
Computational Logic
Automated Theorem Proving

Damiano Zanardini

UPM European Master in Computational Logic (EMCL)
School of Computer Science

Technical University of Madrid
damiano@fi.upm.es

Academic Year 2008/2009

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 1 / 8

Introductionp

A recipe

The ingredients

first-order logic with equality

yet another inference rule: paramodulation

The problem

the Robbins problem: that every Robbins algebra is a Boolean algebra

The tool

the EQP theorem prover

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 2 / 8

Equalityp

Example

axioms:

even(sum(twoSquared , b))
twoSquared = four
∀x(zero(x) → difference(four , x) = sum(four , x))
zero(b)

conjecture:

even(difference(twoSquared , b))

the conjecture could seem like a logical consequence of the axioms

however, this is due to the fact that a human knows what equality means

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 8

Equalityp

A non-standard interpretation

D = {cat, dog} difference(cat, cat) = dog
b = cat difference(cat, dog) = cat

twoSquared = cat difference(dog , cat) = cat
four = cat difference(dog , dog) = cat

sum(cat, cat) = cat (cat=cat) = t
sum(cat, dog) = cat (cat=dog) = f
sum(dog , cat) = cat (dog=cat) = t (!)

sum(dog , dog) = cat (dog=dog) = f (!)
even(cat) = t zero(cat) = t

even(dog) = f zero(dog) = f

This interpretation satisfies the axioms but not the conjecture

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 8

Equalityp

Equality axioms

In order to establish the above logical consequence, it is necessary to add the
behavior of = /2 as a set of non-logical axioms

reflexivity: ∀x(x = x)

simmetry: ∀x∀y(x = y → y = x)

transitivity: ∀x∀y∀z((x = y ∧ y = z)→ x = z)

function substitution: if x = y , then f (x) = f (y)

for every argument of every function: Ex.
∀x∀y∀z(x = y → sum(x , z) = sum(y , z))

predicate substitution: if x = y and p(x) is true, then p(y) is also true

for every argument of every predicate: Ex.
∀x∀y(x = y → (even(x) → even(y)))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 3 / 8

Paramodulation (Robinson-Wos, 1969)p

Paramodulants
paramodulation is an inference rule which generates all equal versions of
clauses modulo the equality information

it does the job of all equality axioms except reflexivity

the paramodulant is the resulting clause

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 8

Paramodulation (Robinson-Wos, 1969)p

Formal definition
two parent clauses: from clause F and input clause I

F must contain a positive equality literal E

F ≡ (t1=t2) ∨ C

one of the arguments of E must unify (with MGU α) with a subterm t of I

I ≡ D[t] and (α = MGU(t1, t) or α = MGU(t2, t))

t is replaced in I by the other argument of E

I I (t/t2) or I I (t/t1)

α is applied to the new I and the remaining part of F

P ≡ (C ∨ I (t/t2))α or P ≡ (C ∨ I (t/t1))α

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 8

Paramodulation (Robinson-Wos, 1969)p

Example

F ≡ C ∨ (t1=t2) ≡ p(x , y) ∨ (f (x)=g(a))

I ≡ p(g(z), f (h(f (a), f (b)))) ∨ q(f (a))

t1 ≡ f (x) unifies with t ≡ f (h(f (a), f (b))) with MGU

α = {x/h(f (a), f (b))}

I ′ ≡ I (t/t2) ≡ p(g(z), g(a)) ∨ q(f (a))

P ≡ (C ∨ I ′)α
≡ (p(x , y) ∨ p(g(z), g(a)) ∨ q(f (a))) ({x/h(f (a), f (b))})
≡ p(h(f (a), f (b)), y) ∨ p(g(z), g(a)) ∨ q(f (a))

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 8

Paramodulation (Robinson-Wos, 1969)p

Lemma (Correctness)

P is a logical consequence of F ∧ I

Proof.

