a‖2 + 3

2
·‖a‖·‖b‖+ 4·‖a‖+ 1 106

(B) 1
2
·a2·b+ a2 − 1

2
·a·b+ a+ 1 114

minSort (A) 1
2
·‖a‖2 + 5

2
∗ ‖a‖+ 2 27

(B) 1
2
·a2 + 5

2
·a+ 2 45

eratos (A) 1
2
·‖a‖2 + 5

2
·‖a‖+ 1 35

(B) 1
2
·a2 + 3

2
·a+ 1 44

dyade (A) ‖a‖·‖b‖+ 2·‖a‖+ 1 40

(B) 2·a·b+ 2·a+ 1 44

matrixmul (A) ‖a‖·‖c‖·‖d‖+ 2·‖a‖·‖c‖+ 2·‖a‖+ 1 147

(B) a·c·d+ 2·a·b+ 2·a+ 1 331

mult3 (A) 2·‖a‖2 + 8·‖a‖+ 3 70

(B) 4·a·b+ 6·a+ 3 193

mergesort (A) log2(‖2·a− 3‖+1)·‖a−1
2
‖+log2(‖2·a−3‖+1)·‖a

2
‖ 76

+4·‖2·a−3‖+1

(B) 7
2
·a2 − 5

2
·a+ 1 73

quicksort (A) 8 · 2‖a‖ − 2 · ‖a‖ − 7 83

(B) a2 + 3 · a+ 1 76

apendAll3 (A) 3·‖a‖·‖b‖·‖c‖·‖d‖+2·‖a‖·‖b‖·‖c‖+3·‖a‖·‖b‖+3·‖a‖+1 598

(B) 3·a·b·c·d+ 2·a·b·c+ 3·a·b+ 3·a+ 1 3113

Table 6.1: Comparing Our UB Results with Hofmann et. al [45]
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In addition to the above benchmarks and comparison to [5], we have also

compared experimentally our approach to [45], which was developed in parallel

to our work. The comparison is made on their examples, which are available

at http://raml.tcs.ifi.lmu.de. These examples are written in a first-order

functional languages (RAML). In order to perform a fair comparison, we have

done the following: (i) RAML programs are first translated into an extended form

of CRs in order handle polynomial input-output relations that are not handled

by the basic framework of COSTA, these CRs are available at http://costa.ls.

fi.upm.es/pubs; and (ii) we used a cost model that counts the number of visits

to a specific point (entries of functions) as this can be easily defined in RAML.

The comparison is presented in Table 6.1. The first column illustrates the

benchmarks, the second column illustrates the computed UBs by our approach

(marked with (A)) and the UBs computed by the RAML prototype (marked with

(B)) and finally the last column indicates the time measured in milliseconds to

perform the experiment. The main conclusions drawn from these comparisons

are: (1) in most cases we are as precise as [45] and sometimes the results differ

only in the constants; (2) for QuickSort our analysis fails to infer the precise

bound, this is because the input list is divided into two lists of different length;

and (3) for MergeSort, our analysis is more precise since [45] cannot infer bounds

with logarithmic expressions. Note that we measured time to solve UBs from

CRs . It does not include the time to generate CRs from RAML code since it was

generated manually. In most cases our experiments take less time than RAML.

From this, we conclude that our approach is also experimentally efficient.

Last thing to note is that the approach of [45] is based on using a polynomial

template with fixed degree k (which is given by the user). This means that the

inferred polynomial bound must be expressible within the degree of the template,

otherwise the analysis fails. Moreover, if the degree k is higher than what is

required to express an UB for the analyzed program, then the analysis runtime

increases significantly. For example, for the matrixmult program, it computes

UBs in 169 milliseconds when the provided degree is 3, where it takes almost 22

seconds when the provided degree is 6. Our approach does not suffer from this

problem and is completely automatic.
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6.3 Concluding Remarks

We believe that the experiments presented in the previous section demonstrate

that our approach is precise, efficient, and can succeed on example where [5] fails

to obtain precise bounds. Unfortunately, there are no other cost analysis tools

for imperative languages that are available to perform experimental comparison

(e.g., SPEED [42] is not available) on those benchmarks. Our solver performs

well also when compared to [45], since it succeeded to obtain similar bounds for

all examples except those that require amortized analysis. Moreover, unlike [45],

our solver can obtain non-polynomial bounds.
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Part II

Deciding Termination of Integer

Loops
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Chapter 7

Overview of the Problems,

Challenges, and Contributions

In this chapter we overview the problem of deciding termination of several varia-

tions of integer loops, the challenges one faces when solving this problem, and a

brief informal overview of our solutions. Section 7.1 describes the problems and

its related challenges, Section 7.2 summarizes the contributions of part II of this

thesis, and Section 7.3 briefly overviews the organization of this part.

7.1 The Problems and the Challenges

As we have seen in Part I of this thesis, solving CRs into closed-form bounds

requires bounding the number of iterations that a given loop can make, a prob-

lem that is clearly related to its termination behavior. This means that features

like precision, scalability, and applicability of CRs solving techniques are directly

related to the corresponding features of deciding termination of such loops. One

can explore these features for a specific termination algorithm, by studying its

complexity, which gives an indication on how the algorithm will perform in prac-

tice. An alternative approach is to study the computational complexity of the

problem (and not a specific algorithm), which gives an indication on how practi-

cal any algorithm that solves this problem can be. In this part of the thesis we

conduct such study for the problem of deciding termination of (simple) integer
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loops, a form of loops that is very common in cost analysis. This study is of inter-

est not only for cost analysis, but rather for termination analysis in general, and

thus we study this problem in a more wider context rather than being restricted

to those cases that occur in cost analysis.

Much of the recent development in termination analysis has benefited from

techniques that deal with one simple loop at a time, where a simple loop is

specified by (optionally) some initial conditions, a loop guard, and a “loop body”

of a very restricted form. Very often, the state of the program during the loop is

represented by a finite set of scalar variables (this simplification may be the result

of an abstraction, such as size abstraction of structured data [56, 55, 76, 26]).

Regarding the representation of the loop body, the most natural one is, per-

haps, a block of straight-line code, namely a sequence of assignment statements,

as in the following example:

while (X > 0) do {X := X + Y ; Y := Y − 1; } (7.1)

To define a restricted problem for theoretical study, one just has to state the

types of loop conditions and assignments that are admitted.

By symbolically evaluating the sequence of assignments, a straight-line loop

body may be put into the simple form of a simultaneous deterministic update,

namely loops of the form

while C do 〈x1, . . . , xn〉 := f(〈x1, . . . , xn〉) (7.2)

where f is a function of some restricted class. For function classes that are

sufficiently simple to analyze, one can hope that termination of such loops would

be decidable; in fact, the motivation to this work comes not only from problems

that we encountered in cost analysis, but rather from the remarkable results by

[78] and [25] on the termination of linear loops, a kind of loops where the update

function f is linear. The loop conditions in these works are conjunctions of linear

inequalities. Specifically, Tiwari proved that the termination problem is decidable

for loops of the following form:

while (Bx̄ > b̄) do x̄ := Ax̄+ c̄ (7.3)
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where the arithmetic is done over the reals; thus the variable vector x̄ has values

in Rn, and the constant matrices in the loop are B ∈ Rm×n, A ∈ Rn×n, b̄ ∈ Rm

and c̄ ∈ Rn.

Subsequently, Braverman proved decidability of termination of loops of the

following form:

while (Bsx̄ > b̄s) ∧ (Bwx̄ ≥ b̄w) do x̄ := Ax̄+ c̄ (7.4)

where the constant matrices and vectors are rational, and the variables are of

either real or rational type; moreover, in the homogeneous case (b̄s, b̄w, c̄ = 0) he

proved decidability when the variables range over Z. This is a significant and

nontrivial addition, since algorithmic methods that work for the reals often fail

to extend to the integers (a notorious example is finding the roots of polynomials;

while decidable over the reals, over the integers, it is the undecidable Hilbert 10th

problem1). Regarding the loop form (7.4), we note that the constant vector c̄

may be assumed to be zero with no loss of generality, since variables can be used

instead, and constrained by the loop guard to have the desired (constant) values.

Over the integers it is also sufficient to have only ≥ or only > in the loop guard.

However, replacing > by ≥ (or vice versa) alters the homogeneous loop to a non-

homogeneous one, which is why including both inequality types is important in

the context of [25].

