Computational Logic

Resolution Strategies

Damiano Zanardini

UPM EUROPEAN MASTER IN COMPUTATIONAL LOGIC (EMCL) SCHOOL OF COMPUTER SCIENCE TECHNICAL UNIVERSITY OF MADRID damiano@fi.upm.es

Academic Year 2008/2009

Introduction

The problem

- the method of *saturation* from a set C generates, if not limited, a big number of clauses which are redundant or irrelevant
- it is necessary to use systematic *selection rules* which make the process *simpler* and *computationally efficient*
- two kinds of criteria
 - simplification strategies: reducing the number of clauses
 - refinement strategies: limiting the generation of clauses

Terminology

- \mathcal{C} is the *initial* set of clauses
- C' is the *current* set of clauses (at some point during the deduction process where we want to apply the rules)

Elimination of identical clauses

 obviously, C ⊢_{MGU} □ iff □ can be derived by eliminating identical clauses (apart from one copy, of course)

How to do it

 \bullet if a clause is generated which already appears in $\mathcal{C}',$ then it is not included

Elimination of clauses with pure literals

- a literal L is *pure* iff there does not exist in the set a literal $\neg L'$ where L and L' are unifiable
- $\mathcal{C} \vdash_{MGU} \square$ iff \square can be derived after removing from \mathcal{C} clauses with pure literals
 - a clause with pure literals is useless for refutation since it will never be eliminated by resolution

How to do it

- clauses with pure literals are removed from the set
- it is enough to apply this strategy *once*, since no new clauses with pure literals will be generated

Elimination of tautological clauses

• $\mathcal{C} \vdash_{MGU} \Box$ iff \Box can be derived from \mathcal{C} after removing tautologies

How to do it

• if a clause is generated which is a tautology, then it is not included in \mathcal{C}'

Example: $C = \{ p \lor q, \neg p \lor q, p \lor \neg q, \neg p \lor \neg q \}$

• by applying all the simplification rules, the derivation comes to be

(1)	$p \lor q$	
(2)	$ eg p \lor q$	
(3)	$p \lor \neg q$	
(4)	$ eg p \lor eg q$	
(5)	q	(1,2)
(6)	р	(1,3)
(7)	$\neg p$	(2,4)
(8)	eg q	(3,4)
(9)		(5,8)

• it must be noted that no other *clever* strategy has been used

Elimination of subsumed clauses

a clauses C subsumes another clause D if there exists a substitution α such that Cα is a subformula of D: D = Cα ∨ D'

Example

 $D = p(f(a), x) \lor q(g(y), y) \lor r(b) \text{ is subsumed by } C = r(z) \lor p(f(u), v) \text{ under } \alpha = \{u/a, v/x, z/b\}$

Lemma (subsumed clauses)

The set $\{C_1, ..., C_n, C, C\alpha \lor D\}$ is unsatisfiable iff $\{C_1, ..., C_n, C\}$ is

Proof (\rightarrow) .

- **1** UNSAT({ $C_1, ..., C_n, C, C\alpha \lor D$ })
- Suppose SAT({C₁,..,C_n,C}): there exists a Herbrand interpretation I_H which makes all C_i and C true
- *I_H* makes C α true (since universal quantification is implicit), so that it also makes C α ∨ D true
- **4** I_H satisfies $\{C_1, ..., C_n, C, C\alpha \lor D\}$: contradiction with **1**
- **5** $UNSAT(\{C_1, ..., C_n, C\})$

Lemma (subsumed clauses)

The set $\{C_1, .., C_n, C, C\alpha \lor D\}$ is unsatisfiable iff $\{C_1, .., C_n, C\}$ is

Proof (\leftarrow).

- **1** UNSAT($\{C_1, ..., C_n, C\}$)
- $\boldsymbol{2}$ there is no interpretation which makes C_i and C true
- **3** there is no interpretation which makes C_i , C and $C\alpha \lor D$ true
- **4** UNSAT({ $C_1, ..., C_n, C, C\alpha \lor D$ })

Procedure for deciding subsumption: is C_1 subsumed by C_2 ?

