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Introductionp

General idea
generate incrementally sets Si of ground instances by going through the levels
H0, H1, .., Hk , .. of the Herbrand Universe (level-saturation)

for every set Si , transform it in order to find a contradiction, i.e, to prove
that it is unsatisfiable

relies on the contradiction lemma

Generation

the technique used for checking SAT (S) is independent of the technique for
generating S

we can suppose that all methods presented in this section generate S in the
same way (with level-saturation)

Complexity

note that deciding SAT (S) is the well-known NP-complete SAT problem
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Introductionp

Lemma (contradiction)

A formula F is unsatisfiable iff it is possible to derive a contradiction from it:
[F ] ` G ∧ ¬G

Proof.

¶ [F ] ` G ∧ ¬G iff ` F → G ∧ ¬G (deduction theorem)

· ` F → G ∧ ¬G iff, for every interpretation, (1) I (F ) = f; or (2) I (F ) = t and
I (G ∧ ¬G ) = t

¸ I (G ∧ ¬G ) = f for every I , so that ` F → G ∧ ¬G iff I (F ) = f for every I

¹ ` F → G ∧ ¬G iff F is unsatisfiable (by ¸)

º [F ] ` G ∧ ¬G iff F is unsatisfiable (by ¶ and ¹)
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Gilmore’s methodp

Method: for a set of clauses C
i = 0;
S = ∅;
while (SAT (S))

Hi = the i-th level of H(C)
X = {C ′ | C ∈ C and C ′ is obtained from C

by replacing variables with terms in Hi};
S = S ∪ X ;
i = i + 1;

Satisfiability

a method for verifying SAT (S) is needed

Gilmore chose one: multiplication
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Gilmore’s methodp

Multiplication

put S in Disjunctive Normal Form (DNF (S))

disjunction of conjunctions of literals, ex. (p ∧ q) ∨ r ∨ (q ∧ ¬r)

search for a contradiction in every conjunction

a: if the contradiction is found everywhere, then the set is unsatisfiable

b: if there exists a conjunct which does not contain a contradiction (see lemma
Gil-1), then the set is satisfiable

Lemma (Gil-1)

Given a conjunction F of propositions, a contradiction can be derived iff it is a
subformula of F

Lemma (DNF (F ))

For every (quantifier-free) formula F , DNF (F ) exists and is equivalent to F
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Gilmore’s methodp

Theorem

A propositional formula F is unsatisfiable iff DNF (F ) contains a contradiction in
every conjuncts

Proof.

¶ F is unsatisfiable iff DNF (F ) is (Lemma DNF (F ))

· DNF (F ) = D1 ∨ .. ∨ Dn is unsatisfiable iff we can derive a contradiction from
it (contradiction lemma)

¸ DNF (F ) is unsatisfiable iff every Di (conjunction of literals) is

¹ DNF (F ) is unsatisfiable iff every Di contains a contradiction (Lemma Gil-1)

¹ F is unsatisfiable iff every Di of DNF (F ) contains a contradiction (by ¶ and
¹)
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The method of Davis-Putnamp

General idea

To simplify the set S of ground instances, getting a new set S ′ by means of four
rules, in order to make the detection of a contradiction easier

The rules
1 tautology rule

2 one-literal rule

3 pure-literal rule

4 splitting rule
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The method of Davis-Putnamp

1 Tautology rule

Given a set of ground instances, delete all instances which are tautologies

Example

S = {p, q, r ∨ ¬r}
S ′ = {p, q}

clearly, S is satisfiable iff S ′ is

Lemma (tautology rule)

Since tautologies are always true, eliminating them does not affect satisfiability:
the remaining set S ′ is satisfiable iff S is

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 5



The method of Davis-Putnamp

2 One-literal rule

If there is a unit instance L in S (i.e., a ground instance which only consists of the
literal L), then S ′ can be obtained iteratively by

deleting all instances in S which contain L

deleting ¬L from the instances in S which contain ¬L

Example

S = { ¬p ∨ ¬u, p ∨ q ∨ ¬r , p ∨ ¬q, ¬p, r , u }  [rule on ¬p]
{ q ∨ ¬r , ¬q, r , u }  [rule on ¬q]
{ ¬r , r , u }  [rule on ¬r ]

S ′ = { �, u }

the empty clause � (which can be obtained from r or ¬r) means that there is a
contradiction: S ′ is unsatisfiable (like S)
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The method of Davis-Putnamp

Lemma (one-literal rule)

S = {L, (L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp} is
unsatisfiable iff S ′ = {G1, .., Gm, H1, .., Hp} is

provided neither L nor ¬L occur in any Hk

Proof (→).

