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por todo el tiempo, enerǵıa y recursos que me han permitido terminar esta tesis.

Además de su disponibilidad en todo momento, me han animado a continuar en

los momentos más dif́ıciles y cuando más lo necesitaba. Ha sido un gran honor

para mı́ formar parte de este grupo de investigación, y espero haber alcanzado el

nivel cient́ıfico que se requiere para participar en las actividades que desarrolla

el grupo. También quiero agradecer a PaweÃl Pietrzak por su colaboración y su

amistad, que ha resultado en una fruct́ıfera serie de trabajos en común que forman

una parte fundamental de esta tesis, y que espero podamos continuar en otros

proyectos futuros.

Junto a ellos, los demás coautores de los art́ıculos y ponencias que forman

parte de esta tesis han contribuido a mi formación cient́ıfica: José Manuel Gómez,
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Sinopsis

Existe un gran número de técnicas avanzadas de verificación y optimización

estática de programas que han demostrado ser extremadamente útiles en la detec-

ción de errores de programación y en la mejora de la eficiencia, y que tienen como

factor común la necesidad de información precisa de análisis global del programa.

La interpretación abstracta es una de las técnicas de análisis más establecidas,

lo que ha permitido el desarrollo de métodos innovadores para la verificación de

programas.

Por otra parte, uno de los desaf́ıos más importantes en la investigación in-

formática actual consiste en mejorar la capacidad de detectar automáticamente

errores en programas y asegurar que un programa es correcto respecto a una de-

terminada especificación, con el objetivo de producir software fiable. Por ello, la

verificación de programas es un área importante de investigación, y por ello pro-

porcionar técnicas avanzadas para detectar errores y verificar sistemas en progra-

mas reales complejos es una de las áreas más relevantes en la industria informática

actual. Un enfoque interesante de la verificación de programas es la denominada

verificación abstracta, una técnica que tiene como objetivo la verificación de un

programa mediante sobre-aproximaciones de la semántica concreta del programa.

Sin embargo, estos métodos no son directamente aplicables a programas reales,

pues técnicas avanzadas como las mencionadas están en muchos casos disponi-

bles como prototipos, y los avances conseguidos hasta ahora en esta dirección

solamente han permitido su aplicación de modo restringido.

El objetivo de esta Tesis Doctoral es desarrollar técnicas de análisis y verifica-

ción para su uso eficiente y preciso en grandes programas modulares o incomple-

tos y mostrar su factibilidad en sistemas reales. Con el fin de evaluar la utilidad

práctica de las técnicas propuestas, los algoritmos resultantes han sido implemen-

tados e integrados en el sistema Ciao y se han comprobado experimentalmente,

lo que ha permitido aplicarlos en casos de estudio reales.





Resumen∗

Introducción y motivaciones

La descomposición del código de un programa en módulos es una técnica funda-

mental en el proceso de desarrollo de software, pues permite construir programas

complejos a partir de módulos sencillos.

A pesar de la importancia de la programación modular, existen muchas técni-

cas avanzadas de análisis y verificación de programas (tales como dependencia del

contexto y polivarianza) que todav́ıa no son aplicables a sistemas reales. Estas

técnicas han demostrado ser extremadamente útiles en la detección de errores y

en la mejora de la eficiencia, pero desafortunadamente todav́ıa están orientadas

a programas pequeños sin las complejidades de los sistemas reales, tales como

interfaces con sistemas externos, bases de datos, libreŕıas externas, componentes

implementados en otros lenguajes, aśı como todas las caracteŕısticas que propor-

ciona la modularidad. Además, el área de programación lógica se ha visto afectado

por la ausencia (hasta el año 2000) de un estándar para describir la modularidad,

y que ha dado lugar a la coexistencia de varios enfoques en distintas implementa-

ciones del lenguaje. El objetivo de esta tesis consiste en hacer que estas técnicas

puedan utilizarse en programas lógicos grandes, modularizados e incompletos.

Las técnicas de manipulación de programas tienen como factor común la nece-

sidad de información precisa de un análisis global del programa. La interpretación

abstracta es una de las técnicas más establecidas para obtener información sobre

la ejecución de un programa sin ejecutarlo realmente. No obstante, para la apli-

∗Este resumen de la Tesis Doctoral, presentada en lengua inglesa para su defensa ante un

tribunal internacional, es preceptivo según la normativa de doctorado vigente en la Universidad

Politécnica de Madrid.
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cación de las técnicas de análisis existentes a programas complejos y modulares,

o bien se imponen restricciones al dominio abstracto para el que se analiza el

programa, o bien exigen renunciar a resultados tan precisos como los que se ob-

tienen para programas monoĺıticos pequeños. Esta tesis, como se verá en detalle,

propone un marco de trabajo para el análisis preciso de programas modulares sin

ninguna de estas dos limitaciones. Este marco de trabajo ha sido implementado

satisfactoriamente y evaluado mediante diversos experimentos que han permitido

comparar las distintas configuraciones de los parámetros del sistema. Además se

han realizado experimentos de reanálisis incremental de programas modulares en

presencia de modificaciones en algunos de los módulos del programa.

