# Computational Logic Standardization of Formulæ 

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science
Technical University of Madrid
damiano@fi.upm.es
Academic Year 2008/2009

## Skolem normal form

## Our goal: transforming formulæ

We want to obtain, by means of a series of transformations, a formula which is easier to deal with automatically, yet retains certain properties of the original one

- this is called standardization


## Running example

$$
\forall y \quad(\exists x(p(x, f(y)) \rightarrow(q(x) \wedge q(z))) \vee \neg \forall w r(g(w), y))
$$

## Skolem normal form

## How to get the Skolem Normal Form (SNF)

(1) all quantifiers to the head of the formula (prenex form)

- move quantifiers by means of equivalence rules
(2) no free occurrences of variables
- do the existential closure
(3) the matrix of the formula is in conjunctive normal form (CNF): a conjunction of disjunctions of literals
- transform the formula by means of equivalence rules
(1) only universal quantifiers
- remove existential quantifiers by introducing Skolem functions


## What does this transformation preserve?

- it preserves the satisfiability
- but not all the models: the result is not equivalent to the original


## Skolem normal form

- Prenex form: all quantifiers at the beginning

Getting a prenex form relies on the following rules for moving quantifiers:

- renaming of bounded occurrences (if $y$ does not occur in $F$ )

$$
\vdash \forall x F(x) \leftrightarrow \forall y F(x / y) \quad \vdash \exists x F(x) \leftrightarrow \exists y F(x / y)
$$

- interdefintion of quantifiers

$$
\vdash \neg \forall x F(x) \leftrightarrow \exists x \neg F(x) \quad \vdash \neg \exists x F(x) \leftrightarrow \forall x \neg F(x)
$$

- connectives vs. quantifiers (if $x$ does not appear in the other formula)

$$
\begin{array}{ll}
\vdash \forall x F \wedge G \leftrightarrow \forall x(F \wedge G) & \vdash(\forall x F \rightarrow G) \leftrightarrow \exists x(F \rightarrow G) \\
\vdash \exists x F \wedge G \leftrightarrow \exists x(F \wedge G) & \vdash(\exists x F \rightarrow G) \leftrightarrow \forall x(F \rightarrow G) \\
\vdash \forall x F \vee G \leftrightarrow \forall x(F \vee G) & \vdash(F \rightarrow \forall x G) \leftrightarrow \forall x(F \rightarrow G) \\
\vdash \exists x F \vee G \leftrightarrow \exists x(F \vee G) & \vdash(F \rightarrow \exists x G) \leftrightarrow \exists x(F \rightarrow G)
\end{array}
$$

- connectives vs. quantifiers (more)

$$
\vdash(\forall x F \wedge \forall x G) \leftrightarrow \forall x(F \wedge G) \quad \vdash(\exists x F \vee \exists x G) \leftrightarrow \exists x(F \vee G)
$$

## Skolem normal form

## Lemma

The prenex form of a formula always exists, although it could be non-unique

## Proof.

How would we prove it?

## Lemma

Every formula $F$ is equivalent to its prenex form(s):

$$
\vdash F \leftrightarrow \operatorname{Prenex}(F)
$$

## Proof.

Easy because all steps leading to Prenex $(F)$ are equivalencies

## Skolem normal form

(2) Existential closure: no more free variable occurrences

Variables which occur free in the formula are existentially quantified

$$
\begin{array}{ll}
\forall y(x \wedge q(y)) & \rightsquigarrow \exists x(\forall y(x \wedge q(y))) \\
\forall y \exists x(p(x) \wedge q(y) \rightarrow r(f(z), x)) & \rightsquigarrow \exists z \forall y \exists x(p(x) \wedge q(y) \rightarrow r(f(z), x))
\end{array}
$$

## Lemma

- the closure does not affect satisfiability: $F(x)$ is satisfiable iff $\exists x F(x)$ is
- by extension, SAT $(F)$ iff $\operatorname{SAT}(\exists-$ closure $(F))$


## Skolem normal form

- Conjunctive normal form (CNF): the matrix becomes a conjunction of disjunctions of literals
- connectives

$$
\begin{aligned}
& \vdash(F \rightarrow G) \leftrightarrow(\neg F \vee G) \\
& \vdash(F \leftrightarrow G) \leftrightarrow(F \rightarrow G) \wedge(G \rightarrow F)
\end{aligned}
$$

- De Morgan

$$
\vdash \neg(F \wedge G) \leftrightarrow \neg F \vee \neg G \quad \vdash \neg(F \vee G) \leftrightarrow \neg F \wedge \neg G
$$

- distributivity of $\wedge$ and $\vee$

$$
\begin{aligned}
& \vdash F \wedge(G \vee H) \leftrightarrow(F \wedge G) \vee(F \wedge H) \\
& \vdash F \vee(G \wedge H) \leftrightarrow(F \vee G) \wedge(F \vee H)
\end{aligned}
$$

