
Computational Logic
Standardization of Formulæ

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science

Technical University of Madrid
damiano@fi.upm.es

Academic Year 2008/2009

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 1 / 3

Skolem normal formp

Our goal: transforming formulæ

We want to obtain, by means of a series of transformations, a formula which is
easier to deal with automatically, yet retains certain properties of the original one

this is called standardization

Running example

∀y (∃x (p(x , f (y))→ (q(x) ∧ q(z))) ∨ ¬∀wr(g(w), y))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Skolem normal formp

How to get the Skolem Normal Form (SNF)

1 all quantifiers to the head of the formula (prenex form)

move quantifiers by means of equivalence rules

2 no free occurrences of variables

do the existential closure

3 the matrix of the formula is in conjunctive normal form (CNF): a conjunction
of disjunctions of literals

transform the formula by means of equivalence rules

4 only universal quantifiers

remove existential quantifiers by introducing Skolem functions

What does this transformation preserve?

it preserves the satisfiability

but not all the models: the result is not equivalent to the original

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Skolem normal formp

1 Prenex form: all quantifiers at the beginning

Getting a prenex form relies on the following rules for moving quantifiers:

renaming of bounded occurrences (if y does not occur in F)
` ∀xF (x)↔ ∀yF (x/y) ` ∃xF (x)↔ ∃yF (x/y)

interdefintion of quantifiers
` ¬∀xF (x)↔ ∃x¬F (x) ` ¬∃xF (x)↔ ∀x¬F (x)

connectives vs. quantifiers (if x does not appear in the other formula)
` ∀xF ∧ G ↔ ∀x(F ∧ G) ` (∀xF → G)↔ ∃x(F → G)
` ∃xF ∧ G ↔ ∃x(F ∧ G) ` (∃xF → G)↔ ∀x(F → G)
` ∀xF ∨ G ↔ ∀x(F ∨ G) ` (F → ∀xG)↔ ∀x(F → G)
` ∃xF ∨ G ↔ ∃x(F ∨ G) ` (F → ∃xG)↔ ∃x(F → G)

connectives vs. quantifiers (more)
` (∀xF ∧ ∀xG)↔ ∀x(F ∧ G) ` (∃xF ∨ ∃xG)↔ ∃x(F ∨ G)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Skolem normal formp

Lemma
The prenex form of a formula always exists, although it could be non-unique

Proof.
How would we prove it?

Lemma

Every formula F is equivalent to its prenex form(s):

` F ↔ Prenex(F)

Proof.

Easy because all steps leading to Prenex(F) are equivalencies

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Skolem normal formp

2 Existential closure: no more free variable occurrences
Variables which occur free in the formula are existentially quantified

∀y(x ∧ q(y)) ∃x(∀y(x ∧ q(y)))
∀y∃x(p(x) ∧ q(y)→ r(f (z), x)) ∃z∀y∃x(p(x) ∧ q(y)→ r(f (z), x))

Lemma

the closure does not affect satisfiability: F (x) is satisfiable iff ∃xF (x) is

by extension, SAT (F) iff SAT (∃−closure(F))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Skolem normal formp

3 Conjunctive normal form (CNF): the matrix becomes
a conjunction of disjunctions of literals

connectives
` (F → G)↔ (¬F ∨ G)
` (F ↔ G)↔ (F → G) ∧ (G → F)

De Morgan
` ¬(F ∧ G)↔ ¬F ∨ ¬G ` ¬(F ∨ G)↔ ¬F ∧ ¬G

distributivity of ∧ and ∨
` F ∧ (G ∨ H)↔ (F ∧ G) ∨ (F ∧ H)
` F ∨ (G ∧ H)↔ (F ∨ G) ∧ (F ∨ H)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Skolem normal formp

Lemma

The conjunctive normal form of a (quantifier-free) formula always exists

Proof.

(Exercise)

Lemma

For every formula F , ` F ↔ CNF (F)

Proof.

Easy because all steps leading to CNF (F) are equivalencies

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Skolem normal formp

4 ∃-elimination: no more existential quantifiers

An existential quantifier can be removed by replacing the variable it bounds by a
Skolem function of the form f (x1, ..xn), where:

f is a fresh function symbol

x1, .., xn are the variables which are universally quantified before the quantifier
to be removed

∀x∃y(p(x)→ ¬q(y)) ∀x(p(x)→ ¬q(f (x)))
∃x∀z(q(x , z) ∨ r(a, x)) ∀z(q(b, z) ∨ r(a, b))
∃x∀y∃z(p(x) ∧ q(y)→ r(f (z), x)) ∀y(p(a) ∧ q(y)→ r(f (g(y)), a))

Lemma

A formula F is satisfiable iff Skolem(F) is

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Skolem normal formp

Definition

Q.M = ∃−closure(Prenex(F))
SNF (F) = Skolem(Q.CNF (M)) Q.M = [quantifiers].[matrix]

Theorem

F is satisfiable iff SNF (F) is

Proof.

¶ F is satisfiable iff Prenex(F) is

· Prenex(F) is satisfiable iff ∃−closure(Prenex(F)) is

¸ M is satisfiable iff CNF (M) is

¹ Q.M is satisfiable iff Q.CNF (M) is (from ¸)

º Q.CNF (M) is satisfiable iff Skolem(Q.CNF (M)) is

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Skolem normal formp

Conclusion
we are basically interested in satisfiability

SNF (F) exists for every F

SNF (F) preserves satisfiability

therefore, we can restrict ourselves to only formulæ in Skolem normal form

the Skolem normal form is named after the Norwegian mathematician Thoralf
Skolem

it was introduced in this context by Davis and Putnam in 1960

Advantages

no internal quantifiers

only universal quantifiers, only in the head

no free variable occurrences

only ∧ and ∨, suitably arranged

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 3

Clause formp

It is easier to work on the Clause Form CF (F)

clause: disjunction of literals

the clause form of F is the set of clauses of SNF (F), where the set means
conjunction, and all variables are universally quantified

F = ∀x(p(x) ∧ ∀y(¬q(y)→ r(z , x)))
SNF (F) = ∀x∀y(p(x) ∧ (q(y) ∨ r(a, x)))

CF (F) = {p(x), q(y) ∨ r(a, x)}

Theorem

F is satisfiable iff CF (F) is

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 3

Clause formp

Clause form of a deduction

A deduction [F1, .., Fn] ` G is correct iff F1 ∧ .. ∧ Fn ∧ ¬G is not satisfiable

get the clause form of every Fi

get the clause form of ¬G

compute the union of all sets of clauses

check the satisfiability

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 3

Clause formp

Example: [∃xf (x),∃xg(x)] ` ∃x(f (x) ∧ g(x))

CF (∃xf (x)) = f (a)
CF (∃xg(x)) = g(b)
CF (¬(∃x(f (x) ∧ g(x)))) = ¬f (x) ∨ ¬g(x)

Here, there exists an interpretation which is a model:

D = {0, 1}
I (a) = 0

I (b) = 1

I (f (a)) = I (g(b)) = t

I (f (b)) = I (g(a)) = f

therefore, the deduction is not correct

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 3