Going back to program analysis, we note that it is typical in this field to

assume that some degree of approximation is necessary in order to express the

effect of the loop body by linear arithmetics alone. Hence, rather than loops with

a linear update as above, one defines the representation of a loop body to be a

set of constraints (again, usually linear). The general form of such a loop is

while (Bx̄ ≥ b̄) do A

(
x̄

x̄′

)
≤ c̄ (7.5)

where the loop body is interpreted as expressing a relation between the new

values x̄′ and the previous values x̄. Thus, in general, this representation is a

nondeterministic kind of program and may over-approximate the semantics of

1Over the rationals, the problem is still open, according to [59].
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the source program analyzed. But this is a form which lends itself naturally to

analysis methods based on linear programming techniques, and there has been

a series of publications on proving termination of such loops [75, 62, 67] — all

of which rely on the generation of linear ranking functions. For example, the

termination analysis tools Terminator [30], COSTA [6], and Julia [76] are based

on proving termination of such loops by means of a linear ranking function.

It is known that the linear-ranking approach cannot completely resolve the

problem [67, 25], since not every terminating program has such a ranking function

— this is the case, for example, for loop (7.1) above. Moreover, the linear-

programming based approaches are not sensitive to the assumption that the data

are integers. Thus, the problem of decidability of termination for linear-constraint

loops (7.5) stays open, in its different variants. We feel that the most intriguing

problem is the following:

Is the termination of a single linear-constraint loop decidable, when

the coefficients are rational numbers and the variables range over the

integers?

The problem may be considered for a given initial state, for any initial state, or

for a (linearly) constrained initial state.

7.2 Informal overview of the Contributions

In this research, we focus on hardness proofs. Our basic tool is a new simulation of

counter programs (also known as counter machines) by a simple integer loop. The

termination of counter programs is a well-known undecidable problem. While we

have not been able to fully answer the major open problem above, this technique

led to some interesting results which improve our understanding of the simple-

loop termination problem. We next summarize our main results. All concern

integer variables.

1. We prove undecidability of termination, either for all inputs or a given input,

for simple loops (a variation of loop form (7.4)) which iterate a straight-

line sequence of simple assignment instructions. The right-hand sides are
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integer linear expressions except for one instruction type, which computes

the step function

f(x) =

{
0 x ≤ 0

1 x > 0

At first sight it may seem like the inclusion of such an instruction is tan-

tamount to including a branch on zero, which would immediately allow for

implementing a counter program. This is not the case, because the result of

the function is put into a variable which can only be combined with other

variables in a very limited way. We complement this result by pointing out

other natural instructions that can be used to simulate the step function.

This include integer division by a constant (with truncation towards zero)

and truncated subtraction.

2. We show that the undecidability result can be achieved even for loops whose

body is a deterministic update of the form “if x > 0 then (one linear update)

else (another linear update).” Thus, the update function consists of two

linear pieces. This is a nontrivial refinement of the first result, which limits

the number of times the step function is used in the loop body.

3. Building upon the previous result, we prove undecidability of termination,

either for all inputs or for a given input, of linear-constraint loops (a vari-

ation of loop form (7.5)) where one irrational number may appear (more

precisely, the coefficients are from Z∪{r} for an arbitrary irrational number

r).

4. Finally, we observe that while linear-constraint loops (7.5) with rational

coefficients seem to be insufficient for simulating all counter programs, it is

possible to simulate a subclass, namely Petri nets, leading to the conclusion

that termination for a given input is at least EXPSPACE-hard.

We would like to highlight the relation of our results to a discussion at the end

of [25]. Braverman notes that linear-constraint loops are nondeterministic and

asks:
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How much nondeterminism can be introduced in a linear loop with

no initial conditions before termination becomes undecidable?

It is interesting that our reduction to linear-constraint loops, when using the

irrational coefficient, produces constraints that are deterministic. The role of the

constraints is not to create nondeterminism; it is to express complex relationships

among variables. We may also point out that some limited forms of linear-

constraint loops (that are very nondeterministic since they are weaker constraints)

have a decidable termination problem (see Section 10.2). Braverman also discusses

the difficulty of deciding termination for a given input, a problem that he left

open. Our results apply to this variant, providing a partial answer to this open

problem.

7.3 Organization

The rest of this part of the thesis is organized as follows: Chapter 8 provides

some background material; Chapter 9 studies the termination of straight-line

while loops with a “built-in” function that represents the step function as well as

integer linear-constraint loops. It also discusses undecidable extensions of integer

linear-constraint loops. Finally, it ends with some concluding remarks.

84



Chapter 8

Background on Integer Loops

In this chapter we define the syntax of integer piecewise linear while loops, integer

linear-constraint loops, and counter programs.

8.1 Integer Piecewise Linear Loops

An integer piecewise linear loop (IPL loop for short) with integer variables

X1, . . . , Xn is a while loop of the form

while b1 ∧ · · · ∧ bm do {c1; . . . ; cn}

where each condition bi is a linear inequality a0 +a1 ∗X1 + · · ·+an ∗Xn ≥ 0 with

ai ∈ Z, and each ci is one of the following instructions

Xi := Xj +Xk | Xi := a ∗Xj | Xi := a | Xi := isPositive(Xj)

such that a ∈ Z and

isPositive(X) =

{
0 X ≤ 0

1 X > 0

We consider isPositive to be a primitive, but we will also consider alternatives.

The semantics of an IPL loop is the obvious: starting from initial values for the

variables X1, . . . , Xn (the input), if the condition b1 ∧ · · · ∧ bn (the loop guard)
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holds (we say that the loop is enabled), instructions c1, . . . , cn are executed se-

quentially, and the loop is restarted at the new state. If the loop guard is false,

the loop terminates. For simplicity, we may use a composite expressions, e.g.,

X1 := 2 ∗X2 + 3 ∗X3 + 1, which should be taken to be syntactic sugar for a se-

ries of assignments, possibly using temporary variables.

8.2 Integer Linear-Constraint Loops

An integer linear-constraint loop (ILC loop for short) over n variables x̄ =

〈X1, . . . , Xn〉 has the form

while (Bx̄ ≥ b̄) do A

(
x̄

x̄′

)
≤ c̄

where for some m, p > 0, B ∈ Rm×n, A ∈ Rp×2n, b̄ ∈ Rm and c̄ ∈ Rp. The case

we are most interested in is that in which the constant matrices and vectors are

composed of rational numbers; this is equivalent to assuming that they are all

integer (just multiply by a common denominator).

Semantically, a state of such a loop is an n-tuple 〈x1, . . . , xn〉 of integers, and

a transition to a new state x̄′ = 〈x′1, . . . , x′n〉 is possible if x̄, x̄′ satisfy all the

constraints in the loop guard and the loop body. We say that the loop terminates

for a given initial state if all possible executions from that state are finite, and

that it universally terminates if it terminates for every initial state. We say that

the loop is deterministic if there is at most one successor state to any state.

Note that the guard Bx̄ ≥ b̄ is actually redundant, since its constraints can be

incorporated in those of the loop body. However, we prefer to keep this form for

its similarity with other loop forms studied in previous works, as well as ours (see

loop forms (7.1)–(7.5) in the introduction).

8.3 Counter Programs

A (deterministic) counter program PC with n counters X1, . . . , Xn is a list of

labeled instructions 1:I1, . . . ,m:Im,m+1:stop where each instruction Ik is one of
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the following:

incr(Xj) | decr(Xj) | if Xj > 0 then k1 else k2

with 1 ≤ k1, k2 ≤ m+1 and 1 ≤ j ≤ n. A state is of the form (k, 〈a1, . . . , an〉)
which indicates that Instruction Ik is to be executed next, and the current values

of the counters are X1 = a1, . . . , Xn = an. In a valid state, 1 ≤ k ≤ m + 1 and

all ai ∈ N (it will sometimes be useful to also consider invalid states, and assume

that they cause a halt). Any state in which k = m+ 1 is a halting state. For any

other valid state (k, 〈a1, . . . , an〉), the successor state is defined as follows.

• If Ik is decr(Xj) (resp. incr(Xj)), then Xj is decreased (resp. increased)

by 1 and the execution moves to label k + 1.

• If Ik is “if Xj > 0 then k1 else k2” then the execution moves to label k1 if

Xj is positive, and to k2 if it is 0. The values of the counters do not change.

The following are known facts about the halting problem for counter programs.

THEOREM 8.3.1 ([64]). The halting problem for counter programs with n ≥ 2

counters and the initial state (1, 〈0, . . . , 0〉) is undecidable.

