Damiano Zanardini

UPM EUROPEAN MASTER IN COMPUTATIONAL Loaic (EMCL)
ScHoOL OF COMPUTER SCIENCE
TECHNICAL UNIVERSITY OF MADRID
damiano@fi.upm.es

Academic Year 2008/2009

Syntax of a first-order language

Sidenotes

@ we try to introduce the ideas of this course requiring as little formal logic
background as possible (since you are studying it at the same time)

@ we start directly from first-order logic (sometimes referred to as predicate
logic); propositional logic is a special, much simpler case

PROPOSITIONAL LOGIC x

. . c" FIRST-ORDER LOGIC
(only propositions, no variables)

What we need to talk about logic: thinking formally!
be able to deal with symbols

do not be misled by names or notation

true is not reasonable nor well-formed! ~» implication

practice: (1) formalize informal ideas (2) give informal meaning to formulee

never forget the relation between syntax and semantics

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

2/2

@ variable symbols: x, y, z, w, x/, ...

@ function symbols: f(_), g(-,-), ... (arity = no. of args: f/1, g/2)
e predicate symbols: p(.), g(_,.), ..., = /2

@ connectives: =, V, A\, —, <

e quantifiers: V, 3

constants (a, b, ¢, ...) = O-arity functions

@ propositions = 0-arity predicates

F and G denote arbitrary formulae

variables: x, y, z

constants (0-ary functions): a, b, ¢, tom, 0, 1
functions: /1, g/2

predicates: p/0, q/2, cat/1, +/3

@ a variable is a term
@ if ty,..., t, are terms and f is an n-ary (n > 0, thus including constants)
function symbol, then f(t1, ..., t,) is a term

@ correct: a, f(tom), f(f(f(x))), g(1,f(a)), a()?
e incorrect: a(l), f(2), g(g,g(1)), a+y, g(0c), f(1, +(a f(z),c)

P s (e T T A Year 20082000 3 /2

@ variables: x, y, z

@ constants (0-ary functions): a, b, ¢, tom, 0, 1
e functions: /1, g/2

o predicates: p/0, q/2, cat/1, +/3

@ if ty,..., t, are terms and p is an n-ary (n > 0) predicate symbol, then
p(t1, ..., ty) is an atom

e correct: p, gq(a,f(1)), cat(g(x,y)), +(a, f(z),¢c)
@ incorrect: q(p,p), cat(a,1), f(q(a,a)), ¢(0,,z)

Syntax of a first-order language

Example: alphabet
@ variables: x, y, z
@ constants (0-ary functions): a, b, ¢, tom, 0, 1
e functions: f/1, g/2
@ predicates: p/0, q/2, cat/1, +/3

Formulae
@ an atom is a formula

e if F and G are formulze, and x is a variable, then =F, (F A G), (F V G),
(F — G), (F < G), VxF and 3xF are also formulae

Examples

e correct: (p — —q(a, f(x))), (—cat(a) A (VxpV Jycat(y)))
@ incorrect: pA, 3Jzf(1), Vp, gq(a,b) < tom

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

2/2

Syntax of a first-order language

Literals

A literal is an atom or the negation of an atom

@ p, —p, q(a7f(1))' _‘q(a’f(l))' Cat(g(xa)/))' _‘C‘?t(g(xa)/))

Precedence

@ parentheses give an order between operators, but can make a formula quite
unreadable

@ we can use an order of precedence between operators in order to remove
some parentheses without introducing ambiguity

pA(=g—p)Vr
((PA=q) = p)Vr
(pA=g)— (pVr)
pA(—g—pVr)

((PA=g) = (pVr)) ~ pA=q—pVr

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2/2

Syntax of a first-order language

Literals

A literal is an atom or the negation of an atom

@ p, —p, q(a7f(1))' _‘q(a’f(l))' Cat(g(xa)/))' _‘C‘?t(g(xa)/))

Precedence

@ parentheses give an order between operators, but can make a formula quite
unreadable

@ we can use an order of precedence between operators in order to remove
some parentheses without introducing ambiguity

pA(=g—p)Vr
((PA=q) = p)Vr
(PA=q) = (pVr)
pA(—g—pVr)

((PA=g) = (pVr)) ~ pA=q—pVr

e {—,V, 3} higher precedence than {A, V}
{A,V} higher precedence than {—, <}

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2/2

Syntax of a first-order language

Free and bounded variables

@ an occurrence of the variable x is bounded in F if it is in the scope of a
quantifier Vx or 3x ~» 3x(p(1, x,y) A q(x)) A g(x)

@ otherwise, it is said to be free ~ Ix(p(1,x,y) A q(x)) A g(x)

@ a formula if closed if it contains no free occurrences

Substitution
@ F(x) denotes a formula where x occurs free somewhere

@ F(x/t) denotes a formula where every free occurrence of x has been replaced
by a term t, provided x does not occur free in the scope of any Vy or Jy for
y occurring in t

F =s(x) A (Vy(p(x) — q(y))) F(x/f(y.y)) cannot be done

@ important: Vxp(x) is the same as Vyp(y), and this can be generalized

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2/2

Syntax of a first-order language

Alternative notation

A & —
> &, = IxF
VxF Vx. F p,q,r

More than first-order

@ second-order logic: it allows quantification over functions and predicates

(e.g., mathematical induction)

Vp(p(0) A Vk(p(k) — p(s(k))) — Vnp(n))

@ higher-order logic allows quantification over functions and predicates of any

order (as in functional programming)

D. Zanardini (damiano@fi.upm.es) Computational Logic

=, D
dx. F
P,Q,R

Ac. Year 2008/2009 2/2