Procedure IS_SUBSUMED_BY (C_1, C_2) : if (C_2 is empty) then return YES: C_1 is subsumed by C_2 else if $((p(\overline{t}) \in C_2 \text{ and there is no } p(\overline{t}') \in C_1) \lor$ $(\neg p(\overline{t}) \in C_2 \text{ and there is no } \neg p(\overline{t}') \in C_1))$ **then return** NO: C_1 is not subsumed by C_2 $L_2 = q(\bar{t})$ is the first literal in C_2 $CL_1 = \{q(\overline{t'}) \in C_1 \mid \overline{t'} \text{ are terms}\}$ for each $(L \in CL_1)$ $\mu_L = MGU(L_2, L)$ such that $Domain(\mu_L) \cap Vars(L) = \emptyset$ **if** (such μ_L exists) C'_2 is C_2 where L_2 has been removed $C_{2}'' = C_{2}' \mu_{I}$ if (IS_SUBSUMED_BY (C_1, C_2'') = YES) then **return** YES: C_1 is subsumed by C_2 **return** NO: C_1 is not subsumed by C_2

Example:
$$C_1 = p(a, s) \lor p(b, z) \lor \neg q(f(z), b),$$

 $C_2 = p(x, y) \lor \neg q(w, x)$

•
$$L_2 = p(x, y)$$

- $CL_1 = \{p(a, s), p(b, z)\}$
- $\mu_{p(a,s)} = \{x/a, y/s\}$

•
$$\mu_{p(b,z)} = \{x/b, y/z\}$$

•
$$\mu_{p(a,s)} \rightsquigarrow C_2'' = \neg q(w,a)$$

- q(w, a) and q(f(z), b) are not unifiable
- $\mu_{p(b,z)} \rightsquigarrow C_2'' = \neg q(w,b)$
- and $MGU(q(w, b), q(f(z), b)) = \{w/f(z)\}$
- therefore, C_1 is subsumed by C_2

Derivations

A derivation of C from $\{C_1, ..., C_n\}$ is a sequence $\langle C_1, ..., C_n, R_1, ..., R_m \rangle$ such that

- every R_i is the resolvent of two previous clauses
- no resolution step is done more than once
- $R_m = C$

Refutations

A refutation of $\{C_1, ..., C_n\}$ is a derivation of \Box from $\{C_1, ..., C_n\}$

Facts

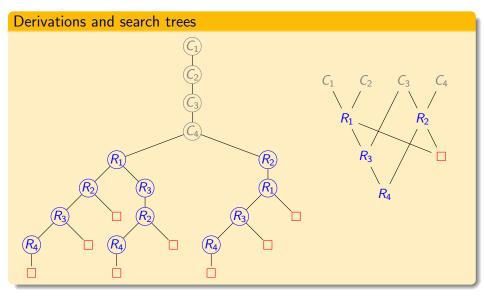
- a derivation is a correct deduction (by correctness of MGU resolution)
- if UNSAT(C), then there exists a refutation for C (by completeness of MGU resolution)

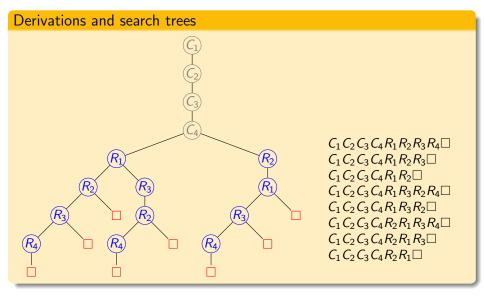
Search tree T of $\{C_1, ..., C_n\}$

- C_1 is the root of T
- C_{i+1} is a node of T, where C_i is its (direct) predecessor $(1 \le i \le n)$
- let N_p be the set of predecessors of the node N, plus N itself
- every node N of level $i \ge n$ has, as successors, all clauses R such that
 - R is a resolvent of two clauses belonging to N_p
 - $R \notin N_p$

Properties

- every path from C_1 to a node N is a derivation of N
- every possible derivation is represented by a path in the search tree
- \bullet the tree for ${\mathcal C}$ contains all the resolvents for ${\mathcal C}$
- $\bullet\,$ if \Box is a resolvent, then there is at least a node labeled with $\Box\,$





Restricted search trees

- refinement strategies make the search simpler by only considering derivations which satisfy a given property
 - i.e., trees with a given shape
- a search tree can be reduced by imposing conditions on the successors of a node *N*, by restricting the clauses *D_i* and *D_j* which can produce resolvents starting from *N*

Linear Resolution

Linear Derivations

A linear derivation of C_m from $\{C_1, ..., C_n\}$ is a sequence $C_1, ..., C_n, C_{n+1}, ..., C_m$ such that