¶ suppose ¬P, i.e., ¬((C ∨ I ′)α)

· ¬(I ′α) (from ¶ and ∨ elimination)

¸ ¬(Iα) (from · and Iα = I ′α (definition of α))

¹ ¬I (from ¸ and properties of substitutions)

º ¬(F ∧ I) (from ¹)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 8

Paramodulation (Robinson-Wos, 1969)p

Real-life example

I ≡ n(n(n(x)+y) + n(x+y)) = y

F ≡ n(n(n(x)+y) + n(x+y)) = y

(renaming) I ≡ n(n(n(x ′)+y ′)+n(x ′+y ′)) = y ′ t

(renaming) F ≡ n(n(n(x ′′)+y ′′)+n(x ′′+y ′′)) = y ′′ t1

α = { x ′/(n(x ′′)+y ′′), y ′/(n(x ′′+y ′′)) }
I ′ ≡ n(y ′′+n(x ′+y ′)) = y ′

P ≡ I ′α
≡ n(y ′′+n(n(x ′′)+y ′′+n(x ′′+y ′′))) = n(x ′′+y ′′)
≡ n(n(n(x ′′+y ′′)+n(x ′′)+y ′′)+y ′′) = n(x ′′+y ′′)

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 4 / 8

EQP and the Robbins problemp

A bit of history

Mathematicians have long struggled against a difficult algebra problem: that the
definition of a Boolean algebra is equivalent to that of a Robbins algebra (from
Herbert Ellis Robbins (1915-2001))

one direction (that every Boolean algebra is a Robbins algebra) is easy

but the other one (that every Robbins algebra is a Boolean algebra) is
extremely difficult

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

A partial result

in 1979, Larry Wos told his colleague Steve Winker to attack the problem by
strengthening the hypotheses

i.e., find conditions which, if true, would solve the problem

Winker: what does such an attack give me as a mathematician?
Wos: nothing; but as a gambler it tells you a lot

in 1990, Steve Winker showed that each of two conditions (the Winker
conditions) are sufficient in order to make a Robbins algebra Boolean

the proof was by hand, with insight from theorem prover searches

lately, automated proofs were found (1992 for the first condition, 1996 for
the second)

yet, the problems remains: does any Robbins algebra satisfy at least one of
the Winker conditions?

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

Boolean axioms

commutativity x + y = y + x x · y = y · x
associativity (x + y) + z = x + (y + z) (x · y) · z = x · (y · z)

zero 0 + x = x + 0 = x 0 · a = a · 0 = 0
one 1 + a = a + 1 = 1 1 · a = a · 1 = a

distributivity a + b · c = (a + b) · (a + c) a · (b + c) = a · b + a · c
absorption x · (x + y) = x + x · y = x

complementation ∀x∃y(x · y = 0 ∧ x + y = 1)
x · n(x) = 0, x + n(x) = 1

Robbins axioms

commutativity x + y = y + x
associativity (x + y) + z = x + (y + z)

Robbins’ axiom n(n(n(x) + y) + n(x + y)) = y

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

How the problem is formulated

Given the Robbins axiom (and the equality axioms EQ), is it possible to prove the
second Winker condition?

this would demostrate that every Robbins algebra is a Boolean algebra

premises
(1) x + y = y + x
(2) (x + y) + z = x + (y + z)
(3) n(n(n(x) + y) + n(x + y)) = y

conclusion (second Winker condition)

∃x∃y(n(x + y) = n(x))

negated conclusion
(4) n(x + y) 6= n(x)

is the set {(1), (2), (3)} ∪ EQ ∪ {(4)} satisfiable?

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

When machines do it better
not only HAL...

became “operational” on January 12, 1997

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

When machines do it better

...or Deep(er) Blue

on May 11th 1997, won a six-game match by two wins to one with three
draws against world champion Garry Kasparov

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

When machines do it better
in September 1996, William McCune startled Wos by bringing up the Robbins
problem, asserting I think we can get it

McCune suspected that a new program he had developed called EQP (for
equational prover) just might do the trick...

...but confesses he was as amazed as anyone when, eight days later, the
computer spewed out a proof

hand-checking by McCune and several outside mathematicians confirmed
that it was indisputably correct

the proof took 678232.2 seconds, and generated 18K formulæ

however, the final proof only consisted of 17 formulæ

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

The proof

----- EQP 0.9, June 1996 -----

The job began on eyas09.mcs.anl.gov, Wed Oct 2 12:25:37 1996

UNIT CONFLICT from 17666 and 2 at 678232.20 seconds.

---------------- PROOF ----------------

2 (wt=7) [] -(n(x+y) = n(x)).

3 (wt=13) [] n(n(n(x)+y) + n(x+y)) = y.

5 (wt=18) [para(3,3)] n(n(n(x+y)+n(x)+y)+y) = n(x+y).

6 (wt=19) [para(3,3)] n(n(n(n(x)+y)+x+y)+y) = n(n(x)+y).

...

17666 (wt=33) [para(24,16426),demod([17547])]

n(n(n(x)+x)+n(n(x)+x)+x+x+x+x) = n(n(n(x)+x)+x+x+x).