The termination problem is the problem of deciding whether a given pro-

gram halts for every input1. The Mortality problem asks whether the program

halts when started at any state (even a state that cannot be reached in a valid

computation).

THEOREM 8.3.2 ([21]). The mortality problem for counter programs with

n ≥ 2 counters is undecidable.

As mentioned in the introduction, the termination problem usually addressed

in the context of program analysis is close (or even identical) to the mortality

problem, since one takes a program loop (possibly without any context) and asks

whether it can be shown to halt on every initial state. Hence, the last theorem

is useful for proving undecidability of such termination problems.

1We also use this term when considering a given input and the termination of all paths of a

non-deterministic program.
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Chapter 9

Complexity of Deciding

Termination of Integer Loops

In this chapter we discuss decidability and complexity issues of IPL and ILC

loops. It is organized as follows

1. Section 9.1 proves that termination of IPL loops is undecidable. The unde-

cidability is proved in section 9.1.1 by a reduction of halting and mortality

problem for counter machine. Section 9.1.2 shows some examples of piece-

wise linear functions the presence of which in IPL loops make it undecidable.

2. Section 9.2 proves that IPL loops with two linear pieces are enough to

achieve undecidability of termination.

3. Section 9.3 explains an unsuccessful attempt of proving the undecidability

of termination of ILC loops and section 9.3.3 shows some extensions of ILC

loops whose termination is undecidable.

4. Section 9.4 proves that deciding termination of an ILC loop with a given

input has EXPSPACE lower bound, and Section 9.5 shows that this lower

bound is still valid even if the updates are deterministic.
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9.1 Termination of IPL loops

In this section, we investigate the decidability of the following problems: given

an IPL loop P ,

1. Does P terminate for a given input?

2. Does P terminate for all inputs?

We show that both problems are undecidable by reduction from the halting and

mortality problems, respectively, for counter programs. To see where the chal-

lenge in this reduction lies, note that the loops under consideration iterate a fixed

block of straight-line code, while a counter program has a program counter that

determines the next instruction to execute. While one can easily keep the value

of the PC in a variable, it is not obvious how to make the computation depend

on this variable, and how to simulate branching.

9.1.1 A Reduction from Counter Programs

Given a counter program PC ≡ 1:I1, . . . ,m:Im,m+1:stop with counters X1, . . .,

Xn, we generate a corresponding IPL loop T (PC) as follows:

1while ( A1 ≥ 0 ∧ · · · ∧Am ≥ 0 ∧A1 + · · ·+Am = 1 ∧X1 ≥ 0 ∧ · · · ∧Xn ≥ 0 ) do {
2 N0 := 0; N1 := A1; . . . Nm := Am;

3 F1 := isPositive(X1); . . . Fn := isPositive(Xn);

4 T (1:I1)

5

...

6 T (m:Im)

7 A1 := N0; . . . Am := Nm−1

8}

where T (k:Ik) is defined as follows

• If Ik ≡ incr(Xj), then T (k:Ik) is Xj := Xj + Ak;

• If Ik ≡ decr(Xj), then T (k:Ik) is Xj := Xj − Ak;
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• If Ik ≡ if Xj > 0 then k1 else k2, then T (k:Ik) is

Tk := isPositive(Ak + Fj − 1);

Rk := isPositive(Ak − Fj);
Nk := Nk − Ak;
Nk1−1 := Nk1−1 + Tk;

Nk2−1 := Nk2−1 +Rk;

EXAMPLE 9.1.1. Consider the following 2-counter program PC, which decre-

ments x and y until one of them reaches 0

1 1: x=x−1
2 2: if x>0 then 3 else 5

3 3: y=y−1
4 4: if y>0 then 1 else 5

5 5: stop

Applying T (PC) results in the following IPL loop

1while(A1 ≥ 0 ∧A2 ≥ 0 ∧A3 ≥ 0 ∧A4 ≥ 0 ∧A1 + · · ·+A4 = 1 ∧ x ≥ 0 ∧ y ≥ 0) do {
2 N0 := 0; N1 := A1; N2 := A2; N3 := A3; N4 := A4;

3 Fx := isPositive(x); Fy := isPositive(y);

4

5 x := x−A1;

6

7 T2 := isPositive(A2 + Fx − 1);

8 R2 := isPositive(A2 − Fx);

9 N2 := N2 −A2;

10 N2 := N2 + T2;

11 N4 := N4 +R2;

12

13 y := y −A3;

14

15 T4 := isPositive(A4 + Fy − 1);

16 R4 := isPositive(A4 − Fy);

17 N4 := N4 −A4;
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18 N0 := N0 + T4;

19 N4 := N4 +R4;

20

21 A1 := N0; A2 := N1; A3 := N2; A4 := N3;

22}

Line 5 corresponds to instruction I1, lines 7 − 11 to instruction I2, Line 13 to

instruction I3, and lines 15− 19 to instruction I4.

Let us first state, informally, the main ideas behind the reduction, and then

formally prove Lemma 9.1.3 which in turn implies Theorem 9.1.4.

1. Variables A1, . . . , Am are flags that indicate the instruction to be executed

next. They take values from 0, 1, and only one of them can be 1 as stated by

the loop guard. Note that an operation Xj := Xj+Ak (resp. Xj := Xj−Ak)
will have effect only when Ak = 1, and otherwise is a no-op. This is a way

of simulating only one instruction in every iteration.

2. The values of Ai are modified in a way that simulates the control of the

counter machine. Namely, if Ak = 1, and the instruction Ik is incr(Xj) or

decr(Xj), then the last line in the loop body sets Ak+1 to 1 and the rest

to 0. If Ik is a condition, it will set Ak1 or Ak2 , depending on the tested

variable, to 1, and the rest to 0. The variables Fk, Nk, Rk, and Tk are

auxiliary variables for implementing this.

LEMMA 9.1.2. Let PC be a counter program, T (PC) its corresponding IPL

loop, S ≡ (k, 〈a1, . . . , an〉) a valid state for PC, and ST a state of T (PC) where

A1 = 0, . . . , Ak = 1, . . . , Am = 0, X1 = a1, . . . , Xn = an.

If S has a successor state (k′, 〈a′1, . . . , a′n〉) in PC, then the loop of T (PC) is en-

abled at ST and its execution leads to a state in which A1 = 0, . . . , Ak′ = 1, . . . , Am = 0,

X1 = a′1, . . . , Xn = a′n. If S is a halting configuration of PC, the loop of T (PC) is

disabled at ST .

Proof. It is clear that if an execution step is possible in PC then 0 ≤ k ≤ m and

all Xj are nonnegative, and thus the condition of the loop T (PC) is true. Now
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note that when Ak = 0 the encoding of Ik does not change the value of any Ni or

Xj, and consider the following two cases: (1) If Ik is incr(Xj) (resp. decr(Xj)),

then PC increments (resp. decrements) Xj and moves to label k′ = k+1. Clearly

the encoding of Ik increments (resp. decrements) Xj and all Ni are not modified.

Since Nk = Ak = 1, the last line of the loop sets Ak+1 to 1 (unless k+ 1 = m+ 1)

and all other Ai to 0. (2) if Ik is if Xj > 0 then k1 else k2, then the counter

machine moves to k1 (resp. k2) if Xj > 0 (resp. Xj = 0). Suppose Xj > 0, then

Tk = 1 and Rk = 0, Nk1−1 = 1 and Nk2−1 = 0. Thus, when reaching the last

line the instruction Ak1 := Nk1−1 sets Ak1 (unless k1 = m + 1). The case where

Xj = 0 is similar.

In a halting state, k = m + 1 which means that A1, . . . , Am = 0. Hence, the

loop is disabled.

LEMMA 9.1.3. A counter program PC with n ≥ 2 counters terminates for

the initial state (k, 〈a1, . . . , an〉) if and only if T (PC) terminates for input

A1 = 0, . . . , Ak = 1, . . . , Am = 0, X1 = a1, · · · , Xn = an.

Proof. An immediate consequence of Lemma 9.1.2.

Note that when values of the variables in T (PC) do not correspond to a valid

state for PC , then the guard of T (PC) is disabled and thus T (PC) terminates

for such input. This, together with Lemma 9.1.3, and theorems 8.3.1 and 8.3.2,

imply

THEOREM 9.1.4. The halting problem and the termination problem for IPL

loops are undecidable.

