Damiano Zanardini

UPM EUROPEAN MASTER IN COMPUTATIONAL Loaic (EMCL)
ScHoOL OF COMPUTER SCIENCE
TECHNICAL UNIVERSITY OF MADRID
damiano@fi.upm.es

Academic Year 2008/2009

Introduction

The problem

@ the method of saturation from a set C generates, if not limited, a big number
of clauses which are redundant or irrelevant

@ it is necessary to use systematic selection rules which make the process
simpler and computationally efficient

@ two kinds of criteria

o simplification strategies: reducing the number of clauses
e refinement strategies: limiting the generation of clauses

Terminology
@ C is the initial set of clauses

o (' is the current set of clauses (at some point during the deduction process
where we want to apply the rules)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2/9

@ obviously, C Fpyey O iff O can be derived by eliminating identical clauses
(apart from one copy, of course)

e if a clause is generated which already appears in C’, then it is not included '

Simplification Strategies

@ Elimination of clauses with pure literals

@ a literal L is pure iff there does not exist in the set a literal —L" where L and

L’ are unifiable
o C Fyeu O iff O can be derived after removing from C clauses with pure
literals

o a clause with pure literals is useless for refutation since it will never be
eliminated by resolution

How to do it
@ clauses with pure literals are removed from the set

@ it is enough to apply this strategy once, since no new clauses with pure
literals will be generated

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

3/9

o C Fyeu O iff J can be derived from C after removing tautologies I
e if a clause is generated which is a tautology, then it is not included in C’ I

@ by applying all the simplification rules, the derivation comes to be

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

@ it must be noted that no other clever strategy has been used

pVgq
-pVq
pV-q
—pV g
q

1%

-p

~q

O

(1.2)
(1.3)
(2.4)
(3.4)
(5.8)

Ac. Year 2008/2009

@ a clauses C subsumes another clause D if there exists a substitution « such
that Ca is a subformula of D: D = Ca vV D’

D = p(f(a),x) V q(g(y),y) V r(b) is subsumed by C = r(z) V p(f(u), v) under
a={u/a,v/x,z/b}

Simplification Strategies

Lemma (subsumed clauses)
The set {Cy, .., C,, C, Ca vV D} is unsatisfiable iff { Gy, .., Cy, C} is

Proof (—).
® UNSAT({Cy,..,Co, C,Ca Vv D})

® suppose SAT ({(, .., Gy, C}): there exists a Herbrand interpretation Iy which
makes all C; and C true

® |y makes Ca true (since universal quantification is implicit), so that it also
makes Ca V D true

@ |y satisfies { G4, .., C,, C, Ca vV D}: contradiction with @
® UNSAT({G,..,C,, C})

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3/9

The set {Cy, .., C,, C, Ca V D} is unsatisfiable iff { Gy, .., Cy, C} is l

® UNSAT({Cy, .., Cn, C})

@ there is no interpretation which makes C; and C true

® there is no interpretation which makes C;, C and Ca V D true
® UNSAT({G,..,Cpy, C,CaV D})

Simplification Strategies

Procedure for deciding subsumption: is C; subsumed by C,?

Procedure 1S_SUBSUMED_BY (i, (,):
if (C, is empty) then return YES: C is subsumed by G, else
if ((p(t) € G and there is no p(t') € ;) V
(—p(t) € G and there is no —p(t') € (1))
then return NO: C; is not subsumed by G,
Ly = q(t) is the first literal in G,
ClLy = {q(t') € G | t’ are terms}
for each (L € CLy)
L = MGU(Ly, L) such that Domain (p) N Vars(L) = ()
if (such . exists)
C} is G, where Ly has been removed
G =G
if (IS_SUBSUMED_BY ((3, (J') = YES) then
return YES: (; is subsumed by G
return NO: C; is not subsumed by G

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

3/9

o Ly =p(x,y)

o CLi ={p(a,s),p(b,z)}
® fip(as) = {x/a,y/s}

® fip(bz) = {x/b,y/z}

@ [ip(a,s) G = —=q(w,a)
o

o

o

o

g(w, a) and g(f(z), b) are not unifiable

Hp(b,z) ~ G = —q(w, b)
and MGU(q(w, b), q(f(2), b)) = {w/f(2)}
therefore, (i is subsumed by G,