Por otra parte, uno de los desaf́ıos más importantes en la investigación in-

formática actual consiste en mejorar la capacidad de detectar automáticamente

errores en programas y asegurar que un programa es correcto respecto a una

determinada especificación, con el objetivo de producir software fiable. Por ello,

la verificación de programas es un área importante de investigación. En el caso

habitual de programas desarrollados por un equipo de programadores, es espe-

cialmente interesante el uso de técnicas de análisis y depuración que puedan con-

siderar programas incompletos, de forma que se permita su uso aun cuando parte

del programa no esté disponible. Esta caracteŕıstica permitiŕıa utilizar técnicas

avanzadas en el ciclo de edición-compilación-pruebas en fases anteriores a las que

se han utilizado hasta ahora. Sin embargo, resulta habitual que los enfoques ac-

tuales de verificación de programas requieran que tanto el código que compone

el programa como una especificación completa del mismo estén disponibles para

el sistema verificador. Este requerimiento no es realista para programas grandes

y complejos, y en particular en aquellos sistemas desarrollados hace tiempo, de

los que ni siquiera se dispone de una documentación de usuario completa. La

mejor solución en estos casos consiste en permitir una especificación parcial del

programa, y utilizar técnicas de análisis avanzadas para inferir lo que falta en la

especificación. Posteriormente, esta información puede utilizarse para verificar la

corrección del programa respecto a la especificación parcial mencionada anterior-

mente. Este planteamiento resulta, evidentemente, en una fase de verificación más

débil, pues se supone que los aspectos del programa para los que no se dispone de

especificación están correctamente satisfechos por el código. No obstante, la in-

formación inferida puede utilizarse para verificar la corrección de la especificación
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disponible.

Esta tesis utiliza como lenguaje objeto el disponible en el sistema Ciao. Ciao

es un sistema de programación lógica con restricciones, desarrollado en el grupo

de investigación al que pertenece el doctorando, con un gran número de libreŕıas

y extensiones del lenguaje. El lenguaje del sistema Ciao contiene estructuras

espećıficas para representar modularidad estricta y que comparten las mismas di-

rectrices de diseño descritas en el estándar ISO. Además, el sistema Ciao incluye

CiaoPP, un preprocesador que implementa un amplio conjunto de herramien-

tas avanzadas tales como analizadores, paralelizadores, especializadores, etc. En

concreto, CiaoPP incluye un analizador dependiente del contexto y polivarian-

te basado en la técnica de interpretación abstracta que es paramétrico respecto

a los dominios abstractos utilizados. El analizador es utilizado para obtener in-

formación del programa por el resto de las herramientas de CiaoPP. Entre las

herramientas disponibles en CiaoPP, también existe un comprobador de asercio-

nes que toma una especificación (posiblemente parcial) del usuario en forma de

aserciones, y comprueba automáticamente si el programa verifica esta especifi-

cación. En ambos casos, para esta tesis se han utilizado estas herramientas no

modulares y se han extendido para tratar programas modulares e incompletos.

Los marcos de trabajo desarrollados en el ámbito de esta tesis han sido integrados

completamente en CiaoPP y actualmente forman parte del sistema. Aunque esta

tesis se ha centrado en el lenguaje Ciao, las técnicas desarrolladas en esta tesis

pueden extenderse fácilmente a otros paradigmas de programación.

A pesar de las ventajas de los lenguajes (C)LP debido a su fundamentación

teórica, cuando se utilizan para problemas reales deben aplicarse muchas ca-

racteŕısticas extralógicas. En esta tesis se consideran también algunas de estas

caracteŕısticas.

Para cada una de las partes de esta tesis se han investigado los trabajos

recientemente publicados por otros investigadores. En cada uno de los caṕıtulos

más importantes se puede encontrar una sección en la que se compara el trabajo

realizado en esta tesis con lo que ya se ha publicado.
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Objetivos de la tesis

El objetivo principal de esta tesis es el desarrollo, implementación y evaluación

experimental de nuevas técnicas de compilación para tratar con programas lógicos

(con restricciones) modulares.

Por una parte, esta tesis propone el desarrollo de herramientas de análisis

basadas en la técnica de interpretación abstracta para inferir información precisa

de la ejecución de programas lógicos en tiempo de compilación.

Además, objetivos fundamentales de la tesis son el uso de la información obte-

nida del análisis para desarrollar nuevos algoritmos y herramientas para verificar

programas estructurados en módulos, aśı como resaltar las ventajas e inconve-

nientes de este enfoque.

Los objetivos concretos de esta Tesis son los siguientes:

• Extensión de las técnicas de análisis polivariante y dependiente del contexto

a programas estructurados en módulos [PCH+04], con la máxima precisión

y eficiencia posibles. Desarrollo y obtención de un algoritmo de punto fijo

intermodular.

• Análisis intermodular incremental: reanálisis eficiente de un programa mo-

dular después de la realización de cambios en algunos de los módulos del

programa.

• Estudio experimental de los algoritmos anteriores [CPHB06], e investigación

de nuevas técnicas que permitan mejorar la eficiencia del sistema de análisis.