9.1.2 Examples of Piecewise Linear Operations

The isPositive operation can easily be simulated by other natural instructions,

yielding different instruction sets that suffice for undecidability.

EXAMPLE 9.1.5 (Integer division). Consider an instruction that divides an

integer by an integer constant and truncates the result towards zero (also if it is

negative). Using this kind of division, we have

isPositive(X) = X − 2 ∗X − 1

2
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and thus, termination is undecidable for loops with linear assignments and integer

division of this kind.

EXAMPLE 9.1.6 (Truncated subtraction). Another common piecewise-linear

function is truncated subtraction, such that x−̇y is the same as x − y if it is

positive, and otherwise 0. This operation allows for implementing isPositive thus:

isPositive(X) = 1−̇(1−̇X)

9.2 Loops with Two Linear Pieces

The reduction in Section 9.1.1 presented the loop body as a sequence of instruc-

tions that compute either linear or piecewise-linear operations. This means that

the loop body, considered as a function from the entry state to the exit state, is

piecewise-linear. In order to get closer to the simplest form where decidability

is open, namely a body which is an affine-linear deterministic update, in this

section we reduce the number of nonlinearities in that reduction. More precisely,

we consider the update to be a function, the union of several linear pieces, and

ask how many such pieces make the termination problem undecidable. Next, we

improve the proof from Section 9.1.1 in this respect, reducing the usage of the

step function. This will imply the following theorem.

THEOREM 9.2.1. The halting problem and the termination problem are un-

decidable for loops of the following form

while (Bx̄ ≥ b̄) do x̄ :=

{
A0x̄ Xi ≤ 0

A1x̄ Xi > 0

where the state vector x̄ = 〈X1, . . . , Xn〉 ranges over Zn, A0, A1 ∈ Zn×n, b̄ ∈ Zp

for some p > 0, B ∈ Zp×n, and Xi ∈ x̄.

The proof is a reduction from the corresponding problems for two-counter

machines. Recall that [64] proved that halting for a given input is undecidable

with two counters, and [21] proved it for mortality. The reduction shown in

Section 9.1, instantiated for the case of two counters, almost establishes the result.
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Observe that if the values of F1 and F2 are known, then the flags Tk and Rk can be

set to a linear function of Ak, e.g., Tk := isPositive(Ak +F1− 1) can be rewritten

to Tk := Ak when F1 = 1, and to Tk := 0 when F1 = 0.

Thus, the body of the loop can be expressed by a linear function in each of

the four regions determined by the signs of X1 and X2 (which define the values

of F1 and F2). In what follows we modify the construction to reduce the four

regions to only two regions.

The basic idea is to replace the two instructions F1 := isPositive(X1) and

F2 := isPositive(X2) by the single instruction F := isPositive(X1), which will

compute the signs of both X1 and X2. This is done by introducing an auxiliary

iteration such that in one iteration F is set according to the sign of X2, and in

the next iteration it is set according to the sign of X1 (by swapping the values of

X1 and X2).

We now assume given a counter program PC ≡ 1:I1, . . . ,m:Im,m+1:stop with

two counters X1 and X2. We first extend the set of flags Ak to range from A1

to A2m, and Nk to range from N0 to N2m. We also let k1, . . . , ki be indices of

all instructions that perform a zero-test. Then, PC is translated to an IPL loop

T ′(PC) as follows

1while (A1 ≥ 0 ∧ · · · ∧A2m ≥ 0 ∧A1 + · · ·+A2m = 1 ∧X1 ≥ 0 ∧X2 ≥ 0∧
2 0 ≤ Tk1 +Rk1 ≤ A2k1 ∧ · · · ∧ 0 ≤ Tki +Rki ≤ A2ki)

3 N0 := 0; N1 := A1; . . . N2m := A2m;

4 (X2,X1) := (X1,X2); // swap X1, X2

5 F := isPositive(X1);

6 T ′(1:I1);

7

...

8 T ′(m:Im)

9 A1 := N0; A2 := N1; . . . A2m := N2m−1

10}

The translation T ′ of counter-program instructions follows. For increment and

decrement, it is similar to what we have presented in Section 9.1, we only modify

the indexing of the Ak variables.

• If Ik ≡ incr(Xj), then T ′(k:Ik) is Xj := Xj + A2k
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• If Ik ≡ decr(Xj), then T ′(k:Ik) is Xj := Xj − A2k

For the conditional instruction, there are different translations for a test on X1

and for a test on X2:

• If Ik ≡ if X1 > 0 then k1 else k2, then T ′(k:Ik) is

Tk := isPositive(A2k + F − 1);

Rk := isPositive(A2k − F );

N2k := N2k − A2k;

N2k1−2 := N2k1−2 + Tk;

N2k2−2 := N2k2−2 +Rk;

• If Ik ≡ if X2 > 0 then k1 else k2, then T ′(k:Ik) is

N2k := N2k − A2k;

N2k1−2 := N2k1−2 + Tk;

N2k2−2 := N2k2−2 +Rk;

Tk := isPositive(A2k−1 + F − 1);

Rk := isPositive(A2k−1 − F );

Note that the above IPL loop can be represented in the form described in Theo-

rem 9.2.1. This is because when the value of F is known, each of Tk and Rk can

be set to a linear function of the corresponding Ak.

EXAMPLE 9.2.2. Consider again the counter program of Example 9.1.1, and

note that, in T (PC), the loop body can be expressed as a four-piece linear function

depending on the signs of x and y. This is because, as we have mentioned before,

once the flags Fx and Fy are known, then the flags T2, R2, T3 and R3 can be defined

by means of linear expressions. Applying the new transformation T ′ results in the

following IPL loop:
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1while(A1 ≥ 0 ∧ . . . ∧A8 ≥ 0 ∧A1 + · · ·+A8 = 1∧
2 x ≥ 0 ∧ y ≥ 0 ∧ 0 ≤ T2 +R2 ≤ A4 ∧ 0 ≤ T4 +R4 ≤ A8) do {
3 N0 := 0; N1 := A1; . . .; N8 := A8;

4 (y, x) := (x, y); // swap x and y

5 F := isPositive(x);

6

7 x := x−A2;

8

9 T2 := isPositive(A4 + F − 1);

10 R2 := isPositive(A4 − F );

11 N4 := N4 −A4;

12 N4 := N4 + T2;

13 N8 := N8 +R2;

14

15 y := y −A6;

16

17 N8 := N8 −A8;

18 N0 := N0 + T4;

19 N8 := N8 +R4;

20 T4 := isPositive(A7 + F − 1);

21 R4 := isPositive(A7 − F );

22

23 A1 := N0; A2 := N1; . . . A8 := N7;

24}

Line 7 corresponds to instruction I1, lines 9− 13 to instruction I2, line 15 to in-

struction I3, and lines 17 − 21 to instruction I4. Note that the body of this loop

can be expressed as a two-piece linear function depending on the sign of x, since

once the value of F is known, the values of T2, R2, T3 and R3 can be defined by

linear expressions.

Let us explain the intuition behind the above reduction. First note that even

indices for Ak represent labels in the counter program, while odd indices are

used to introduce the extra iteration that computes the sign of X2. Suppose the

counter program is in a state (k, 〈a1, a2〉). To simulate one execution step of the

counter program, we start the IPL loop from a state in which A2k−1 = 1 (all other
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Ai are 0), X1 = a1, X2 = a2, and all Ti and Ri are set to 0. Starting from this

state, in the first iteration the counter variables are swapped, F is set according

to the sign of X2, and executing the encodings of all instructions is equivalent to

no-op, except when Ik is a test on X2 in which case the corresponding Rk and

Tk record the result of the test. At the end of this iteration the last line of the

loop body sets A2k to 1. In the next iteration, the counter variables are swapped

again, and F is set to the sign of X1. Then

• if Ik ≡ incr(Xj) or Ik ≡ decr(Xj), then T ′(Ik) simulates the corresponding

counter-program instruction (since in such encoding we use the flag A2k),

and A2(k+1)−1 is set to 1.

• if Ik ≡ if X1 > 0 then k1 else k2, then T ′(Ik), as in Section 9.1, sets either

A2k1−1 or A2k2−1 to 1, i.e., it simulates a jump to k1 or k2.

• if Ik ≡ if X2 > 0 then k1 else k2, then the first 3 lines of T ′(Ik), together

with the last line of the loop body, set either A2k1−1 or A2k2−1 to 1, i.e., it

simulates a jump to k1 or k2. Note that it uses the values of Tk and Rk

computed in the previous iteration. In addition, Tk and Rk are set to 0.

