
Computational Logic
Recall of First-Order Logic

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science

Technical University of Madrid
damiano@fi.upm.es

Academic Year 2008/2009

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 1 / 4

Semantics of a first-order languagep

Interpretations

An interpretation I is a pair (D, I), where D 6= ∅ is a set (the domain of the
universe) and I maps symbols to individuals or functions

constants: I (a) = d ∈ D

variables: I (x) = d ∈ D

functions: I (f /n) = F : Dn 7→ D

I (f (t1, ..., tn)) = F(I (t1), ..., I (tn)) = F(d1, ..., dn) ∈ D

predicates: I (p/n) = P : Dn 7→ {t, f}
I (p(t1, ..., tn)) = P(I (t1), ..., I (tn)) = P(d1, ..., dn) ∈ {t, f}

an interpretation assigns an element of D to any term, and a truth value to
any predicate applied to terms

P is an n-ary relation R: P(d1, ..., dn) = t iff 〈d1, ..., dn〉 ∈ R

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 4

Semantics of a first-order languagep

Evaluation of a formula
Assigning a truth value to a formula, according to:

The chosen interpretation of constants, functions and predicates

The rules for evaluation (see also truth tables)

I (¬F) = t iff I (F) = f
I (F ∧ G) = t iff I (F) = I (G) = t
I (F ∨ G) = f iff I (F) = I (G) = f
I (F → G) = f iff I (F) = t and I (G) = f
I (F ↔ G) = t iff I (F) = I (G)
I (∀xF (x)) = t iff I (F (x/c)) = t ∗ for every constant c
I (∃xF (x)) = t iff I (F (x/c)) = t ∗ for at least one constant c
∗ it is required that every element d of D is denoted by at least one constant

I (instead of I) will often denote an interpretation when D is clear

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 4

Semantics of a first-order languagep

Example (propositional): (p → q) ∧ (q → r) → r

first interpretation: I ′(p) = f, I ′(q) = f, I ′(r) = t

(f → f) ∧ (f → t) → t
t ∧ t → t

t → t
t

second interpretation: I ′′(p) = f, I ′′(q) = f, I ′′(r) = f

(f → f) ∧ (f → f) → f
t ∧ t → f

t → f
f

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 4

Semantics of a first-order languagep

Example (propositional): (p → q) ∧ (q → r) → r

this example only needs truth tables, for all possible interpretations

p q r p → q q → r (p → q) ∧ (q → r) (p → q) ∧ (q → r) → r

t t t t t t t
t t f t f f t
t f t f t f t
t f f f t f t
f t t t t t t
f t f t f f t
f f t t t t t
f f f t t t f

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 4

Semantics of a first-order languagep

Example (first-order): ∀x(m(a, x) ∧ p(x)) → ∀yq(s(y))

first interpretation: D = {0, 1, 2, 3, ..}
I (a) = 0
I (s(x)) = S(I (x)) = the successor of I (x)
p(x) means that x is even
q(x) means that x is odd
m(x , y) means that x < y

I evaluates the formula to t (try it!)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 4

Semantics of a first-order languagep

Example (first-order): ∀x(m(a, x) ∧ p(x)) → ∀yq(s(y))

second interpretation: D =

� �
�,
� �
,
� ��

, I (a) =

� �
�

x s(x)

� �
� � �

� �
 � ��
� �� � ��

x p(x)

� �
� t

� �
 t

� �� t

x q(x)

� �
� t

� �
 f

� �� t

m

� �
� � �
 � ��

� �
� t t t

� �
 f f t

� �� t f f

and this evaluates to f (t → f = f)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 4

Semantics of a first-order languagep

Satisfiable formulæ

An interpretation I = (D, I) satisfies a formula F on D iff I (F) = t (also written
I(F) = t). In this case, I is a model of F

F is satisfiable (written SAT (F)) iff it has at least one model

F is unsatisfiable (written UNSAT (F)) iff it has no models

that is, all interpretations are countermodels

F is valid (written VAL(F)) iff every interpretation is a model

this is denoted by |= F , and amounts to say UNSAT (¬F)

With a set of formulæ {F1, .., Fn}:

(D, I) satisfies {F1, .., Fn} iff I (Fi) = t on D for every i

{F1, .., Fn} is satisfiable iff there is such an interpretation

Example: ∀x(m(a, x) ∧ p(x)) → ∀yq(s(y))

This formula is satisfiable but not valid

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 4

Logical consequencep

Logical consequence

Given a set of formulæ Γ = {F1, .., Fn} and a formula G over the same language,
G is a logical consequence of Γ (written Γ |= G) iff every interpretation satisfying
Γ also satisfies G , or, equivalently, there is no interpretation which satisfies Γ but
not G