Evaluación de distintas alternativas de análisis módulo a módulo, aśı como

exploración de otros enfoques.

• Extensión de las técnicas de verificación de programas para su aplicación

a programas modulares [PCPH06]. Desarrollo de distintos algoritmos en

función de la especificación proporcionada por el usuario y del coste del

análisis.

• Aplicación de las técnicas de análisis y verificación modular a diversos casos

de estudio. Aplicación a programas con interfaces con sistemas externos, en

particular sistemas que acceden a bases de datos relacionales [CGC+04a],

y a la reducción del tamaño de las libreŕıas del sistema.
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• Integración de todas las técnicas desarrolladas en el sistema CiaoPP

[HPBLG05].

Estructura del trabajo

Esta tesis está formada por tres partes principales, más una parte introductoria

adicional para proporcionar los conceptos básicos sobre los que se construye el

resto de la tesis. Las dos partes centrales de la tesis están dedicadas al análisis y

a la verificación abstracta de programas modulares, respectivamente. Finalmen-

te, La cuarta parte describe varias aplicaciones de las técnicas desarrolladas en

diversos casos de estudio. En los siguientes apartados se describen en más detalle

cada una de estas partes.

Parte I. Conceptos Fundamentales

La primera parte de esta tesis establece los conceptos básicos que se utilizan en

las partes posteriores. Está compuesta por tres caṕıtulos. En el primero, se cla-

rifica el concepto de módulo que se utilizará a lo largo de la tesis. Durante los

últimos años se han desarrollado diferentes enfoques de la programación lógica

modular, con diferentes caracteŕısticas y fundamentaciones semánticas, y sólo re-

cientemente se ha definido un estándar oficial [PRO00]. El enfoque utilizado en

esta tesis es similar a los utilizados más ampliamente en los sistemas actuales

de programación lógica, tanto comerciales como no comerciales, y se ajusta al

estándar. Más aún, debido a su naturaleza extralógica, puede extenderse fácil-

mente a otros paradigmas de programación diferentes de la programación lógica

con restricciones.

La modularidad no sólo es de utilidad para la compilación separada, sino que

también proporciona posibilidades adicionales. La más importante es que provee

modularidad al propio análisis. Esto quiere decir que, si el lenguaje se extiende

por medio de módulos de libreŕıa (como es el caso en el sistema Ciao utilizado

para esta tesis) y el sistema de módulos es estricto, las caracteŕısticas espećıficas

del lenguaje que resultan especialmente dif́ıciles para una herramienta de proce-

samiento de código fuente son solamente aplicables en los módulos que importan

el módulo de libreŕıa que las define. Entre estas caracteŕısticas se encuentran los
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procedimientos de orden superior, los procedimientos dinámicos y de manejo de

bases de datos, la programación con restricciones, etcétera. Este enfoque permite

configurar las herramientas para cada módulo. Por ejemplo, el tipo de análisis a

utilizar puede ser diferente para distintos módulos: en algunos módulos puede ser

más apropiado utilizar un algoritmo de análisis ascendente, mientras que en otros

módulos un análisis descendente proporciona mejores resultados. Del mismo mo-

do, se puede seleccionar el dominio abstracto de análisis para analizar un módulo

determinado con precisión, y no utilizar el mismo dominio para otros módulos

en los que no se requiere tan alta precisión. También los parámetros del domi-

nio abstracto pueden ajustarse para proporcionar distintos niveles de eficiencia y

precisión en diferentes módulos.

El segundo caṕıtulo es una descripción introductoria de la interpretación abs-

tracta en el contexto de la programación lógica. La interpretación abstracta es

una de las técnicas más establecidas para obtener información sobre la ejecución

de un programa sin necesidad de ejecutarlo [CC77a, CC92], que consiste en simu-

lar el funcionamiento de un programa utilizando una abstracción de los valores

reales, en lugar de estos propios valores concretos. El resultado de la interpreta-

ción abstracta será una aproximación segura del comportamiento del programa.

La interpretación abstracta tiene varias ventajas respecto al diseño de casos de

prueba para el análisis de la ejecución de un programa, pues permite capturar el

comportamiento del programa en todas las ejecuciones y contextos posibles, en

lugar de los casos particulares de los casos de prueba diseñados por un desarrolla-

dor. Además, no requiere la ejecución del programa, que en algunos casos podŕıa

no ser posible.

Aunque la técnica de interpretación abstracta puede aplicarse a cualquier pa-

radigma de programación, en el caso de la programación lógica presenta diversas

ventajas por su fundamentación teórica, y permite el uso de técnicas adiciona-

les que producen información de análisis más precisa. Mediante la interpretación

abstracta se pueden analizar programas con diversos grados de precisión: por una

parte, mediante la utilización de diferentes dominios abstractos de análisis, y por

otra parte a través de la utilización de algoritmos sofisticados. Entre estos últimos,

caben destacar el análisis dependiente del contexto y la polivarianza. El análisis

dependiente del contexto permite obtener, sobre un procedimiento, información

que depende del contexto en el que dicho procedimiento fue llamado, en lugar de
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obtener información más general (pero menos precisa) independiente del contex-

to, es decir, común a todas las llamadas a dicho procedimiento en el programa.