A derivation of C from {C, .., C,} is a sequence (G, .., Gy, Ry, .., Ry) such that
@ every R; is the resolvent of two previous clauses
@ no resolution step is done more than once
e R,=0C

A refutation of {(y, .., C,} is a derivation of O from {(, .., Gy}

@ a derivation is a correct deduction (by correctness of MGU resolution)

o if UNSAT(C), then there exists a refutation for C (by completeness of MGU
resolution)

Search Trees

Search tree T of {C, .., C,}

C; is the root of T

Ci41 is a node of T, where C; is its (direct) predecessor (1 < i < n)
let N, be the set of predecessors of the node N, plus N itself

every node N of level i > n has, as successors, all clauses R such that

e R is a resolvent of two clauses belonging to N,
e R¢ N,

Properties
@ every path from C; to a node N is a derivation of N
@ every possible derivation is represented by a path in the search tree
@ the tree for C contains all the resolvents for C

o if [is a resolvent, then there is at least a node labeled with []

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

4/9

G GGGRIRR3RO
GGGGRIRRO
GGGGRIRO
GGGGRIRR RO
GGGGRIRRO
G GGGRRIR3 RO
GGGGRRIRO
GGGGRRO

Ac. Year 2008/2009 4 /9

o refinement strategies make the search simpler by only considering derivations
which satisfy a given property
e i.e., trees with a given shape
@ a search tree can be reduced by imposing conditions on the successors of a
node N, by restricting the clauses D; and D; which can produce resolvents
starting from N

Linear Resolution

Linear Derivations

A linear derivation of Cp, from {Ci, .., C,} is a sequence Gy, .., Gy, Cpia, ..y Gy
such that

@ C,.1 is the resolvent of two clauses of {Cy, .., C,} (header clauses)

o for every i > n+ 1, C; is the resolvent of C;_; and another clause C;, with
Jj<i—-1

Properties

Linear resolution is complete: UNSAT (C) iff there exists a linear refutation of C
@ derivations can be restricted to linear derivations
@ search trees can be restricted to linear search trees

In a derivation of C from C, it is not necessary to prove all the clauses in C as a
starting point for the refutation (of —=C)

o if a set C is satisfiable and C U —C is not, then there exists a linear refutation

starting from = C

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

5/9

An input derivation of C,, from {Cy,.., C,} is a sequence Ci, .., Cp, Chy1, -,
such that

e for every i > n, Cj is a resolvent of Cx € {Cy,.., C,} and another clause C;,
j<i

C1 = —p(x) V q(x) G = —r(x) V —q(x) G =r(a)
Gy = s(a), Cs = —s(x) V p(x)

Ri==p(x) vV =r(x) (G.G)
R, = =s(x) vV =r(x) (R1,Gs)
R3 = —|s(a) (R2,C3)
R, =0 (Rs.C4)

@ input refutation from Ci:

P s (e T T Ac. Year 2008/2008 60

An input derivation of C,, from {Cy,.., C,} is a sequence Ci, .., Cp, Chy1, -,
such that

e for every i > n, Cj is a resolvent of Cx € {Cy,.., C,} and another clause C;,
j<i

C1 = —p(x) V q(x) G = —r(x) V —q(x) G =r(a)
Gy = s(a), Cs = —s(x) V p(x)

Ri=p(a) (CG)
Ra=gq(a) (Ru.G)
R3 = —|r(a) (R2,C2)
R, =0 (Rs,C3)

@ input refutation from Cs:

@ input non-linear refutation from Ci:
Ri=p (G.G)
R2 =r (Cz,Cg)
Rs=0 (R.G)
@ since Ry is not involved in the rest of the derivation, we can build an input

linear refutation from the first one:
R]_ =r (Cz,Cg)
R,=0 (R,G)

Input Resolution

Lemma

Given an input non-linear derivation of R,,, it is possible to construct an input
linear derivation of R,