This basically implies that if one execution step of the counter program leads to

a configuration (k′, 〈a′1, a′2〉), then two iterations of the IPL loop lead to a state in

which A2k′−1 = 1 (and all other Ai are 0), X1 = a′1, X2 = a′2, and all Ri and Ti are

0. Thus, with a proper initial state, we obtain a step-by-step simulation of the

counter program, proving that the halting problem has been reduced correctly.

Recall that we prove undecidability of the termination problem for our loops

by reducing from the mortality problem for counter programs, in which any initial

configuration of the counter program is admissible. We have seen that every initial

state in which only one A2k−1 is set to 1, for any k, and all Tk and Rk (when

Ik is a test on X2) are 0, simulates a possible state of the counter program. To

establish correctness of the reduction, we should extend the argument to cover

the cases that the program is started with A2k set to 1, or some Tk and Rk are

not 0. We refer to such states as improper since they do not arise in a proper

simulation of the counter program.

98



• When A2k−1 is set to 1, and some Tk and Rk are not 0, the condition

0 ≤ Tk +Rk ≤ A2k is false, and thus the loop is not enabled.

• When A2k is set to 1, it is easy to verify that after one iteration: if Ik is

increment (or decrement), then A2k+1 is set to 1 (unless k = m). If Ik is a

test, then either A2k1−1 or A2k2−1, or none of the Ai, is set to 1, depending

on the values of Tk and Rk (at most one of them can be 1). In all cases, all

Tk and Rk are set to the intended values.

We conclude that starting at an improper state either leads to immediate termi-

nation, or into a proper state. Thus, termination of the loop for all initial states

reflects correctly the mortality of the counter program.

9.3 Reduction to ILC Loops

In this section we turn to integer linear-constraint loops. We first attempt to

modify the reduction described in Section 9.1.1 to produce constraint loops in

which all coefficients are rational, and explain where and why it fails. So we do

not obtain undecidability for ILC loops with rational coefficients, but we show

that if there is one irrational number that we are allowed to use in the constraints

(any irrational will do) the reduction can be completed and undecidability of

termination proved. Undecidability can also be achieved by allowing a special

constant ∞. In Section 9.4 we describe another way of handling the failure of

the reduction with rational coefficients only: reducing from a weaker model, and

thereby proving a lower bound which is weaker than undecidability (but still

non-trivial).

Observe that the loop constructed in Section 9.1.1 uses non-linear expressions

only for setting the flags Tk,Rk and Fj, the rest is clearly linear. Assuming that

we can encode these flags with integer linear constraints, adapting the rest of the

reduction to ILC loops is straightforward: it can be done by rewriting T (PC) to

avoid multiple updates of a variable (that is, to static single assignment form) and

then representing each assignment as an equation instead. Thus, in what follows

we concentrate on how to represent those flags using integer linear constraints.
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9.3.1 Encoding the Control Flow

In Section 9.1.1, we defined Tk as isPositive(Ak+Fj−1) and Rk as isPositive(Ak−
Fj). Since 0 ≤ Ak ≤ 1 and 0 ≤ Fj ≤ 1, it is easy to verify that this is equivalent

to respectively imposing the constraint Ak + Fj − 1 ≤ 2 · Tk ≤ Ak + Fj and

Ak − Fj ≤ 2 ·Rk ≤ Ak − Fj + 1.

9.3.2 Encoding the Step Function

Now we discuss the difficulty of encoding the flag Fj using integer linear con-

straints with rational coefficients only. The following lemma states that such

encoding is not possible.

LEMMA 9.3.1. Given non-negative integer variables X and F , it is impossible

to define a system of integer linear constraints Ψ (with rational coefficients) over

X, F , and possibly other integer variables, such that Ψ∧ (X = 0)→ (F = 0) and

Ψ ∧ (X > 0)→ (F = 1).

Proof. The proof relies on a theorem in [63] which states that the following piece-

wise linear function

f(x) =

{
0 x = 0

1 x > 0,

where x is a non-negative real variable, cannot be defined as a minimization

mixed integer programming (MIP for short) problem with rational coefficients

only. More precisely, it is not possible to define f(x) as

f(x) = minimize g w.r.t. Ψ

where Ψ is a system of linear constraints with rational coefficients over x and other

integer and real variables, and g is a linear function over vars(Ψ). Now suppose

that Lemma 9.3.1 is false, i.e., there exists Ψ such that Ψ ∧ (X = 0)→ (F = 0)

and Ψ ∧ (X > 0)→ (F = 1), then the following MIP problem

f(x) = minimize F w.r.t. Ψ ∧ (x ≤ X)

defines the function f(x), which contradicts the results in [63].
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9.3.3 Undecidable Extensions

There are certain extensions of the ILC (with rational coefficients) model that

allow our reduction to be carried out. Basically, the extensions should allow for

encoding the flag Fj.

Using an Arbitrary Irrational Constant

The extension which we describe in this section allows the use of a single, arbitrary

irrational number r (we do not require the specific value of r to represent any

particular information). Thus, the coefficients are now over Z∪{r}. The variables

still hold integers.

LEMMA 9.3.2. Let r be an arbitrary positive irrational number, and let

Ψ1 ≡ (0 ≤ Fj ≤ 1) ∧ (Fj ≤ X)

Ψ2 ≡ (rX ≤ B) ∧ (rY ≤ A) ∧ (−Y ≤ X) ∧ (A+B ≤ Fj) .

Then (Ψ1 ∧Ψ2 ∧X = 0)→ Fj = 0 and (Ψ1 ∧Ψ2 ∧X > 0)→ Fj = 1.

Proof. The constraint Ψ1 force Fj to be 0 when X is 0, and when X is positive

Fj can be either 0 or 1. The role of Ψ2 is to eliminate the non-determinism for

the case X > 0, namely, for X > 0 it forces Fj to be 1. The property that makes

Ψ2 work is that for a given non-integer number d, and two integers A and B, the

condition −A ≤ d ≤ B implies A+B ≥ 1 for d 6= 0, whereas for an integer d the

sum may be zero.

To prove the desired result, we first show that if X = 0, Fj = 0 is a solution.

In fact, one can choose B = A = Y = 0 and all conditions are then fulfilled.

Secondly, we consider X > 0. Note that rX is then a non-integer number, so

necessarily B > rX. Similarly, A > rY , or equivalently −A < r(−Y ) ≤ rX.

Thus, −A < B, and A+B ≤ Fj implies 0 < Fj. Choosing B = drXe, Y = (−X)

and A = drY e yields A+B = 1, so Fj = 1 is a solution.

Remark: the variable Y was introduced in order to avoid using another irra-

tional coefficient (−r).
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EXAMPLE 9.3.3. Let us consider r =
√

2 in lemma 9.3.2. When X = 0, Ψ1

forces Fk to be 0, and it is easy to verify that Ψ2 is satisfiable for X = Y = A =

B = Fk = 0. Now, for the positive case, let for example X = 5, then Ψ1 limits

Fk to the values 0 or 1, and Ψ2 implies (
√

2 ∗ 5 ≤ B) ∧ (−
√

2 ∗ 5 ≤ A) since

Y ≥ −5. The minimum values that A and B can take are respectively −7 and 8,

thus it is not possible to choose A and B such that A + B ≤ 0. This eliminates

Fk = 0 as a solution. However, for these minimum values we have A + B = 1

and thus A+B ≤ Fk is satisfiable for Fk = 1.

THEOREM 9.3.4. The termination of ILC loops where the coefficients are

from Z ∪ {r}, for a single arbitrary irrational constant r, is undecidable.

We have mentioned, above, Meyer’s result that MIP problems with rational

coefficients cannot represent the step function over reals. Interestingly, he also

shows that it is possible using an irrational constant, in a manner similar to our

Lemma 9.3.2. Our technique differs in that we do not make use of minimization

or maximization, but only of constraint satisfaction, to define the function.

Using Sufficiently Large Constant

Our second extension is the use of sufficiently large constants ∞ with the prop-

erties 0 ∗ ∞ = 0 and n ∗ ∞ =∞ for X > 0. Using this constant the flag Fk can

be defined as stated by the following lemma.