Por otra parte, la polivarianza permite obtener resultados de análisis separados

para distintos contextos de llamada, en lugar de unificar los contextos de las di-

versas llamadas al procedimiento para producir un resultado de análisis único,

aunque menos preciso. Tanto la polivarianza como la dependencia del contex-

to proporcionan una mayor precisión en los resultados, pero a cambio requieren

mayor cantidad de recursos de cómputo y añaden complejidad al algoritmo de

análisis. Estas dos técnicas aplicadas conjuntamente hacen de la interpretación

abstracta una herramienta extremadamente precisa para obtener información de

un programa.

El tercer caṕıtulo de esta primera parte introduce CiaoPP, el procesador del

sistema Ciao, y se describen brevemente en forma de tutorial los componentes

más relevantes del preprocesador, introduciendo algunos conceptos del lenguaje de

aserciones de Ciao y sus aplicaciones. El objetivo de este caṕıtulo es proporcionar

al lector una introducción rápida a CiaoPP, sistema en el que se han integrado

las técnicas desarrolladas en esta tesis.

Parte II. Análisis de Programas Modulares

Como se ha mencionado antes, las técnicas de análisis de programas constituyen

la herramienta básica para el resto de los objetivos de esta tesis. Sin embargo, el

análisis plantea por śı mismo importantes problemas cuando se tratan grandes

programas modulares.

A pesar de los avances realizados hasta ahora en este área, las técnicas actua-

les de análisis polivariantes y dependientes del contexto utilizadas exigen que la

totalidad del programa se encuentre disponible para el analizador. Sin embargo,

frecuentemente se produce la situación en la que no es posible cargar el programa

completo en el analizador y realizar el análisis de todo el programa monoĺıtica-

mente. En algunos casos, los requerimientos de memoria del analizador desbordan

la memoria disponible, de forma que el analizador no cabe en memoria si se carga

y se analiza a la vez todo el código del programa. En otros casos, no es posible

cargar en memoria todo el código porque algunos fragmentos están todav́ıa en

desarrollo, y por tanto no están completamente implementados. Y, por último,

también puede producirse el caso en el que, después de algunas modificaciones del
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código, sea más rápido reanalizar incrementalmente los módulos implicados en la

modificación, en lugar de ejecutar un costoso análisis de todo el código desde el

principio. En esta parte de la tesis se tratan todos estos aspectos, proponiendo

un marco de trabajo general y paramétrico que proporciona una visión unificada

de estos problemas.

Una posible solución a los problemas anteriormente mencionados consiste

en utilizar únicamente dominios abstractos con ciertas caracteŕısticas especia-

les [CDG93, MJB00, CC02a] (por ejemplo los dominios denominados composi-

cionales), en los cuales no se pierde precisión si se hace análisis sin conocer de

antemano los patrones de entrada del módulo. Para analizar el programa, bas-

taŕıa con ir analizando los módulos en orden ascendente, utilizando la información

previamente obtenida de los módulos ya analizados. Sin embargo, existen muchos

dominios abstractos que han mostrado su interés práctico y no cumplen dichas

propiedades. En [PH00], el grupo de investigación al que pertenece el doctorando

identificó los problemas más importantes relacionados con el análisis dependiente

del contexto y polivariante de programas modulares, pero sin proponer soluciones

concretas. En [BdlBH+01] se propone el primer algoritmo que resuelve en gran

medida dichos problemas. Sin embargo, la primera visión global del problema y

la propuesta de un marco paramétrico capaz de englobar diferentes algoritmos no

se realiza hasta [PCH+04], ya como parte de la presente Tesis.

Por otra parte, en el apartado anterior se han descrito dos técnicas adicionales

que permiten mejorar los resultados de la interpretación abstracta de programas

lógicos (con restricciones). Tanto la posibilidad de disponer de información depen-

diente del contexto como la polivarianza permiten tener información más precisa

de las llamadas y resultados de los procedimientos del programa. No obstante,

ambas requieren el desarrollo de un algoritmo de punto fijo intermodular para

obtener la precisión máxima en los resultados del análisis. La forma en la que se

obtiene este punto fijo intermodular es relevante tanto para la precisión como para

la eficiencia del análisis. En esta parte de la tesis se resaltan diversos parámetros

del algoritmo intermodular y se evalúan emṕıricamente, y se propone un algorit-

mo de punto fijo intermodular paramétrico, instanciándolo para diversas poĺıticas

de selección de módulos (scheduling). Además, se ha evaluado experimentalmente

el análisis intermodular incremental para algunos cambios espećıficos en el código,

mostrando las ventajas de utilizar un enfoque intermodular, en lugar de analizar
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todo el programa desde el principio.