## Skolem normal form

## Lemma

The conjunctive normal form of a (quantifier-free) formula always exists

## Proof.

(Exercise)

## Lemma

For every formula $F, \vdash F \leftrightarrow \operatorname{CNF}(F)$

## Proof.

Easy because all steps leading to $\operatorname{CNF}(F)$ are equivalencies

## Skolem normal form

## - $\exists$-elimination: no more existential quantifiers

An existential quantifier can be removed by replacing the variable it bounds by a Skolem function of the form $f\left(x_{1}, . . x_{n}\right)$, where:

- $f$ is a fresh function symbol
- $x_{1}, . ., x_{n}$ are the variables which are universally quantified before the quantifier to be removed

$$
\begin{array}{ll}
\forall x \exists y(p(x) \rightarrow \neg q(y)) & \rightsquigarrow \forall x(p(x) \rightarrow \neg q(f(x))) \\
\exists x \forall z(q(x, z) \vee r(a, x)) & \rightsquigarrow \forall \forall(q(b, z) \vee r(a, b)) \\
\exists x \forall y \exists z(p(x) \wedge q(y) \rightarrow r(f(z), x)) & \rightsquigarrow \forall y(p(a) \wedge q(y) \rightarrow r(f(g(y)), a))
\end{array}
$$

## Lemma

A formula $F$ is satisfiable iff $\operatorname{Skolem}(F)$ is

## Skolem normal form

## Definition

$$
\begin{aligned}
Q \cdot M & =\exists-\text { closure }(\operatorname{Prenex}(F)) \\
\operatorname{SNF}(F) & =\operatorname{Skolem}(Q \cdot \operatorname{CNF}(M))
\end{aligned}
$$

$$
Q . M=\text { [quantifiers].[matrix] }
$$

## Theorem

$F$ is satisfiable iff $\operatorname{SNF}(F)$ is

## Proof.

(1) $F$ is satisfiable iff $\operatorname{Prenex}(F)$ is
(2) Prenex $(F)$ is satisfiable iff $\exists$-closure $(\operatorname{Prenex}(F)$ ) is
(3) $M$ is satisfiable iff $\operatorname{CNF}(M)$ is
(4) Q.M is satisfiable iff $Q . C N F(M)$ is (from (3)
© $Q . \operatorname{CNF}(M)$ is satisfiable iff $\operatorname{Skolem}(Q . C N F(M))$ is

## Skolem normal form

## Conclusion

- we are basically interested in satisfiability
- $\operatorname{SNF}(F)$ exists for every $F$
- SNF $(F)$ preserves satisfiability therefore, we can restrict ourselves to only formulæ in Skolem normal form
- the Skolem normal form is named after the Norwegian mathematician Thoralf Skolem
- it was introduced in this context by Davis and Putnam in 1960


## Advantages

- no internal quantifiers
- only universal quantifiers, only in the head
- no free variable occurrences
- only $\wedge$ and $\vee$, suitably arranged


## Clause form

## It is easier to work on the Clause Form $C F(F)$

- clause: disjunction of literals
- the clause form of $F$ is the set of clauses of $\operatorname{SNF}(F)$, where the set means conjunction, and all variables are universally quantified

$$
\begin{aligned}
F & =\forall x(p(x) \wedge \forall y(\neg q(y) \rightarrow r(z, x))) \\
\operatorname{SNF}(F) & =\forall x \forall y(p(x) \wedge(q(y) \vee r(a, x))) \\
\operatorname{CF}(F) & =\{p(x), q(y) \vee r(a, x)\}
\end{aligned}
$$

## Theorem

$F$ is satisfiable iff $C F(F)$ is

## Clause form

Clause form of a deduction
A deduction $\left[F_{1}, . ., F_{n}\right] \vdash G$ is correct iff $F_{1} \wedge . . \wedge F_{n} \wedge \neg G$ is not satisfiable

- get the clause form of every $F_{i}$
- get the clause form of $\neg G$
- compute the union of all sets of clauses
- check the satisfiability


## Clause form

Example: $[\exists x f(x), \exists x g(x)] \vdash \exists x(f(x) \wedge g(x))$

$$
\begin{array}{ll}
C F(\exists x f(x)) & =f(a) \\
C F(\exists x g(x)) & =g(b) \\
C F(\neg(\exists x(f(x) \wedge g(x)))) & =\neg f(x) \vee \neg g(x)
\end{array}
$$

Here, there exists an interpretation which is a model:

- $D=\{0,1\}$
- $I(a)=0$
- $I(b)=1$
- $I(f(a))=I(g(b))=\mathbf{t}$
- $I(f(b))=I(g(a))=\mathbf{f}$
therefore, the deduction is not correct

