Computational Logic

Herbrand's Theorem

Damiano Zanardini

UPM EUROPEAN MASTER IN COMPUTATIONAL LOGIC (EMCL) SCHOOL OF COMPUTER SCIENCE TECHNICAL UNIVERSITY OF MADRID damiano@fi.upm.es

Academic Year 2008/2009

Motivation

The theorem

Herbrand's theorem is the basis for most proof techniques in *automatic theorem* proving (ATP)

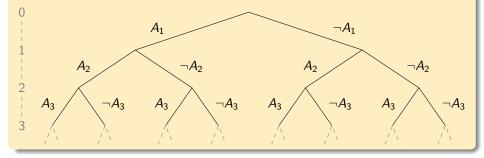
How is it useful?

- in order to decide the (un)satisfiability of a formula *F*, it is enough to study its Herbrand interpretations
- it is necessary to have an *ordered* and *exhaustive* way to *produce* the Herbrand interpretations
- this can be done by means of semantic trees

Definition

Let $HB(F) = \{A_1, A_2, A_3, ..\}$ be the Herbrand base of a formula F in clause form: a *semantic tree* for F is a binary tree where

- every level of the tree corresponds to a ground atom of HB(F)
- the two links from a node at level i 1 to nodes at level i are labeled, resp., with A_i and $\neg A_i$

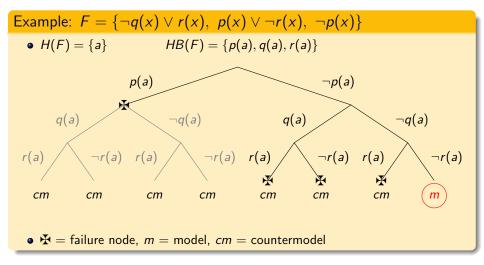


Completeness, failure nodes and closed trees

- a semantic tree is *complete* if every path from the root to a leaf contains A_i or ¬A_i for all A_i ∈ HB(F)
 - a complete tree for F contains all Herbrand interpretations of F
- given a node N, I(N) is the set of all literals which label the path from the root to N
 - I(N) partially represents a Herbrand interpretation

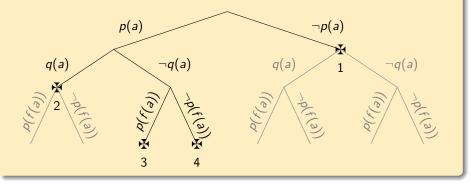
• that is, I(N') does not falsify any ground instance of any clause

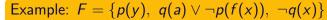
- a tree is *closed* iff all paths from the root to a leaf contain a failure node
 - a closed tree has level *n* if *n* is the maximum length of paths from the root to a failure node



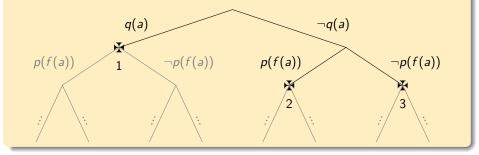


- $H(F) = \{f^n(a) \mid n \ge 0\}$ $HB(F) = \{p(t) \mid t \in H(F)\} \cup \{q(t) \mid t \in H(F)\}$
- every Herbrand interpretation falsifies some instance of some clause, so that *F* is unsatisfiable





- $H(F) = \{f^n(a) \mid n \ge 0\}$ $HB(F) = \{p(t) \mid t \in H(F)\} \cup \{q(t) \mid t \in H(F)\}$
- every Herbrand interpretation falsifies some instance of some clause, so that F is unsatisfiable



Note on cardinalities

We want to use semantic trees in order to enumerate Herbrand interpretations

- yet, how many interpretations can we have?
- how it is possible to *enumerate* them?

Herbrand's theorem

Lemma (König's Lemma)

In an infinite tree with finite branching (i.e., such that every node has a finite number of children), there must exist an infinite path from the root

Proof.

(typical result in tree theory)

Herbrand's theorem

Theorem

 $\ensuremath{\mathcal{C}}$ is unsatisfiable iff its complete semantic tree is closed

Proof.

- $\bullet \ \mathcal{C}$ is unsatisfiable
- $\leftrightarrow\,$ all Herbrand interpretations make $\mathcal C$ false
- $\leftrightarrow\,$ all paths from the root contain a failure node
- $\leftrightarrow \ \text{the tree is closed}$

Lemma

A complete semantic tree is closed iff a finite tree is obtained by pruning all successors of failure nodes

Proof (\rightarrow) .

- 1 the complete semantic tree is closed
- 2 suppose the pruned tree were not finite
- 8 then, by König's lemma, there exists an infinite path
- such infinite path would not have any failure nodes
- $oldsymbol{6}$ the tree would not be closed: contradiction between $oldsymbol{0}$ and $oldsymbol{2}$
- 6 the pruned tree is finite

Proof (\leftarrow).

(easy)

Theorem (Herbrand's theorem (Ph.D. Thesis, 1929))

A set of clauses C is unsatisfiable iff there exists a finite set of ground instances of C clauses which is unsatisfiable

Proof (\rightarrow) .

- ${\color{black} \bullet} \ \mathcal{C} \ \text{is unsatisfiable}$
- there exists a finite semantic tree for C whose every leaf is a failure node (by

 and the above results)
- ${f 0}$ every path falsifies at least one ground instance (by ${f 0}$)
- since the tree is finite, collecting one (falsified) instance for every failure node gives a finite set *S*
- ${\bf 6}$ all Herbrand interpretations falsify some instances in ${\it S}$
- **6** such finite set S of instances is unsatisfiable (by $\mathbf{\Theta}$)

(why Herbrand interpretations of C are enough to prove UNSAT(S)?)

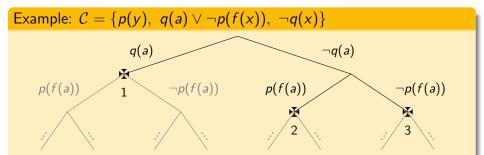
Theorem (Herbrand's theorem (Ph.D. Thesis, 1929))

A set of clauses C is unsatisfiable iff there exists a finite set of ground instances of C clauses which is unsatisfiable

Proof (\leftarrow).

- ${\rm 0}$ there exists an unsatisfiable finite set S of ground instances of ${\cal C}$ clauses
- ${\bf 2}$ suppose ${\cal C}$ be satisfiable: then, some Herbrand interpretation would verify every instance of every clause
- $\boldsymbol{\Theta}$ in particular, such interpretation would verify all instances in S
- **9** S would be satisfiable (by **9**): contradiction between **0** and **9**
- **6** C is unsatisfiable (by **9**)

Herbrand's theorem



- in 1, the instance $\neg q(a)$ of $\neg q(x)$ is falsified
- in 2, the instance $q(a) \lor \neg p(f(a))$ of $q(a) \lor \neg p(f(x))$ is falsified
- in 3, the instance p(f(a)) of p(y) is falsified
- $\rightarrow\,$ this set of ground instances is unsatisfiable
- $\rightarrow\,$ Herbrand's theorem guarantees that ${\mathcal C}$ is unsatisfiable

The theorem suggests a method

Given a set C of clauses, generate its ground instances incrementally, and put them in a set until the whole set becomes unsatisfiable:

```
B = \emptyset;
while (B is satisfiable)
b = \text{new-instance}(C);
B = B \cup \{b\};
```

Implementations of Herbrand's theorem

It is necessary to choose a strategy for generating instances

- method of Gilmore (1960)
- method of Davis-Putnam (1960)
- resolution method by Robinson (1965)