LEMMA 9.3.5. Let Ψ = 0 ≤ Fk ≤ 1 ∧ Fk ≤ X ∧ 0 ≤ X ≤ Fk ∗ ∞, then

Ψ ∧X = 0→ Fk = 0 and Ψ ∧X > 0→ Fk = 1

The proof of the above lemma is straightforward.

THEOREM 9.3.6. The termination of ILC loops, over Z+, with a sufficiently

large constant ∞ is undecidable.

The use of such constants is common in (mixed) integer programming, for the

very particular purpose of modeling piecewise linear functions.
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9.4 A Lower Bound for Integer Linear-Constraints

Loops

Let us consider a counter machine as defined in Section 8.3, but with a weak

conditional statement “if Xj > 0 then k1 else k2” which is interpreted as: if Xj is

positive then the execution may continue to either label k1 or label k2, otherwise,

if it is zero, the execution must continue at label k2. This computational model is

equivalent to a Petri net. From considerations as those presented in Section 9.3,

we arrived at the conclusion that the weak conditional, and therefore Petri nets,

can be simulated by an ILC loop with rational coefficients. In this section, we

describe this simulation and its implications.

A (place/transition) Petri net [69] is composed of a set of counters X1, . . . , Xn

(known as places) and a set of transitions t1, . . . , tm. A transition is essentially

a command to increment or decrement some places. This may be represented

formally by associating with transition t its set of decremented places •t and

its set of incremented places t•. A transition is said to be enabled if all its

decremented places are non-zero, and it can then be fired, causing the decrements

and increments associated with it to take place. Starting from an initial marking

(values for the places), the state of the net evolves by repeatedly firing one of the

enabled transitions.

LEMMA 9.4.1. Given a Petri net P with initial marking M , a simulating ILC

loop (with rational coefficients) with an initial condition ΨM can be constructed

in polynomial time, such that the termination of the loop from an initial state in

ΨM is equivalent to the termination of P starting from M .

Proof. The ILC loop will have variables X1, . . . , Xn that represent the counters

in a straight-forward way, and flags A1, . . . , Am that represent the choice of the

next transition much as we did for counter programs. The body of the loop is
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∆ ∧Ψ ∧ Φ where

∆ =
m∧
k=1

(A′k ≥ 0) ∧ (A′1 + ....+ A′m = 1)

Ψ =
n∧
i=1

(Xi ≥
∑
k:i∈•tk

A′k)

Φ =
n∧
i=1

(X ′i = Xi −
∑
k:i∈•tk

A′k +
∑
k:i∈tk•

A′k)

The loop guard is X1 ≥ 0 ∧ · · · ∧ Xn ≥ 0. The initial state ΨM simply forces

each Xi to have the value as stated by the initial marking M . Note that the

initial values of Ai are not important since they are not used (we only use A′k).

As before, the constraint ∆ ensures that one and only one of the A′k will equal 1

at every iteration. The constraint Ψ ensure that A′k may receive the value 1 only

if transition k is enabled in the state. The constraint Φ (the update) simulates

the chosen transition.

EXAMPLE 9.4.2. Consider the following Petri net

X1X2X3X4X5

t1t2

t3t4

which has 5 places X1, . . . , X5 and 4 transitions t1, . . . , t4. The translation, as

described above, of this net to an ILC loop results in

1while( X1 ≥ 0 ∧X2 ≥ 0 ∧X3 ≥ 0 ∧X4 ≥ 0 ∧X5 ≥ 0 ) do {
2 A′1 ≥ 0 ∧A′2 ≥ 0 ∧A′3 ≥ 0 ∧A′4 ≥ 0 ∧A′1 +A′2 +A′3 +A′4 = 1∧
3

4 X1 ≥ A′1∧
5 X2 ≥ A′3 ∧
6 X3 ≥ A′3 +A′4 ∧
7 X4 ≥ A′4 ∧
8 X5 ≥ A′2 ∧
9

104



10 X ′1 = X1 +A′3 −A′1 ∧
11 X ′2 = X2 +A′1 −A′3 ∧
12 X ′3 = X3 +A′1 +A′2 −A′3 −A′4 ∧
13 X ′4 = X4 +A′2 −A′4 ∧
14 X ′5 = X5 +A′4 −A′2
15}

Line 2 corresponds to ∆, lines 4–8 to Ψ, and lines 10–14 to Φ.

The importance of this result lies in the fact that complexity results for Petri

net are now lower bounds on the complexity of the corresponding problems for

ILC loops, and in particular, from a known result about the termination prob-

lem [37, 57], we obtain the following.

THEOREM 9.4.3. The termination problem for ILC loops (with rational coef-

ficients), for a given input, is at least EXPSPACE-hard.

Note that the reduction does not provide useful information on universal termi-

nation of ILC loops with rational coefficients, since universal termination of Petri

nets (also known as structural boundedness is PTIME-decidable [61, 38].

9.5 A Lower Bound for Deterministic Updates

The ILC loop we constructed to prove Theorem 9.4.3 was non-deterministic, but

we will now show that the result also holds for loops which are deterministic

(though defined by constraints). The result will require, however, that the loop

precondition be non-deterministic, that is, we ask about termination for a set of

states, not for a single state (and not for all possible states, either).

To explain the idea, we look at the Petri nets constructed in Lipton’s hardness

proof. This proof is a reduction from the halting problem for counter programs

with a certain space bound (note that the halting problem for a space-bounded

model is the canonical complete problem for a space complexity class). Given a

counter program P , the reduction constructs a Petri net NP that has the follow-

ing behavior when started at an appropriate initial state. NP has two kinds of

computations, successful and failing. Failing computations are caused by taking
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non-deterministic branches which are not the correct choice for simulating P .

Failing computations always halt. The (single) successful computation simulates

P faithfully. If (and only if) P halts, the successful computation reaches a state

in which a particular flag, say HALT, is raised (that is, incremented from 0 to 1).

This flag is never raised in failing computations.

This network NP can be translated into an ILC loop LP as previously de-

scribed. We eliminate the non-determinism from LP by using an unconstrained

input variable O as an oracle, to guide the non-deterministic choices. In addition,

we reverse the program’s behaviour: our loop will terminate (on all states of in-

terest) if and only if P does not terminate (note that P is presumably input-free

and deterministic).

THEOREM 9.5.1. The termination problem for ILC loops (with rational coef-

ficients), for a partially-specified input, is at least EXPSPACE-hard, even if the

update is deterministic.

We describe the changes to the previous reduction. We use assignment com-

mands for convenience. We will later show that they can all be translated into

linear constraints. We assume that NP has m transitions and n places. The

construction of LP is obtained as in the previous reduction with the following

changes: (1) we introduce a new variable O, and include O > 0 in the loop

guard; and (2) ∆ is replaced by

PC := O mod (m+ 2)

O := O div (m+ 2)

Ak := [PC = k] (for all 1 ≤ k ≤ m+ 1)

O := O + (m+ 1) · HALT

The notation [PC = k] means 1 if the PC = k and 0 otherwise. Also, Am+1

is a new flag which is not associated with any transition of NP ; it represents a

do-nothing transition (the iteration does, however, decrease O).

Let ΨM be HALT = 0∧X1 = a1∧· · ·∧Xn = an ∧O > 0 where ai is the initial

value of place Xi in M . We claim that LP terminates for all input in ΨM if and

only if NP does not terminate for M (or equivalently, P does not halt).
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Clearly, O guides the choice of transitions. It makes our loop deterministic,

but any sequence of net transitions can be simulated: Suppose this sequence is

k1, k2, . . . , kn. An initial value for O of k1 + (k2 + (k3 + · · · ) · (m + 2)) · (m + 2)

will cause exactly these transitions to be taken. As long as HALT is not set, O

also keeps descending. Since the loop condition includes O > 0, a non-halting

simulation will become a terminating loop. A halting simulation will reach the

point where HALT = 1, provided the initial value of O indicated the correct

execution trace. Note that O reaches the value 0 exactly when HALT is set. In

this iteration, only Am+1 is set (so counters will not be modified), while O is

restored to m + 1. In the next iteration, O remains m + 1, Am+1 is set, and

HALT is set. Thus, the loop will not terminate.

