Damiano Zanardini

UPM EUROPEAN MASTER IN COMPUTATIONAL Locic (EMCL)
ScuooL oF COMPUTER SCIENCE
TECHNICAL UNIVERSITY OF MADRID
damiano@fi.upm.es

Academic Year 2008/2009

Herbrand’s theorem is the basis for most proof techniques in automatic theorem
proving (ATP)

@ in order to decide the (un)satisfiability of a formula F, it is enough to study
its Herbrand interpretations

@ it is necessary to have an ordered and exhaustive way to produce the
Herbrand interpretations

@ this can be done by means of semantic trees

Semantic trees (Robinson 1968, Kowalski-Hayes 1969)

Definition
Let HB(F) = {A1, Az, As, ..} be the Herbrand base of a formula F in clause form:
a semantic tree for F is a binary tree where
@ every level of the tree corresponds to a ground atom of HB(F)
@ the two links from a node at level i — 1 to nodes at level i are labeled, resp.,
with A; and —A;
0
1
2
3

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3/4

Semantic trees (Robinson 1968, Kowalski-Hayes 1969)

Completeness, failure nodes and closed trees
@ a semantic tree is complete if every path from the root to a leaf contains A;
or —A; for all A; € HB(F)
e a complete tree for F contains all Herbrand interpretations of F

@ given a node N, [(N) is the set of all literals which label the path from the
root to N

e I(N) partially represents a Herbrand interpretation

@ a node N is a failure node (denoted by *X) if /() makes some ground
instance of some clause false, and /(N’) for any predecessor N’ of N does not
e that is, /(N') does not falsify any ground instance of any clause
@ a tree is closed iff all paths from the root to a leaf contain a failure node

e a closed tree has level n if n is the maximum length of paths from the root to
a failure node

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3/4

Semantic trees (Robinson 1968, Kowalski-Hayes 1969)

Example: F = {=q(x) V r(x), p(x)V =r(x), =p(x)}
o H(F)={a} HB(F) = {p(a),q(a),r(a)}

@ I = failure node, m = model, cm = countermodel

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3/4

Semantic trees (Robinson 1968, Kowalski-Hayes 1969)

Example: F = {p(y), q(a) vV =p(f(x)), ~q(x)}
e H(F)={f"(a) | n>0}
HB(F) = {p(t) | t € H(F)}U{q(t) | t € H(F)}

@ every Herbrand interpretation falsifies some instance of some clause, so that
F is unsatisfiable

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3/4

Semantic trees (Robinson 1968, Kowalski-Hayes 1969)

Example: F = {p(y), q(a) vV =p(f(x)), ~q(x)}
e H(F)={f"(a) | n>0}
HB(F) = {p(t) | t € H(F)}U{q(t) | t € H(F)}

@ every Herbrand interpretation falsifies some instance of some clause, so that
F is unsatisfiable

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3/4

We want to use semantic trees in order to enumerate Herbrand interpretations

@ yet, how many interpretations can we have?
@ how it is possible to enumerate them?

In an infinite tree with finite branching (i.e., such that every node has a finite
number of children), there must exist an infinite path from the root

(typical result in tree theory)

C is unsatisfiable iff its complete semantic tree is closed

o C is unsatisfiable
< all Herbrand interpretations make C false
< all paths from the root contain a failure node

< the tree is closed

Herbrand’'s theorem

Lemma

A complete semantic tree is closed iff a finite tree is obtained by pruning all
successors of failure nodes

Proof (—).

@ the complete semantic tree is closed

® suppose the pruned tree were not finite
® then, by Konig's lemma, there exists an infinite path
® such infinite path would not have any failure nodes
@ the tree would not be closed: contradiction between @ and @
® the pruned tree is finite
Proof («).
(easy)
D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

4/4

Herbrand’'s theorem

Theorem (Herbrand's theorem (Ph.D. Thesis, 1929))

A set of clauses C is unsatisfiable iff there exists a finite set of ground instances of
C clauses which is unsatisfiable

Proof (—).
® C is unsatisfiable

@ there exists a finite semantic tree for C whose every leaf is a failure node (by
© and the above results)

® every path falsifies at least one ground instance (by @)

@ since the tree is finite, collecting one (falsified) instance for every failure node
gives a finite set S

® all Herbrand interpretations falsify some instances in S
® such finite set S of instances is unsatisfiable (by ©)

(why Herbrand interpretations of C are enough to prove UNSAT(S)?)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4/4

Herbrand’'s theorem

Theorem (Herbrand's theorem (Ph.D. Thesis, 1929))

A set of clauses C is unsatisfiable iff there exists a finite set of ground instances of

C clauses which is unsatisfiable

Proof («).
© there exists an unsatisfiable finite set S of ground instances of C clauses

® suppose C be satisfiable: then, some Herbrand interpretation would verify
every instance of every clause

® in particular, such interpretation would verify all instances in S
® S would be satisfiable (by ®): contradiction between @ and &
® C is unsatisfiable (by @)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

v

4/4

Herbrand’s theorem

Example: C = {p(y), q(a) V —p(f(x)), —q(x)}

@ in 1, the instance —g(a) of —q(x) is falsified

@ in 2, the instance g(a) V —p(f(a)) of g(a) V —p(f(x)) is falsified
@ in 3, the instance p(f(a)) of p(y) is falsified
— this set of ground instances is unsatisfiable

— Herbrand's theorem guarantees that C is unsatisfiable

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

4/4

Herbrand’'s theorem

The theorem suggests a method

Given a set C of clauses, generate its ground instances incrementally, and put
them in a set until the whole set becomes unsatisfiable:

B =0;

while (B is satisfiable)
b = new-instance(C);
B = BU{b};

Implementations of Herbrand’'s theorem

It is necessary to choose a strategy for generating instances
e method of Gilmore (1960)
@ method of Davis-Putnam (1960)
@ resolution method by Robinson (1965)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

4/4