Análisis de Programas Modulares: El Nivel Local

El análisis de programas modulares presentado en esta tesis tiene como objetivo

el analizar un programa compuesto por varios módulos a partir del análisis su-

cesivo de cada uno de los módulos que lo constituyen. Se define como nivel local

el conjunto de tareas y elementos de información que se consideran cuando se

analiza uno de los módulos del programa. El análisis de un módulo de un pro-

grama modular tiene caracteŕısticas propias, diferentes del análisis monoĺıtico de

un programa no estructurado en módulos. El aspecto más importante que debe

considerarse en este nivel es que el código a analizar es incompleto, pues el códi-

go de los procedimientos importados de otros módulos no está disponible para

el analizador. Es decir, durante el análisis de un módulo m pueden producirse

llamadas de la forma P : CD tales que el procedimiento P esté importado des-

de otro módulo m′, en lugar de estar definido en m. El problema de determinar

cuál es el valor AD de respuesta de las llamadas a P se denomina problema de

los resultados importados. Por otra parte, para obtener de m′ la información de

análisis lo más precisa posible, es necesario propagar el patrón de llamada P : CD

desde m a m′, con el fin de utilizarlo cuando se analice m′. Denominamos este

problema como el problema de las llamadas importadas.

Se puede observar que estos dos problemas son caracteŕısticos de un análisis

dependiente del contexto y polivariante. Los analizadores monovariantes sola-

mente necesitan propagar un único patrón de llamada entre módulos, aquel que

engloba a todos los patrones de entrada de todos los módulos que lo importen.

Por otra parte, los analizadores independientes del contexto no necesitan propagar
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información de patrones de entrada, pues es suficiente analizar los módulos en or-

den ascendente para disponer de la información de análisis de los procedimientos

importados. El inconveniente de estos analizadores es que obtienen información

menos precisa que el tipo de análisis considerado en esta tesis.

Para poder realizar el análisis de un módulo en el contexto del análisis modu-

lar, es necesario mantener por tanto una estructura de datos para intercambiar

información entre los análisis de los distintos módulos del programa. Esta es-

tructura de datos se denomina Tabla de Resultados Global (GAT, Global Answer

Table), y contiene el conjunto de resultados de análisis obtenidos hasta el momen-

to para cada uno de los módulos del programa. Como el análisis es dependiente

del contexto y polivariante, por cada procedimiento de cada módulo es posible

que existan varias entradas en la GAT de la forma P : CD 7→ AD, que indica que

el resultado de analizar el procedimiento P con el patrón de llamada CD produce

como resultado el patrón de respuesta (también denominado de resultado) AD.

El problema de los resultados importados se soluciona aplicando una poĺıtica

de resultados (SP, success policy). Esta poĺıtica es necesaria porque, cuando al

analizar un módulo m se necesita el resultado de un patrón de llamada P : CD a

un procedimiento P importado de otro módulo m′, se producirá frecuentemente

la situación en la que no exista en la GAT una entrada con exactamente el

mismo patrón de llamada. En este caso, es posible aprovechar la información

existente en ese momento en la GAT para calcular una respuesta temporal para

el patrón de llamada P : CD y continuar con el análisis del módulo m. La forma

de calcular esta respuesta temporal viene dada por la SP. Se pueden definir

diversas SP con distintos grados de precisión, si bien pueden clasificarse como

sobreaproximaciones o subaproximaciones del resultado exacto AD= (que es el

que calculaŕıa el análisis no modular, o monoĺıtico). Utilizaremos la denominación

SP+ para referirnos a poĺıticas que producen sobreaproximaciones, y SP− para

las que producen subaproximaciones.

Por su parte, la solución al problema de las llamadas importadas requiere que

se almacenen en otra estructura de datos global, la tabla de respuestas temporal

(TAT, temporary answer table) los patrones de entrada a procedimientos impor-

tados de m′ generados por el análisis del módulo m, y cuyos resultados han sido

aproximados mediante la SP. Cuando se realice el análisis de m′, estarán disponi-

bles para el analizador los patrones de entrada contenidos en la TAT. La poĺıtica
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Figura 2: Análisis de programas modulares: el nivel global

de entrada (entry policy) permite seleccionar qué entradas se van a considerar

para cada módulo. Dependiendo de cómo se analice un módulo, y de cuál sea el

objetivo del análisis, se pueden definir diversas poĺıticas de entrada: si el obje-

tivo es obtener la mayor precisión posible (por ejemplo, para calcular un punto

fijo intermodular), pueden utilizarse las entradas de la TAT para obtener la in-

formación más precisa posible para los módulos que importan el módulo que se

está analizando; por otra parte, si el objetivo es verificar la corrección de un único

módulo, puede ser suficiente analizar el módulo para los patrones más generales

de los procedimientos exportados.

Análisis de Programas Modulares: El Nivel Global

El nivel global del análisis de programas modulares considera las relaciones que se

producen entre los análisis de los distintos módulos y los parámetros que controlan

el sistema.

Las estructuras de datos que intervienen en el nivel global son las siguien-

tes. En primer lugar, la tabla de respuestas global GAT, descrita anteriormente.

La segunda estructura de datos es la tabla de dependencias global (GDT, global

dependency table), que contiene las relaciones entre patrones de entrada de pro-

cedimientos exportados de distintos módulos. De esta forma, es posible propagar

de la forma más precisa posible qué partes del programa necesitan reanalizarse.