Finally, the above assignments can be translated to integer linear constraints

as follows:

(O = (m+ 2) ·O′′ + PC ′) ∧ (1 ≤ PC ′ ≤ m+ 1)∧

(
∧m+1
i=1 A′i ≥ 0) ∧ (1 = A′1 + · · ·+ A′m+1) ∧ (PC ′ = 1 · A′1 + · · ·+ (m+ 1) · A′m+1)∧

O′ = O′′ + (m+ 1) · HALT ′

9.6 Concluding remarks

In this chapter we have studied the complexity of deciding termination of some

form of simple integer loops. For some we have proved undecidability and for some

others we provided an EXPSPACE-hardness lower bound. The most remarkable

results that we have achieved are: (i) a single conditional statement in the body

of a while loop is enough to make the problem undecidable; (2) a single irrational

constraint (or sufficiently large constraint) make the problem undecidable for

integer linear-constraint loops.

Due to the strong relation between cost and termination analysis, the results

obtained in this part of the thesis have the following consequences on decidability

and complexity of cost analysis:

1. The undecidability of termination for IPL loops implies that there are cer-

tain classes of programs for which inference of cost bounds is not decidable.
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Namely, programs that include simple loops (without branching in the loop

body) and allowing statements that are sufficient for simulating the step

function, e.g., integer division by constant. Note that when all updates

inside such loops are linear, and homogeneous, then, termination is de-

cidable [25]. However, this does not imply decidability of the cost bound

problem since, in addition to proving termination, we need infer an upper

bound on the number of iterations.

2. The undecidability of simple loops with two linear pieces implies that the

cost problem for CRs with multiple equations, such as those of Figure 4.3,

is undecidable already for the case of two recursive equations.

3. The EXPSPACE-hardness lower bound for ILC loops with a given or par-

tially specified input implies that the cost bound problem for CRs of the

form specified in Figure 4.1, when the input is (partiality) specified, is also

at least EXPSPACE-hard.
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Part III

Conclusions, Related and Future

work
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Chapter 10

Related Work

In this chapter we overview works related on cost and termination analysis, and

discuss their relations to the results obtained in this thesis. In Section 10.1 we

overview related work on cost analysis for several programming paradigms, and

in Section 10.2 we discuss related work on termination analysis.

10.1 Related Work on Cost Analysis

Since the seminal work of Wegbreit [80] on mechanical cost analysis, there have

been an increasing interest in static cost analysis for different programming

paradigms. Different works addressed different aspects of cost analysis, such

as the kind of resources (e.g., memory, executed instructions), the type of bounds

(e.g., best, worst or average case), precision, and efficiency. As we have mentioned

in Chapter 1, the classical approach to cost analysis consists of two phases. In

the first phase, an abstract version of the program is generated, which includes

only information relevant to capturing its cost; in the second phase this abstract

program is analysed in order to compute closed-form bounds in terms of (an ab-

stract version of) the input parameters. In this thesis we concentrated on the

second phase.

In our work, the abstract programs generated in the first phase are called cost

relations (CRs), a terminology that we borrowed from [5]. However, there is no

unified terminology or syntax for these abstract programs, and different works call
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them with different names, e.g., worst-case complexity functions [2], time-bound

programs [70] and recursive time-complexity functions [54]. Moreover, in some

cost analysis frameworks the border between the two phases is not clearly drawn,

and thus it is difficult to characterize the corresponding abstract programs. The

expressiveness of these abstract programs, as well as the kind of analysis applied

on them to generate closed-form bounds, directly affect the applicability and

precision of the corresponding approach. In what follows, we discuss the most

related works of (the second phase of) cost analysis from different perspectives:

(1) the kind of abstract programs generated in the first phase; (2) the kind of

analyses performed on such abstract programs in order to compute closed-form

bounds; (3) the type of bounds (UBs or LBs) generated; and (4) the precision of

the computed bounds.

The most related approach to our work is [5], where CRs were actually intro-

duced. As we have seen in the first part of this thesis we rely on some of their

underlying techniques such as inference of ranking functions and maximization of

cost expressions. Although experimentally our approach is more precise (as we

have seen in Chapter 6), we cannot prove theoretically that it is always more pre-

cise. However, for the case of CRs with a single recursive equation as described

in sections 4.1 and 4.2, if we use the same ranking functions and maximization

procedures as [5], then it is guaranteed that our approach is more precise. For

the case of CRs with multiple recursive equations, it is not possible to formally

compare them. Indeed, one could handcraft examples for which [5] infers more

precise UBs. This is because for solving such cases: (1) our first alternative, which

generalizes cost expressions, is based on heuristics and thus might be imprecise in

some cases; and (2) our second alternative, which analyzes each recursive equation

separately, requires inferring the number of visits to a single equation which can

be less precise than inferring ranking functions. As regards applicability, when

it is not possible to infer the progression parameters (in definitions 4.2.3 and

4.2.10), we use the approach of [5], i.e., replacing the corresponding ‖l‖ by ‖l̂‖,
thus, assuming that CAS is able to handle the corresponding RRs , we achieve a

similar applicability.

The work of [42], in the context of the SPEED project, computes worst-case

symbolic bounds for C++ code containing loops and recursions. The loops in the
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input code are instrumented with counters, and the intermediate representation

is based on what they call counter-optimal proof structure. This structure con-

sists of a set of counters and linear invariants generated for these counters. The

invariants are used to bound the counters, and then these bounds are composed

into the final desired bound. While the proof structure is fundamentally different

from CRs , we observe the following: (1) The number of counters in a proof struc-

ture is equal to the number of different CR in the corresponding CRs ; and (2)

each counter in the proof structure represents the upper bound cost of each CR

in the corresponding CRs . Using the above observations we can conclude that

it might infer bounds that are less precise than ours since, as explained in [42]

for instance, the worst-case time usage
∑n

i=1 i is over-approximated by n2 in this

approach, while our approach is able to obtain the precise solution n2

2
− n

2
. Un-

fortunately we cannot experimentally compare to this approach since the code is

not available for use.

King et al. [51] addressed the problem of inferring conditions (on the input)

of a given logic program. It is guaranteed that the number of resolution steps will

exceed a predefined amount if the input conditions are satisfied while executing

the program. The abstract compilation used in this work generates CLP (R)

programs which are similar to CRs where (1) each abstract predicate includes a

counter that accumulates the corresponding cost, and (2) some constraints are

added to state that the counter (i.e., the resources) cannot exceed the predefined

amount. The conditions are inferred by first over-approximating the input-output

semantics of the CLP (R) program, and then examine it to see which (abstract)

inputs lead to failure. These cases either fail because of a failure in the original

programs, or because the amount of resources exceed the predefined amount.

Importantly, this method does not address the problem of inferring symbolic

LBs.

There is a series of works [33, 34, 35, 66] on resource analysis of logic pro-

grams which are based on generating and solving recurrence equations. Debray

et al. [33] developed a semi-automatic worst-case cost analysis for logic programs

which generates both linear and nonlinear recurrence equations. However, it is

not guaranteed that it will always be able to compute closed-form bounds for

the nonlinear case. In a successive work, Debray et al. [35] developed a semi-
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automatic method for deriving nontrivial lower bounds on the computation cost

of logic programs. The work of Navas et al. [66] infers resource bounds (both up-

per and lower) for logic programs by generating two sets of difference equations.

Navas et al. [65] developed a resource usage analysis for Java bytecode in a similar

fashion. Since all these methods are based on solving recurrence equations, the

inferred bounds are as precise as ours and the approach is not limited to specific

complexity classes. However, since these approaches are based on using CAS,

they suffer from the shortcomings described in Section 3.2.

In the functional programming setting, the most related works are [47, 46, 45],

which are centered on the static inference of UBs on the resource usage of first-

order functional programs. Automatic amortized resource usage of a first-order

functional language was introduced by Hofmann and Jost in [47]. It is based on

a type system in which the types are the potential functions used in amortized

analysis [77]. The type inference is done using linear programming techniques. It

is important to note that this technique is limited to the inference of linear UBs.

This work has been extended in [46] for univariate polynomial UBs. However,

such polynomial cannot express bounds of the form m∗n, and thus they are over-

approximated by n2 +m2. Recently, in [45], techniques for handling multivariate

polynomial UBs, such as m ∗ n, have been proposed.

Hofmann and Rodriguez [48] developed a type system for object-oriented Java

like languages and was extended in [49] to include to support amortized complex-

ity analysis much like [47, 46, 45]. Note that all these approaches cannot handle

programs whose resource usage depend on integer variables. While these tech-

niques can be adapted to handle CRs with simple integer linear constraints, it is

not clear how it can be extended to handle CRs with unrestricted form of integer

linear constraints. It is also important to note that currently these techniques

cannot compute logarithmic or exponential UBs. For example, [45] computes

O(n2) as an UB for the mergesort program whereas we compute O(n ∗ log(n)).