------------ end of proof -------------

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

The proof

----- EQP 0.9, June 1996 -----

The job began on eyas09.mcs.anl.gov, Wed Oct 2 12:25:37 1996

UNIT CONFLICT from 17666 and 2 at 678232.20 seconds.

---------------- PROOF ----------------

2 (wt=7) [] -(n(x+y) = n(x)).

3 (wt=13) [] n(n(n(x)+y) + n(x+y)) = y.

5 (wt=18) [para(3,3)] n(n(n(x+y)+n(x)+y)+y) = n(x+y).

6 (wt=19) [para(3,3)] n(n(n(n(x)+y)+x+y)+y) = n(n(x)+y).

...

17666 (wt=33) [para(24,16426),demod([17547])]

n(n(n(x)+x)+n(n(x)+x)+x+x+x+x) = n(n(n(x)+x)+x+x+x).

------------ end of proof -------------

conflict: x = n(n(x) + x) + x + x + x y = n(n(x) + x) + x

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

The derivation

23

5

6

24

4748

146 250

996

16379

16387

16388

16393

16426

17547

17666

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

EQP and the Robbins problemp

According to senior Argonne mathematician Larry Wos

computers beating chess masters like Garry Kasparov may draw bigger
headlines, but solving the Robbins conjecture is a far bigger deal

if we’re interested in track and we can’t win a race against the high school
kids, how the hell are we going to get on the Olympic team? And now we’ve
finally reached that level

people don’t want to think any machine can do something they can’t do.
They don’t want to feel like they’re becoming obsolete. They want to do it
themselves

we don’t just prove theorems. We look at conjectures, we design circuits, we
solve puzzles, we prove properties of other programs

anyway, why would you want to program a computer to be vicious, crabby,
selfish, and inconsiderate, when humans do all of those things so very well?

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 5 / 8

Other ATP resourcesp

Provers
ACL2, Agda, Carine, Coq, DCTP, E, Gandalf, Isabelle, Jape, KeY, Larch,
LCF, Lean, Matita, Otter, PhoX, Prover9, SETHEO, Tau, Twelf, Uclid,
Vampire, Waldmeister...

Tests

the Thousands of Problems for Theorem Provers (TPTP) Problem Library:
http://www.tptp.org/

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 6 / 8

Other ATP resourcesp

Contests

CADE ATP System Competition (CASC)

FOF (First-order form non-propositional theorems (axioms with a provable
conjecture)): Vampire won 8 times

CNF (Mixed clause normal form really non-propositional theorems
(unsatisfiable clause sets)) : Vampire won 9 times

SAT (Clause normal form really non-propositional non-theorems (satisfiable
clause sets)): Gandalf won 5 times

EPR (Effectively propositional clause normal form theorems and
non-theorems (clause sets)): DCTP won 3 times

UEQ (Unit equality clause normal form really non-propositional theorems
(unsatisfiable clause sets)): Waldmeister won 12 times

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 6 / 8

Related problemsp

Proof verification
or proof checking

easier, decidable if every step can be checked by a primitive recursive function

Interactive provers

a human user provides hints to the system

somehow between proving and checking

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 7 / 8

Related problemsp

Model checking

a process is considered theorem proving if it consists of a traditional proof
obtained by axioms and inference rules

from Model Checking vs. Theorem Proving: A Manifesto (Halpern-Vardi)

We argue that rather than representing an agent’s knowledge as a collection of

formulas, and then doing theorem proving to see if a given formula follows from an

agent’s knowledge base, it may be more useful to represent this knowledge by a

semantic model, and then do model checking to see if the given formula is true in

that model. We discuss how to construct a model that represents an agent’s

knowledge in a number of different contexts, and then consider how to approach

the model-checking problem.

brute-force enumeration of many possible states

yet, actual implementation are far from being brute-force

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 7 / 8

Related problemsp

Hybrid theorem proving

model checking as an inference rule

Programs

programs which prove a particular theorem, with a (usually informal) proof
that termination with a certain result implies the theorem

works on huge (non-surveyable) proofs

four color theorem (1976, later ATP proof in 2005, still huge)
the game four in a line: first player wins

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 7 / 8

Other usesp

Industrial uses
mostly concentrated in integrated circuit design and verification

since the Pentium FDIV bug (1994), the complicated floating point units of
modern microprocessors have been designed with extra scrutiny

in the latest processors from AMD, Intel, and others, ATP has been used to
verify that division and other operations are correct

D. Zanardini (damiano@fi.upm.es) Computational Logic Ac. Year 2008/2009 8 / 8