¶ S is unsatisfiable

· suppose {G1, .., Gm, H1, .., Hp} is not: then, there exists an interpretation I
which makes all Gj and Hk true

¸ if I also verifies L (it is always possible to find such I), then it verifies all
L ∨ Fi , so that it satisfies the original set

¹ contradiction ·, ¸: {G1, .., Gm, H1, .., Hp} is unsatisfiable
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The method of Davis-Putnamp

Lemma (one-literal rule)

S = {L, (L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp} is
unsatisfiable iff S ′ = {G1, .., Gm, H1, .., Hp} is

provided neither L nor ¬L occur in any Hk

Proof (←).

¶ {G1, .., Gm, H1, .., Hp} is unsatisfiable

· suppose S is not: then, there exists an interpretation I which makes L and
all L ∨ Fi , ¬L ∨ Gj and Hk true

¸ I makes ¬L false, then, since it makes ¬L ∨ Gj true, it must make Gj true

¹ I satisfies {G1, .., Gm, H1, .., Hp} (by ¸)

º contradiction ·, ¹: S is unsatisfiable
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The method of Davis-Putnamp

3 Pure-literal rule

If S contains a pure literal L, then S ′ can be obtained by deleting all instances
which contain L

a literal is pure if it only occurs with one sign (positive or negative)

Example

p is pure is S

S = { p ∨ q, p ∨ ¬q, r ∨ q, r ∨ ¬q }  [rule on p]
{ r ∨ q, r ∨ ¬q }  [rule on r ]

S ′ = { } = ∅

S ′ is satisfiable (like S)
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The method of Davis-Putnamp

Lemma (pure-literal rule)

S = {L ∨ F1, .., L ∨ Fn, .., G1, .., Gm} is unsatisfiable iff {G1, .., Gm} is

provided L is pure and does not appear in any Fj or Gk

Proof (→).

¶ S is unsatisfiable

· suppose {G1, .., Gm} is not: then, there exists I which makes all Gj true

¸ I can be found which makes L true: therefore, it satisfies all instances L ∨ Fj ,
and therefore S

¹ contradiction ·, ¸: {G1, .., Gm} is unsatisfiable

Proof (←).

easy because {G1, .., Gm} is a subset of the clauses of S
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The method of Davis-Putnamp

4 Splitting rule

If S takes the form {(L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp},
then two sets S ′ and S ′′ can be obtained as

S ′ = {F1, .., Fn, .., H1, .., Hp}
S ′′ = {G1, .., Gm, .., H1, .., Hp}

Example

S = { p ∨ ¬q, ¬p ∨ q, q ∨ ¬r , ¬q ∨ ¬r }

S ′ = { ¬q, q ∨ ¬r , ¬q ∨ ¬r }
S ′′ = { q, q ∨ ¬r , ¬q ∨ ¬r }
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The method of Davis-Putnamp

Lemma (splitting rule)

S = {(L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp} is unsatisfiable
iff both S ′ = {F1, .., Fn, .., H1, .., Hp} and S ′′ = {G1, .., Gm, .., H1, .., Hp} are

provided neither L nor ¬L appear in any Fi , Gj or Hk

Proof (→).

¶ S is unsatisfiable

· suppose at least one between S ′ and S ′′ is not: therefore, there exists I
which make all Hk true, and either all Fi or all Gj

¸ if I makes all Fi true, then it makes all L ∨ Fi true. I can be taken which
makes L false, so that it makes all ¬L ∨ Gj (and S) true

¹ dual reasoning, in the case I makes all Gj true

º in both cases, contradiction (·, ¸ or ·, ¹): both S ′ and S ′′ are unsatisfiable
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The method of Davis-Putnamp

Lemma (splitting rule)

S = {(L ∨ F1), .., (L ∨ Fn), (¬L ∨ G1), .., (¬L ∨ Gm), H1, .., Hp} is unsatisfiable
iff both S ′ = {F1, .., Fn, .., H1, .., Hp} and S ′′ = {G1, .., Gm, .., H1, .., Hp} are

provided neither L nor ¬L appear in any Fi , Gj or Hk

Proof (←).