- C_{n+1} is the resolvent of two clauses of $\{C_1, ..., C_n\}$ (header clauses)
- for every i > n + 1, C_i is the resolvent of C_{i-1} and another clause C_j , with j < i 1

Properties

Linear resolution is *complete*: UNSAT(C) iff there exists a linear refutation of C

- derivations can be restricted to linear derivations
- search trees can be restricted to linear search trees

In a derivation of C from C, it is not necessary to prove all the clauses in C as a starting point for the refutation (of $\neg C$)

• if a set C is satisfiable and $C \cup \neg C$ is not, then there exists a linear refutation starting from $\neg C$

Input derivations

An input derivation of C_m from $\{C_1, ..., C_n\}$ is a sequence $C_1, ..., C_n, C_{n+1}, ..., C_m$ such that

• for every i > n, C_i is a resolvent of $C_k \in \{C_1, ..., C_n\}$ and another clause C_j , j < i

Example

$$C_1 = \neg p(x) \lor q(x) \qquad C_2 = \neg r(x) \lor \neg q(x) \qquad C_3 = r(a)$$

$$C_4 = s(a), \qquad C_5 = \neg s(x) \lor p(x)$$

• input refutation from C_1 : $\begin{array}{c} R_2 = \\ R_2 = \end{array}$

$$R_1 = \neg p(x) \lor \neg r(x) \quad (C_1, C_2)$$

$$R_2 = \neg s(x) \lor \neg r(x) \quad (R_1, C_5)$$

$$R_3 = \neg s(a) \quad (R_2, C_3)$$

$$R_4 = \Box \quad (R_3, C_4)$$

Input derivations

An input derivation of C_m from $\{C_1, ..., C_n\}$ is a sequence $C_1, ..., C_n, C_{n+1}, ..., C_m$ such that

• for every i > n, C_i is a resolvent of $C_k \in \{C_1, ..., C_n\}$ and another clause C_j , j < i

Example

• input refutation from
$$C_5$$
:
 $C_1 = \neg p(x) \lor q(x)$
 $C_4 = s(a)$,
 $C_2 = \neg r(x) \lor \neg q(x)$
 $C_5 = \neg s(x) \lor p(x)$
 $C_3 = r(a)$
 $C_5 = \neg s(x) \lor p(x)$
 $R_1 = p(a)$
 $R_2 = q(a)$
 $R_1, C_1)$
 $R_3 = \neg r(a)$
 $R_2 = q(a)$
 $R_2, C_2)$
 $R_4 = \Box$
 (R_3, C_3)

Example: $C_1 = p \lor q$, $C_2 = \neg q$, $C_3 = r \lor q$, $C_4 = \neg r$

• *input non-linear* refutation from *C*₁:

 $\begin{array}{ll} R_1 = p & (C_1, C_2) \\ R_2 = r & (C_2, C_3) \\ R_3 = \Box & (R_2, C_4) \end{array}$

• since R_1 is not involved in the rest of the derivation, we can build an *input linear* refutation from the first one:

$$R_1 = r \qquad (C_2, C_3)$$
$$R_2 = \Box \qquad (R_1, C_4)$$

Lemma

Given an input non-linear derivation of R_m , it is possible to construct an input linear derivation of R_m

Proof.

Let $C_1, ..., C_n, R_1, ..., R_m$ an input non-linear derivation of R_m

- **0** let R_{k+1} $(n+1 \le k \le m)$ the first resolvent which is non-linearly derivated
- $oldsymbol{ heta}$ R_{k+1} is the resolvent of $C \in \{C_1, ..., C_n\}$ and R_j $(1 \le j < k)$
- **3** for input resolution, R_{k+1} and R_k cannot resolve with each other
- **(**) for **(**), it is possible to generate two independent derivations
 - C₁,.., C_n, R₁,.., R_k,.. (linear until R_k)
 - C₁,.., C_n, R₁,.., R_j, R_{k+1},.. (linear until R_{k+1})

6 one of these derivations will terminate in R_m

Example: $C_1 = p \lor q$, $C_2 = \neg p \lor q$, $C_3 = r \lor \neg q$, $C_4 = \neg r \lor \neg q$

• non-input non-linear.

$$\begin{array}{ll} R_1 = q \lor q & (C_1, C_2) \\ R_2 = \neg q \lor \neg q & (C_3, C_4) \\ R_3 = \Box & (R_1, R_2) \end{array}$$

• for every non-linear derivation there exists a linear equivalent one:

$$\begin{array}{ll} R_1 = q \lor q & (C_1, C_2) \\ R_2 = r & (R_1, C_3) \\ R_3 = \neg q & (R_2, C_4) \\ R_4 = \Box & (R_3, R_1) \end{array}$$

• is it possible to find an input derivation for every non-input derivation?