Esta tabla es necesaria para mantener la tercera estructura de datos, la cola de

tareas global (GTQ, global task queue), que contiene los eventos por procesar en

el nivel global, que normalmente serán los módulos que requieren reanálisis.
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El nivel global tiene tres parámetros. El primero de ellos es el programa (tam-

bién denominado program unit), conjunto de módulos relacionados mediante la

relación de importación, que tienen un nodo ráız, que corresponde con el módulo

principal (denominado top level). El segundo parámetro es la poĺıtica de entrada,

que determina la forma en que deben inicializarse las estructuras GTQ y GAT.

Por último, el tercer parámetro es la poĺıtica de planificación (scheduling policy),

que define el orden en el que se deben procesar las entradas de la GTQ.

El análisis de un programa modular comienza inicializando las estructuras de

datos globales según indica la poĺıtica de entrada. En cada paso, la poĺıtica de

planificación determina el conjunto de entradas de la GTQ que se procesarán de

un módulo m, y se eliminan de la GTQ. Se analiza el módulo m, y posteriormente

se actualizan las estructuras de datos globales. Como resultado de esto, se pueden

añadir nuevos eventos a la GTQ. El análisis termina cuando no hay eventos

pendientes de procesar en la GTQ, o cuando la estrategia de planificación no

selecciona más eventos.

Las tres estructuras de datos globales se actualizan después del análisis. Por

una parte, en la GAT se cambian los resultados del análisis que mejoran los

valores anteriores en la tabla (dependiendo de la SP), y se introducen los valores

nuevos para los procedimientos importados. Por otra parte, se introducen en la

GDT las dependencias nuevas encontradas entre los procedimientos exportados

por el módulo m y los importados de otros módulos. Por último, se introducen

en la GTQ los elementos de los módulos que importan m que se vean afectados

por los cambios en la GAT.

El esquema del nivel global permite el análisis incremental de programas: si

después de analizar el programa se producen modificaciones en el código fuente

del módulo m, basta con lanzar el análisis modular, marcando todas las entradas

de la GTQ de m.

Poĺıticas de Planificación

La poĺıtica de planificación determina el orden en el que se procesan los eventos

que aparecen en la GTQ. Se pueden definir diversas poĺıticas de planificación en

el análisis de programas modulares.

Por una parte, se puede considerar el caso en el que varios programadores o

equipos desarrollan diferentes partes de un programa. En este caso, los programa-
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dores pueden utilizar el análisis separado de sus respectivos módulos para detectar

lo antes posible errores sin tener que esperar a que el resto del programa esté com-

pletamente terminado. se puede realizar una planificación manual, de forma que

sean los programadores los que decidan cuándo y qué módulo se analiza en cada

momento. El requisito fundamental de la poĺıtica de planificación manual es que

en todo momento los resultados deben ser correctos. Por ello, es imprescindible

utilizar una poĺıtica de resultados que obtenga sobreaproximaciones (SP +).

Por otro lado, se puede plantear una poĺıtica de planificación automática, de

manera que es el sistema el que decide qué módulo se debe analizar en cada

momento, y respecto a qué patrones de entrada. Existen situaciones en las que

el usuario está interesado en obtener los resultados de análisis lo más precisos

posible. El sistema debe por tanto planificar los módulos de forma adecuada para

llegar a un punto fijo intermodular. A diferencia de la poĺıtica manual, en este caso

se puede utilizar tanto SP+ como SP−, pues los resultados deben ser correctos

solamente cuando se llega al punto fijo intermodular.

Resultados Experimentales

El esquema de análisis modular descrito ha sido implementado completamente en

CiaoPP. Esta implementación permite parametrizar el análisis modular de diver-

sas formas, como se ha indicado en los apartados anteriores. Entre los aspectos

evaluados, se pueden destacar:

Monoĺıtico vs. modular En primer lugar, se ha comparado el análisis mo-

noĺıtico (todo el programa a la vez) con la obtención de un punto fijo inter-

modular. Aunque es esperable que el análisis modular de un programa por

primera vez sea más lento que el análisis monoĺıtico (debido a la sobrecarga

de cargar y descargar módulos, etc.), es interesante estudiar en qué medida

se produce.

Poĺıticas de planificación intermodular Otro aspecto a estudiar está rela-

cionado con la influencia de la poĺıtica de selección de módulos en la efi-

ciencia del análisis. Se han estudiado dos poĺıticas sencillas de selección de

módulos que básicamente recorren el grafo de dependencias intermodulares

en orden ascendente o descendente, respectivamente.
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Poĺıticas de resultados Se han comparado dos poĺıticas de resultados (success

policies) de uso común, que obtienen sobreaproximaciones y subaproxima-

ciones de las llamadas a procedimientos importados.

Análisis incremental de programas modulares Por último, se ha compara-

do el análisis monoĺıtico de un programa con el reanálisis del mismo después

de realizar determinadas modificaciones en el código fuente. Esta compara-

ción ilustra las ventajas de analizar exclusivamente el módulo modificado

(y los módulos relacionados que se vean afectados por el cambio) en lugar

de analizar todo el programa desde cero.