¶ both S ′ and S ′′ are unsatisfiable

· suppose S is not: therefore, there exists I which makes all L ∨ Fi , ¬L ∨ Gj

and Hk true

¸ if I makes L true, then it makes ¬L false: since it makes ¬L ∨ Gj true, it
must make Gj true, so that it satisfies S ′′

¹ dual: if I makes L false, then it satisfies S ′

º in both cases, contradiction (·, ¸ or ·, ¹): S is unsatisfiable

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 5



The method of Davis-Putnamp

Procedure DP: given S , transform it as follows (YES = satisfiable)

while (S 6= ∅)
if (tautology rule can be applied) apply tautology rule
else

while (one-literal rule can be applied) apply one-literal rule
if (S contains literals L and ¬L) return NO
if (S = ∅) return YES
while (pure-literal rule can be applied) apply pure-literal rule
if (S contains literals L and ¬L) return NO
if (S = ∅) return YES
apply splitting rule, apply DP to both S ′ and S ′′

if (the result is NO for both S ′ and S ′′) return NO
else return YES

return YES
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The Resolution method of Robinsonp

Our inspiration

In the following part of this section, and the next one, we will (sometimes literally)
refer to a couple of papers by John Alan Robinson:

[R63] Theorem-Proving on the Computer. Journal of the ACM, April 1963,
163-174.

[R65] A Machine-Oriented Logic Based on the Resolution Principle. Journal
of the ACM, January 1965, 23-41.

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 5



The Resolution method of Robinsonp

General idea
Obtaining new instances by deduction from the original set C, such that C is found
to be unsatisfiable whenever both a literal and its negation are deduced

Ground resolution rule
Given two instances L ∨ C1 and ¬L ∨ C2, where L is a literal, it is possible to
deduce a new instance C1 ∨ C2 which is called the resolvent

(Vintage version of the rule)

if C and D are two ground clauses, and L ⊆ C , M ⊆ D are two singletons
(unit sets) whose respective members form a complementary pair, then the
ground clause (C \L)∪ (D \M) is called a ground resolvent of C and D [R65]

if S is any set of ground clauses, then the ground resolution of S , denoted by
R(S), is the set of ground clauses consisting of the members of S together
with all ground resolvents of all pairs of members of S [R65]
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The Resolution method of Robinsonp

Unsatisfiability

By applying the rule, it is possible to derive a contradiction when the set is
unsatisfiable: such contradiction comes from applying resolution to L and ¬L,
which generates the empty clause �

Why ground resolution

as a specific method for testing a finite set of ground clauses for satisfiability,
the method of Davis-Putnam would be hard to improve on from the point of
view of efficiency [R65]

now we give another method, far less efficient than theirs, which plays only a
theoretical role in our develpment, ... [R65]

on the other hand, the reason for showing ground resolution is its extension
to general resolution
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The Resolution method of Robinsonp

Remark: Idempotence

In order to get a contradition whenever the set is unsatisfiable, it is necessary to
consider idempotence L ∨ L↔ L

L ∨ L ¬L ∨ ¬L

L ∨ ¬L

 

L ¬L

�

Extended resolution
Given two instances L ∨ .. ∨ L ∨ C1 and ¬L ∨ .. ∨ ¬L ∨ C2, it is possible to deduce
a resolvent C1 ∨ C2

Applying this extended rule is called a resolution step over L with resolvent
C1 ∨ C2
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The Resolution method of Robinsonp

Advantages

The deduction system only consists of one rule

it is interesting that (as far as the author is aware) no other complete system
of first-order logic has consisted of just one inference principle [R65]

Method: given a set S of ground instances

X = S
repeat

generate by resolution steps all possible resolvents from the elements of X :
let R(X ) be the set of resolvents
if (� ∈ R(X )) then STOP: UNSAT (S)
if (R(X ) v X ) then STOP:

all resolvents have already been generated, so that SAT (S)
X = R(X ) ∪ X
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The Resolution method of Robinsonp

Lemma (Res-1)

Let m be a node of the semantic tree of a set S, and m′ and m′′ be its direct
successors, both failure nodes. The clauses S ′ and S ′′ which become false in m′

and m′′ have a resolvent which is false in m

Proof.