Input resolution is not complete

It is *not* possible to say that, for every unsatisfiable set of clauses, there exists an input refutation

Directed derivations

A directed derivation of C_m from $\{C_1, ..., C_n\}$, with a support set $S \subset C$, is a sequence $C_1, ..., C_n, C_{n+1}, ..., C_m$ such that

- for every i > n, C_i is a resolvent of two previous clauses in the sequence, such that at least one of them does *not* belong to S
- clauses in S are support clauses, while clauses in $C \setminus S$ are goal clauses
- this technique is motivated by the fact that:
 - suppose we want to prove B from $A_1 \wedge .. \wedge A_k$
 - i.e., that $A_1 \wedge .. \wedge A_k \wedge \neg B$ is unsatisfiable
 - in this case, $A_1 \wedge .. \wedge A_k$ is usually satisfiable in itself
 - therefore, it might be wise to avoid resolving two clauses of such set
 - the support set identifies the subset of C which is supposed to be satisfiable (the result to be proven is not in the support set)

Directed Resolution (Wos-Robinson-Carson, 1965)

Example

$$\begin{array}{ll} \mathcal{C} &= \{ C_1 = s \lor t, \ C_2 = \neg s \lor p, \ C_3 = \neg q \lor r, \ C_4 = q \lor \neg p, \\ C_5 = u \lor \neg r, \ C_6 = \neg u, \ C_7 = \neg t \} \end{array}$$

directed		non-directed	
$R_1 = s$	(C_1, C_7)	$R_1 = t \lor p$	(C_1, C_2)
$R_2 = p$	(R_1, C_2)	$R_2 = p$	(R_1, C_7)
$R_3 = q$	(R_2, C_4)	$R_3 = q$	(R_2, C_4)
$R_4 = r$	(R_3, C_3)	$R_4 = r$	(R_3, C_3)
$R_5 = u$	(R_4, C_5)	$R_5 = u$	(R_4, C_5)
$R_6 = \Box$	(R_5, C_6)	$R_6 = \Box$	(R_5, C_6)

Properties

Directed resolution is *complete*: if UNSAT(C) and $S \subset C$ is satisfiable, then there exists a directed refutation of C with support set S

• this is not so useful if no way to find a satisfiable S is given

Heuristic for finding S

In practice, when trying a refutation of a conclusion from a set of premises, it is reasonable to consider the premises satisfiable

- premises: S
- negation of the conclusion (clause form): $\mathcal{C} \setminus S$
- if the premises are inconsistent, then every result can be derived
- yet, otherwise, \Box can be derived from negating the conclusion

Ordered Resolution

Ordered derivations

An ordered derivation of C_m from $\{C_1, ..., C_n\}$ is a sequence $C_1, ..., C_n, C_{n+1}, ..., C_m$ such that

- for every i > n, C_i is the resolvent of two previous clauses A₁ ∨ L₁₁ ∨ .. ∨ L_{1p} and ¬A₂ ∨ L₂₁ ∨ .. ∨ L_{2q}, where A₁ and A₂ are unifiable with MGU σ
- the literals of C_i are ordered as: $(L_{11} \vee .. \vee L_{1p} \vee L_{21} \vee .. \vee L_{2q})\sigma$

Ordered Resolution

(Non-)Properties

Ordered resolution is not complete

counterexample: $\{p \lor q, \neg q \lor p, \neg p \lor r, \neg r \lor \neg p\}$ $p \lor q \neg q \lor p \neg p \lor r \neg r \lor \neg p$ $p \lor q \quad \neg q \lor p \quad \neg p \lor r \quad \neg r \lor \neg p$ $q \vee r$ p $r \lor p$ $p \vee \neg p$

Summary

Correctness and completeness

- Correctness: \Box can be derived only if UNSAT(C)
- Completeness: if $UNSAT(\mathcal{C})$, then \Box can be derived

	correct	complete
linear	\checkmark	\checkmark
input	\checkmark	no
directed	\checkmark	\checkmark (if $SAT(S)$)
ordered	\checkmark	no