Important (in some sense, it is a matter of convenience)

{F1, .., Fn} |= G iff |= (F1 ∧ .. ∧ Fn) → G

To decide Γ |= G can be very hard

We have to take all models of Γ and verify that they all satisfy G , or find a
counterexample

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 4

Logical consequencep

Example: {p → (q → r), p ∧ q} |= r

Equivalent to |= ((p → (q → r)) ∧ (p ∧ q)) → r

p q r p → (q → r) p ∧ q (p → (q → r)) ∧ (p ∧ q) G
t t t t t t t
t t f f t f t
t f t t f f t
t f f t f f t
f t t t f f t
f t f t f f t
f f t t f f t
f f f t f f t

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 4

Logical consequencep

Example: {p → (q → r), p ∧ q} |= ¬r

Equivalent to |= ((p → (q → r)) ∧ (p ∧ q)) → ¬r

p q r p → (q → r) p ∧ q (p → (q → r)) ∧ (p ∧ q) G
t t t t t t f
t t f f t f t
t f t t f f t
t f f t f f t
f t t t f f t
f t f t f f t
f f t t f f t
f f f t f f t

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 4

Logical consequencep

Example: {∃xp(x), ∃xq(x)} |= ∃x(p(x) ∧ q(x))

D = {1, 2, 3, 4, ..}
p(x): x is even

q(x): x is odd

It is easy to see that this interpretation makes both premises true (indeed, there
exist even numbers and there exist odd numbers), but does not satisfy the
conclusion (no numbers are both even and odd)

I (∃xp(x)) = t I (∃xq(x)) = t I (∃x(p(x) ∧ q(x))) = f

Therefore, the deduction is incorrect

Example: {∃xp(x), ∃xq(x)} |= ∃x(p(x) ∨ q(x))

This is, of course, a valid deduction

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 4

Syntax vs. semanticsp

Formal systems

A proof formal system consists of:

a formal language (alphabet and rules for building formulæ)

a set of logical axioms (i.e., valid formulæ, which do not require proof)

a set of inference rules for proving new formulæ

a definition of proof

Theories

A theory T is a formal system extended with a set Γ of non-logical axioms (i.e.,
formulæ taken for granted) T [Γ]

if Γ = ∅, then T is the basic theory of the formal system

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 4

Syntax vs. semanticsp

Proofs

A proof of a formula G in a theory T [Γ] (written T [Γ] ` G) is a finite sequence of
formulæ such that each formula of the sequence is either

a logical or non-logical axiom of the theory; or

the result of applying an inference rule to previous formulæ in the sequence

and G is the last formula in the sequence

Theorems
A theorem is a formula for which there is at least one proof

Arguments

An argument with premises A1, .., An and conclusion B is logically correct in a
formal system if T [A1, .., An] ` B

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 4

Syntax vs. semanticsp

Proof example: T [p → (q → r), p ∧ q] ` r

¶ p → (q → r) first premise
· ¬p ∨ (¬q ∨ r) interdefinition of →, ¬ and ∨ on ¶
¸ (¬p ∨ ¬q) ∨ r associativity on ·
¹ ¬(p ∧ q) ∨ r De Morgan on ¸
º p ∧ q → r interdefinition of →, ¬ and ∨ on ¹
» p ∧ q second premise
¼ r modus ponens on º, »

Another approach to prove validity

Instead of looking at all the possible models of a formula, we exploited our
knowledge of logical rules

we also say that ((p → (q → r)) ∧ (p ∧ q)) → r is a tautology

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 4

Syntax vs. semanticsp

Theorem (Deduction)

T [F1, .., Fn] ` G iff T ` (F1 ∧ .. ∧ Fn) → G

question: why do we use both forms (premises and implication)?

Theorem (Validity)

Every theorem of T is logically valid: if T ` G then |= G

this happens if the formal system is consistent! Gödel

Theorem (Completeness)

In a first-order theory T , all valid formulæ are theorems of T : if |= G then T ` G

the rest of the course will be basically about finding such theorems

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 4

Syntax vs. semanticsp

Theorem (Deduction, equivalent form)

T [F1, .., Fn] ` G iff VAL((F1 ∧ .. ∧ Fn) → G)

question: why do we use both forms (premises and implication)?

Theorem (Validity)

Every theorem of T is logically valid: if T ` G then |= G

this happens if the formal system is consistent! Gödel

Theorem (Completeness)

In a first-order theory T , all valid formulæ are theorems of T : if |= G then T ` G

the rest of the course will be basically about finding such theorems

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 4