Se han estudiado tres tipos diferentes de cambios en el código fuente: en pri-

mer lugar, un cambio simple que mantiene los mismos resultados de análisis

(por tanto, ningún otro módulo se ve afectado por el cambio); una modifica-

ción en el código que hace que los patrones de salida de los procedimientos

exportados tengan una respuesta más precisa; y por último un cambio que

produce resultados más generales para los procedimientos exportados.

Para los experimentos se han considerado dos dominios abstractos de análi-

sis de “modos”: Def [dlBH93], que almacena propiedades (en particular, in-

formación de groundness) mediante implicaciones proposicionales, y Sharing-

freeness [MH91], que contiene información sobre compartición de variables lógicas

y de variables libres de forma conjunta.

Análisis de un programa modular desde cero En este caso, el análisis

intermodular resulta, como es de esperar, más lento que el análisis monoĺıtico

(con todo el programa cargado en memoria), debido al coste de carga y descarga

del código y de la información de análisis relacionada, y la limitación determinada

por la imposibilidad de analizar procedimientos que no estén en el módulo que se

está procesando. Este experimento está detallado en la sección 6.2.2. Sin embargo,

el tiempo de análisis desde cero es todav́ıa razonable, excluyendo el caso del

dominio Sharing − freeness con una poĺıtica de resultados sobreaproximadora.

Los resultados experimentales también propocionan evidencia de que el análi-

sis modular implica un consumo de memoria máximo inferior al análisis monoĺıti-

co, que en algunos casos puede ser conveniente pues permitiŕıa analizar programas

de tamaño cŕıtico que el análisis monoĺıtico no es capaz de procesar.
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Respecto a las dos estrategias de selección de módulos estudiadas, se pueden

observar solamente pequeñas diferencias en el tiempo de ejecución. Este resultado

parece reflejar que el orden de los módulos no es tan relevante como se podŕıa

esperar a priori cuando se analiza un programa modular.

Reanálisis de un programa modular después de un cambio en el código

En todos los tipos de modificaciones evaluadas se puede constatar que el análisis

modular incremental es más eficiente que volver a realizar el análisis monoĺıtico

desde cero. Además, es importante señalar que la complejidad del dominio influye

en el resultado de las pruebas de análisis incremental: cuanto más complejo es

el dominio mayores son las ventajas del análisis incremental. Esto sugiere que

el análisis intermodular puede hacer factible el uso de dominios precisos pero

costosos sobre programas modulares. En la sección 6.2.3 se muestra que, incluso

en los peores casos, el coste de reanálisis, aunque próximo, siempre es inferior al

análisis monoĺıtico desde cero. Esto indica que, aun en presencia de los cambios

más agresivos en un módulo, el análisis intermodular no es más costoso que el

análisis monoĺıtico.

Análisis de tipos para la verificación de programas modulares

Por último, el caṕıtulo 7 presenta dos técnicas para mejorar la eficiencia del

análisis modular en dominios de tipos. En el análisis de tipos tradicional para

programas lógicos [JB92, VB02] se infieren nuevos tipos durante el análisis, lo

que hace que el marco de trabajo general propuesto en los apartados anteriores

sea excesivamente costoso. Para mejorar la eficiencia del análisis, se propone en

primer lugar un modelo mediante el cual los tipos inferidos por el analizador

son reemplazados por tipos definidos en el código fuente (tanto definidos por el

usuario como presentes en las libreŕıas del sistema). De este modo, además de

reducir el coste del análisis, se garantiza una convergencia más rápida hacia el

punto fijo intermodular.

La segunda técnica está basada en el uso de aserciones de tipos paramétricas

en la especificación del programa. Este tipo de aserciones es especialmente útil en

las libreŕıas que implementan procedimientos de manipulación de datos genéricos

(como por ejemplo listas o árboles binarios), de forma que no sea necesario reana-

lizarlos cada vez que se analiza un programa que utilice la libreŕıa. De este modo,
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se pueden instanciar parámetros en la aserción de la libreŕıa (estas aserciones

cumplen el rol de interfaz del módulo de libreŕıa) de acuerdo al patrón de llama-

da real, y se limitan a reutilizar el patrón de salida sin necesidad de analizar el

módulo de libreŕıa. Esto permite incorporar algunas caracteŕısticas espećıficas de

lenguajes de programación lógica fuertemente tipados [MO84, HL94b] sin tener

que cambiar el lenguaje y mientras se siguen utilizando tipos descriptivos, tipos

que describen aproximaciones de la semántica no tipada.

Estas técnicas se han evaluado experimentalmente, constatando la relevancia

de su aplicación en el contexto de programas modulares, especialmente en el caso

del análisis incremental, al reanalizar un programa sobre el que se han realizado

cambios en algunos de sus módulos.

