Computational Logic

Recall of First-Order Logic

Damiano Zanardini

UPM EUROPEAN MASTER IN COMPUTATIONAL LOGIC (EMCL)
SCHOOL OF COMPUTER SCIENCE
TECHNICAL UNIVERSITY OF MADRID
damiano@fi.upm.es

Academic Year 2008/2009

Sidenotes

- we try to introduce the ideas of this course requiring as little formal logic background as possible (since you are studying it at the same time)
- we start directly from *first-order logic* (sometimes referred to as *predicate logic*); *propositional logic* is a special, much simpler case

```
PROPOSITIONAL LOGIC (only propositions, no variables)
```

" ⊂ " FIRST

FIRST-ORDER LOGIC

What we need to talk about logic: thinking formally!

- be able to deal with symbols
- do not be misled by names or notation
- true is not reasonable nor well-formed! → implication
- practice: (1) formalize informal ideas (2) give informal meaning to formulæ
- never forget the relation between syntax and semantics

An alphabet A consists of

- variable symbols: x, y, z, w, x', \dots
- function symbols: $f(_-)$, $g(_-,_-)$, ... (arity = no. of args: f/1, g/2)
- predicate symbols: $p(_)$, $q(_,_)$, ..., = /2
- connectives: \neg , \lor , \land , \rightarrow , \leftrightarrow
- quantifiers: ∀, ∃
- constants (a, b, c, ...) = 0-arity functions
- propositions = 0-arity predicates

Metalanguage

F and G denote arbitrary formulæ

Example: alphabet

- variables: x, y, z
- constants (0-ary functions): a, b, c, tom, 0, 1
- functions: f/1, g/2
- predicates: p/0, q/2, cat/1, +/3

Terms

- a variable is a term
- if $t_1, ..., t_n$ are terms and f is an n-ary ($n \ge 0$, thus including constants) function symbol, then $f(t_1, ..., t_n)$ is a term

Examples

- correct: a, f(tom), f(f(f(x))), g(1, f(a)), a()?
- incorrect: a(1), f(2), g(g,g(1)), a+y, g(0c), f(1, +(a,f(z),c)

Example: alphabet

- variables: x, y, z
- constants (0-ary functions): a, b, c, tom, 0, 1
- functions: f/1, g/2
- predicates: p/0, q/2, cat/1, +/3

Atoms

• if $t_1, ..., t_n$ are terms and p is an n-ary $(n \ge 0)$ predicate symbol, then $p(t_1, ..., t_n)$ is an atom

Examples

- correct: p, q(a, f(1)), cat(g(x, y)), +(a, f(z), c)
- incorrect: q(p,p), cat(a,1), f(q(a,a)), q(0,z)

Example: alphabet

- variables: x, y, z
- constants (0-ary functions): a, b, c, tom, 0, 1
- functions: f/1, g/2
- predicates: p/0, q/2, cat/1, +/3

Formulæ

- an atom is a formula
- if F and G are formulæ, and x is a variable, then $\neg F$, $(F \land G)$, $(F \lor G)$, $(F \to G)$, $(F \leftrightarrow G)$, $\forall xF$ and $\exists xF$ are also formulæ

Examples

- correct: $(p \to \neg q(a, f(x))), (\neg cat(a) \land (\forall xp \lor \exists y cat(y)))$
- incorrect: $p \land$, $\exists z f(1)$, $\forall p$, $q(a, b) \leftrightarrow tom$

Literals

A literal is an atom or the negation of an atom

•
$$p$$
, $\neg p$, $q(a, f(1))$, $\neg q(a, f(1))$, $cat(g(x, y))$, $\neg cat(g(x, y))$

Precedence

- parentheses give an order between operators, but can make a formula quite unreadable
- we can use an order of precedence between operators in order to remove some parentheses without introducing ambiguity

$$((p \land \neg q) \to (p \lor r)) \quad \rightsquigarrow \quad p \land \neg q \to p \lor r \quad \rightsquigarrow \quad \begin{aligned} p \land (\neg q \to p) \lor r \\ ((p \land \neg q) \to p) \lor r \\ (p \land \neg q) \to (p \lor r) \\ p \land (\neg q \to p \lor r) \end{aligned}$$

Literals

A *literal* is an atom or the negation of an atom

• p, $\neg p$, q(a, f(1)), $\neg q(a, f(1))$, cat(g(x, y)), $\neg cat(g(x, y))$

Precedence

- parentheses give an order between operators, but can make a formula quite unreadable
- we can use an order of precedence between operators in order to remove some parentheses without introducing ambiguity

$$((p \land \neg q) \to (p \lor r)) \quad \rightsquigarrow \quad p \land \neg q \to p \lor r \quad \rightsquigarrow \quad \begin{aligned} p \land (\neg q \to p) \lor r \\ ((p \land \neg q) \to p) \lor r \\ (p \land \neg q) \to (p \lor r) \\ p \land (\neg q \to p \lor r) \end{aligned}$$

• $\{\neg, \forall, \exists\}$ higher precedence than $\{\land, \lor\}$ $\{\land, \lor\}$ higher precedence than $\{\rightarrow, \leftrightarrow\}$

Free and bounded variables

- an occurrence of the variable x is bounded in F if it is in the scope of a quantifier $\forall x$ or $\exists x \quad \leadsto \quad \exists x (p(1,x,y) \land q(x)) \land q(x)$
- otherwise, it is said to be *free* \rightsquigarrow $\exists x (p(1,x,y) \land q(x)) \land q(x)$
- a formula if *closed* if it contains no free occurrences

Substitution

- \bullet F(x) denotes a formula where x occurs free somewhere
- F(x/t) denotes a formula where every free occurrence of x has been replaced by a term t, provided x does not occur free in the scope of any $\forall y$ or $\exists y$ for y occurring in t

$$F \equiv s(x) \land (\forall y (p(x) \rightarrow q(y)))$$
 $F(x/f(y,y))$ cannot be done

• important: $\forall xp(x)$ is the same as $\forall yp(y)$, and this can be generalized

Alternative notation

More than first-order

• second-order logic: it allows quantification over functions and predicates (e.g., mathematical induction)

$$\forall p(p(0) \land \forall k(p(k) \rightarrow p(s(k))) \rightarrow \forall np(n))$$

 higher-order logic allows quantification over functions and predicates of any order (as in functional programming)