Proof.
Let (4, .., Cy, Ry, .., Ry an input non-linear derivation of Ry,
O let Ry1 (n+1 < k < m) the first resolvent which is non-linearly derivated
® Ry is the resolvent of C € {G,..,C,} and R; (1 <j < k)
® for input resolution, Rx+1 and Rk cannot resolve with each other
® for @, it is possible to generate two independent derivations

o Ci,..,Cyo R, .., Rk, .. (linear until Ry)
o G,..,Co Ry, .., Rj, Rkt1, .. (linear until Ryi1)

® one of these derivations will terminate in R,

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009

6/9

Input Resolution

Example: GG =pV g, G=-pVg G=rV-q, GG=-rV-q
@ non-input non-linear.
Ri=qVgq (G1,.G)
Ry =-qV-q (G,G)
Ry =0 (R1,R2)
@ for every non-linear derivation there exists a linear equivalent one:
Ri=qvg (G.G)
Rz =r (Rl,C3)
Rs = —q (Ra. Ca)
R, =0 (R3,Ry)

@ is it possible to find an input derivation for every non-input derivation?

Input resolution is not complete

It is not possible to say that, for every unsatisfiable set of clauses, there exists an
input refutation

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 6/9

Directed Resolution (Wos-Robinson-Carson, 1965)

Directed derivations

A directed derivation of G, from {Cy,.., C,}, with a support set S C C, is a
sequence (i, .., Cy, Chi1, .., Gy such that

e for every i > n, C; is a resolvent of two previous clauses in the sequence, such
that at least one of them does not belong to S

@ clauses in S are support clauses, while clauses in C \ S are goal clauses

@ this technique is motivated by the fact that:

suppose we want to prove B from A; A .. A Ak

i.e., that A; A .. A Ax A =B is unsatisfiable

in this case, A1 A .. A Ak is usually satisfiable in itself

therefore, it might be wise to avoid resolving two clauses of such set

the support set identifies the subset of C which is supposed to be satisfiable

(the result to be proven is not in the support set)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 7/9

={CG =sVvt, G=-sVp,

C5 = T,

C
CGs=uVr,
S = {C17 C27 C37 C4) C5}
directed
Rl =S (Cl,C7)
Ro=p (R.G)
Re=q (R.C)
R4 =r (R3,C3)
R5 =u (R4,C5)
Rs=0 (Rs.Go)

G=-qVr, G=gqV-p,
G = —|t}

non-directed

Ri=tvp (G.G)
Ry=p (R, G)
Rs=gq (R2.Ca)
R4 =r (R3,C3)
R5 =u (R4,C5)
Rs =0 (Rs,Co)

Ac. Year 2008/2009

7/9

Directed Resolution (Wos-Robinson-Carson, 1965)

Properties

Directed resolution is complete: if UNSAT(C) and S C C is satisfiable, then there
exists a directed refutation of C with support set S

@ this is not so useful if no way to find a satisfiable S is given

Heuristic for finding S

In practice, when trying a refutation of a conclusion from a set of premises, it is
reasonable to consider the premises satisfiable

@ premises: S

@ negation of the conclusion (clause form): C\ S

@ if the premises are inconsistent, then every result can be derived
(]

yet, otherwise, [can be derived from negating the conclusion

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 7/9

An ordered derivation of C,, from {C, .., C,} is a sequence Cy, .., Cy, Chi1, .., Cm
such that

o for every i > n, G is the resolvent of two previous clauses A; V L11 V.. V Ly,
and —Ay V L1 V .. V Lyg, where A; and A are unifiable with MGU o

o the literals of C; are ordered as: (L11 V..V Lip V Lp1 V..V Lyg)o

Ordered resolution is not complete

counterexample: {pVgq, —qVp, —-pVr, —rV-p}

pVq ~qVp —pVr —rVop
pvqg —qVp —pVr —rV-op \

VARVARYS
\/ BN

@ Correctness: [J can be derived only if UNSAT(C)
o Completeness: if UNSAT(C), then O can be derived

| correct | complete
linear v v
input v no
directed v v (if SAT(S))
ordered v no