¶ m′ and m′′ are at a level n in the tree, corresponding to the atom An; An is
taken to be true in m′ and false in m′′

· I (m) is the partial interpretation in m: I (m′) = I (m) ∪ {An} and
I (m′′) = I (m) ∪ {¬An}

¸ S ′ and S ′′ take the form, resp., ¬An ∨ S ′
n and An ∨ S ′′

n , where neither
between ¬An and An appear in S ′

n or S ′′
n

¹ I (m) makes both S ′
n and S ′′

n false, since it is not affected by An (by ¸)

º S ′
n ∨ S ′′

n , which is a resolvent of S ′ and S ′′, is false in m (by ¹)
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The Resolution method of Robinsonp

Lemma (Res-2)

Let A be a closed semantic tree where the level of failure nodes is ≤ n. If m′ is a
failure node at level n, then its brother m′′ is also a failure node

Proof.
1 since the tree is closed, the path through m′′ contains a failure node

2 the failure node cannot be after m′′, since the maximum level of failure nodes
is n, which is the level of m′′

3 since m′ is a failure node, its predecessors cannot be failure nodes

4 the predecessors of m′′ are the same as those of m′, so that, by ¸, they
cannot be failure nodes

5 by ¶, · and ¹, m′′ must be a failure node
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The Resolution method of Robinsonp

Lemma (Res-3)

Let S be an unsatisfiable set of instances which has a closed semantic tree of level
n. Then, there exists a set R of resolvents from S such that the semantic tree of
S ∪ R is closed and has level n − 1

Proof.
¶ every failure node at level n has a brother which is also a failure node

(Lemma Res-2)

· every pair of failure nodes has a resolvent r which is false in their predecessor
at level n − 1 (Lemma Res-1)

¸ let R = {r | r is the resolvent of two failure nodes at level n}
¹ S ∪ R has a closed tree of level n − 1 (by ¸)
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The Resolution method of Robinsonp

Theorem (Res)

A set S of ground instances is unsatisfiable iff it is possible to derive � from it by
resolution

Proof (→).

If S is unsatisfiable, then its semantic tree is closed and finite (if pruned at failure
nodes). Let n be the maximum level of failure nodes:

n = 1: there are two failure nodes, corresponding to the atom A1, where A1

and ¬A1 become false, respectively. The resolvent is �

n > 1: there exists a set R of resolvents from S such that the semantic tree
of S ′ = R ∪ S is closed and has level n − 1 (Lemma Res-3)

by induction, � can be derived from S ′

however, since S ′ was derived from S by resolution, � can be derived from S
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The Resolution method of Robinsonp

Theorem (Res)

A set S of ground instances is unsatisfiable iff it is possible to derive � from it by
resolution

Proof (←).

¶ S ` � by resolution (where � comes as a resolvent of some L and ¬L)

· S |= � by ¶ and validity of resolution

¸ � is false in every interpretation

¹ S is false in every interpretation (by ¸ and logical consequence)

º S is unsatisfiable (by ¹)
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The Resolution method of Robinsonp

General method
generate all possible sets of ground instances

for every set, apply ground resolution

the first step is very inefficient

the major combinatorial obstacle to efficiency for level-saturation procedures is
the enormous rate of growth of the finite sets Hi and HBi as i increases [R65]
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The Resolution method of Robinsonp

Example from [R63]

arises from seeking to prove the existence of a right identity element in any algebra
closed under a binary associative operation having left and right solutions x and y
for all equations x ·a = b and a·y = b whose coefficient a and b are in the algebra

C = { ¬p(x , y , u) ∨ ¬p(y , z , v) ∨ ¬p(x , v , w) ∨ p(u, z , w),
¬p(x , y , u) ∨ ¬p(y , z , v) ∨ ¬p(u, z , w) ∨ p(x , v , w),

p(g(x , y), x , y),
p(x , h(x , y), y),
p(x , y , f (x , y)),
¬p(k(x), x , k(x)) }
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The Resolution method of Robinsonp

Example from [R63]

to prove unsatisfiability, only four ground terms (the proof set are needed:

T = { a, h(a, a), k(h(a, a)), g(a, k(h(a, a))) }

however, in order to get T we need to generate a big (19765) number of
terms
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The Resolution method of Robinsonp

Example from [R63]

moreover, only a negligible part of instances of C over T is needed to get an
unsatisfiable S

{ p(a, h(a, a), a),

¬p(k(h(a, a)), h(a, a), k(h(a, a))),

p(g(a, k(h(a, a))), a, k(h(a, a))),

¬p(g(a, k(h(a, a))), a, k(h(a, a))) ∨ ¬p(a, h(a, a), a)∨
∨¬p(g(a, k(h(a, a))), a, k(h(a, a))) ∨ p(k(h(a, a)), h(a, a), k(h(a, a))) }
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The Resolution method of Robinsonp

Robinson’s idea for efficiency

To postpone the substitution of a variable by a term of the Herbrand universe to
when it is needed by some resolution step

work on clauses with variables

every resolvent (with variables) represents the set of ground instances which
would have been obtained by resolution on ground instances
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