On the other hand, these techniques are superior for examples that exhibit amor-

tized cost behavior, but such examples are out of the scope of this thesis since

they cannot be modeled precisely with CRs [10]. Overall, we believe that our

approach is more generic (at least for imperative languages), in the sense that it

handles CRs with arbitrary integer linear constraints, which might be the output
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of cost analysis of any programming language, and, in addition, it is not restricted

to any complexity class.

There are some works related on solving recurrence relations [28, 14, 41, 39].

Cohen and Katcoff [28] developed interactive techniques based on guessing solu-

tions and generating functions that solve linear recurrence relations. However,

their method does not always admit closed-form expressions. Decision proce-

dures have been developed by Gosper [41] and Everest et al. [39] which admits

closed-form expression for a subset of linear recurrence relations. Bagnara et

al. [14] extended the previous techniques to recurrence relations with multiple

arguments and some nonlinear recurrences of finite order. However, in spite of

this extension, still the form of the recurrence relations that can be solved are

very limited, when compared to our CRs .

10.2 Related Work on Termination

Termination of integer loops has received considerable attention recently, both

from theoretical (e.g., decidability, complexity), and practical (e.g., developing

tools) perspectives. Research has addressed straight-line while loops as well as

loops in a constraint setting, possibly with multiple paths.

For straight-line while loops, the most remarkable results are those of [78] and

[25]. Tiwari proved that the problem is decidable for linear deterministic updates

when the domain of the variables is R. Braverman proved that this holds also for

Q, and for the homogeneous case it holds for Z (see Section 7.1). Both considered

universal termination, the termination for a given input left open.

Decidability and complexity of termination of single and multiple-path in-

teger linear-constraint loops has been intensively studied for different classes of

constraints. [55] proved that termination of a multiple-path ILC loop, when the

constraints are restricted to size-change constraints (i.e., constraints of the form

Xi > X ′j or Xi ≥ X ′j over N), is PSPACE-complete. [19, 18] identified sub-classes

of such loops for which the termination can be decided in, respectively, PTIME

and NPTIME. [16] extended the types of constraints allowed to monotonicity

constraints of the form Xi > Y , Xi ≥ Y , where Y can be a primed or unprimed
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variable. Termination for such loops is, again, PSPACE-complete. All the above

results involving size-change or monotonicity constraints apply to an arbitrary

well-founded domain, although the hardness results only assume N. Monotonic-

ity constraints over Z were considered in [27, 17], concluding that this termination

problem too is PSPACE-complete. Recently, [23] proved that it is still PSPACE-

complete for gap-constraints, which are constraints of the form X −Y ≥ c where

c ∈ N. In a similar vein, [15] proved that for general difference constraints over

the integers, i.e., constraints of the form Xi −X ′j ≥ c where c ∈ Z, the termina-

tion problem becomes undecidable. However for a subclass in which each target

(primed) variable might be constrained only once (in each path of a multiple-path

loop) the problem is PSPACE-complete.

All the above work concerns multiple-path loops. Recently, [22] showed that

(universal) termination of a single ILC loop with octagonal relations is decidable.

Petri nets and various extensions, such as reset and transfer nets, can also be

seen as multiple-path constraint loops. The termination (for a given input) of

place/transition Petri nets and certain extensions is known to be decidable [68,

36].

A related topic that received much attention is the synthesis of ranking func-

tions for such loops, as a means of proving termination. [75] proposed a method

for the synthesis of linear ranking functions for (single path) ILC loops over N.

Later, their method was extended by [62] to Q and to multiple-path loops. Both

rely on the duality theorem of linear programming. [67] also proposed a method

for synthesizing linear ranking function for ILC loops. Their method is based on

Farkas’ lemma, which has been used also in [29] for synthesizing linear ranking

functions. It is important to note that these methods are complete with respect

to synthesizing linear ranking functions when the variables range over R or Q,

but not Z. Recently, [12] proved that [62, 67] are actually equivalent, in the

sense that they compute the same set of ranking functions, and that the method

of Podelski and Rybalchenko can, potentially, be more efficient since it requires

solving rational constraints systems with fewer variables and constraints. [24]

presented an algorithm for computing linear ranking functions for straight-line

integer while loops with integer division.

Piecewise affine functions have been long used to describe the step of a discrete
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time dynamical system. [21] considered systems of the form x(t + 1) = f(x(t))

where f is a piecewise affine function over Rn (defined by rational coefficients).

They show that some problems are undecidable for n ≥ 2, in particular, whether

all trajectories go through 0 (the mortality problem). This can be seen as termi-

nation of the loop while x 6= 0 do x := f(x).
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Chapter 11

Conclusions and Future work

In this thesis we have considered precision, scalability and applicability issues in

cost and termination analysis, both from practical and theoretical perspectives.

Our main interest was in developing cost analysis techniques that (i) overcome

the limitations of existing approaches; and (ii) have a good performance/precision

tradeoff. From the practical point of view, we have developed such techniques for

solving cost relations, which is the phase of cost analysis where most of the preci-

sion, scalability and applicability problems can be found in existing tools. From

the theoretical side, since our techniques heavily rely on deciding termination of

loops, we have studied the computational complexity of deciding termination for

some form of simple loops that arise in the context of cost analysis. This theoret-

ical study gives an insight on the difficulty of the problems under consideration,

and thus on the practicality on any algorithm the aims at solving them.

As for the practical side of this thesis, we have proposed a novel approach to

infer precise UBs and LBs of CRs which, as our experiments show, achieves a

very good balance between the accuracy of our analysis and its applicability. The

main idea is to automatically transform CRs into a simple form of worst-case

(resp. best-case) RRs that CAS can accurately solve to obtain UBs (resp. LBs)

on the resource consumption. The required transformation is far from trivial since

it requires transforming multiple recursive nondeterministic equations involving

multiple increasing and decreasing arguments into a single deterministic equation

with a single decreasing argument. It is important to note that it is the first time
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that the problem of inferring LBs is addressed for such wide setting.

Importantly, since CRs are a universal output of cost analysis for any pro-

gramming language, our approach to infer closed-form UBs and LBs is completely

independent of the programming language from which CRs are obtained. Cur-

rently, we have applied it to CRs obtained from Java bytecode programs, from

X10 programs [9] and from actor-based programs [3]. In the latter two cases, the

languages have concurrency primitives to spawn asynchronous tasks and to wait

for termination of tasks. In spite of being concurrent languages, the first phase

of cost analysis handles the concurrency primitives and the generated CRs can

be solved directly using our approach.

As for the theoretical side, which deals with deciding termination of simple

loops, for straight-line while loops, we have proved that if the underlying instruc-

tion set allows the implementation of a simple piecewise linear function, namely

the step function, the termination problem is undecidable. For integer linear-

constraint loops, we have shown that allowing the constraints to include a single

arbitrary irrational number makes the termination problem undecidable. For the

case of integer constraints loops with rational coefficients only, we could simulate

a Petri net. This result provides interesting lower bounds on the complexity of

the termination, and other related problems, of ILC loops. For example, since

marking equivalence (equality of the sets of reachable states) is undecidable for

Petri nets [43, 38, 50], it follows that equivalence (in terms of the reachable states)

of two ILC loops with given initial states is also undecidable, which in turn im-

plies that the reachable states of an ILC loop are not expressible in a logic where

equivalence is decidable. We think that our results shed some light on the termi-

nation problem of simple integer loops and perhaps will inspire further progress

on the open problems.

As future work, we plan to assess the scalability of our cost analysis approach

by analyzing larger programs, up to now the main concern has been the accuracy

of the results obtained. Also, we plan to study new techniques to infer more

precise lower/upper bounds on the number of iterations that loops perform. As

this is an independent component, our approach will directly be benefited from

any improvement in this regard. In addition, so far we have used linear invariants

for inferring linear ranking functions, minimum number of iterations of a loop
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and maximization or minimization of cost expressions. Another extension of

our work would be inferring nonlinear loop invariants using symbolic summation

and algebraic techniques. Another possible direction is inferring nonlinear input-

output (size) relations for methods by viewing the output as the cost that is

consumed by the corresponding method. This way, we can view the problem

of inferring such input-output relations as solving corresponding CRs , for which

we already know how to infer nonlinear bounds. Note that these input-output

relations are fundamental in the first phase of cost analysis in order to generate

CRs that precisely capture the program’s cost.
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