Parte III. Comprobación de Aserciones en Tiempo de Com-

pilación en Programas Modulares

En el área de verificación de programas se ha mostrado gran interés en la utili-

zación de la información obtenida mediante técnicas de interpretación abstrac-

ta [Bou93, CLMV99, PBH00a, Cou03a]. Sin embargo, como en el caso del análisis,

los enfoques existentes para la verificación de programas modulares [CLV98] no

permiten el uso de las técnicas más sofisticadas, tales como la polivarianza y la

dependencia del contexto. Además, estos enfoques requieren una especificación

completa del programa, como los desarrollados para el paradigma orientado a

objetos (véase [LM05]).

Por otra parte, muchas de las herramientas de depuración y verificación exis-

tentes comprueban los programas respecto a una especificación proporcionada en

forma de aserciones [PBH00b, DNTM89] escritas por el usuario. Sin embargo,

la mayor parte de estas herramientas no consideran programas estructurados en

módulos. Además, la especificación debe ser completa, en el sentido de describir

todos los procedimientos del programa.

En esta parte de la tesis se propone un marco de trabajo para la comproba-

ción de aserciones en programas lógicos modulares, basado en información de

análisis global. La especificación del programa mediante aserciones puede ser

parcial: las aserciones no introducidas por el usuario son inferidas mediante el

análisis. La especificación se escribe en términos de las aserciones del sistema
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Ciao [BCHP96, BDM97, DNTM89, M9́5, PBH00b]. Obsérvese que este sistema

de aserciones está diseñado para tratar las caracteŕısticas espećıficas del para-

digma de programación lógica, en particular para permitir diversos usos de un

procedimiento. Por ejemplo, el procedimiento append/3 pude utilizarse para con-

catenar listas, descomponer listas, comprobar o buscar el prefijo de una lista

determinada, etc.

El trabajo realizado en esta parte está basado en la propuesta de [PBH00d] de

comprobación de aserciones en programas no modulares. Además, en esta tesis

se utiliza la información polivariante generada por el análisis.

Cuando se considera un programa compuesto por varios módulos, la corrección

de un módulo puede verse como condicional, de forma que esta noción de correc-

ción depende de la corrección del resto de los módulos del programa. Usando este

enfoque, en esta tesis se estudian diferentes conceptos de corrección de aserciones

en programas modulares. De esta forma, este trabajo ha permitido desarrollar

diversas variantes de la verificación intermodular, que implican diferentes formas

de obtener la información de análisis del programa, como se verá a continuación.

Aserciones

En esta tesis se consideran dos tipos fundamentales de aserciones [PBH00c].† El

primer tipo es el de aserciones success, que se utilizan para expresar propiedades

que deben cumplirse a la finalización correcta del cómputo de un procedimiento

(postcondiciones). En el momento de llamar al procedimiento, debe satisfacerse

una determinada precondición. Las aserciones success pueden expresarse en este

lenguaje mediante una expresión de la forma: success P : Pre ⇒ Post, donde

P es un descriptor de procedimiento y Pre y Post son pre- y post-condiciones

respectivamente. Sin pérdida de generalidad, se considerará que Pre y Post se

corresponden con sustituciones abstractas (λPre y λPost respectivamente) sobre el

conjunto de argumentos del procedimiento P .

El segundo tipo de aserciones expresa propiedades que deben cumplirse en

cualquier llamada a un procedimiento dado. Estas propiedades son similares a las

precondiciones utilizadas en verificación de programas. Estas aserciones tienen la

†[PBH00c] incluye también otros tipos de aserciones que están fuera del objetivo de esta

tesis.
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forma: calls P : Pre, y deben interpretarse como: “en todas las activaciones de

P , Pre debe cumplirse en el estado de la llamada.”

A cada aserción se le puede asignar un estado. El estado indica si la aserción

se refiere a propiedades previstas (intended) o reales, y la relación entre esta

propiedad y la semántica del programa. De este modo, si una aserción se cumple

en un conjunto de consultas Q se dice que la aserción está comprobada (checked)

respecto a Q. Una aserción también puede ser falsa, si se sabe que hay al menos

un patrón de llamada (o de finalización) en la semántica concreta que incumple

la propiedad de la aserción. Si se puede probar la falsedad de una aserción, se

le da el estado false. Finalmente, una aserción que expresa una propiedad que

se cumple para cualquier consulta inicial es una aserción verdadera (true). Si se

puede probar esto durante la comprobación en tiempo de compilación, de forma

independiente del contexto de llamada, la aserción se rescribe con el estado true.

Obsérvese que la diferencia entre aserciones comprobadas y verdaderas es que

estas últimas se cumplen para cualquier contexto. Por tanto, el hecho de que una

asercion sea verdadera implica que también está comprobada.

Por último, una aserción para la que no se puede determinar ninguno de los

estados anteriores en tiempo de compilación se dice que es una aserción pendien-

te de comprobar (check). Esta aserción expresa una propiedad prevista. Puede

cumplirse o no en la versión actual del programa. Este es el estado por defecto: si

una aserción no tiene un estado expĺıcitamente, se supone que su estado es check.

Antes de realizar la comprobación de aserciones en tiempo de compilación, todas

las aserciones escritas por el usuario tienen este estado.

En el sistema desarrollado, la comprobación de aserciones debe estar precedida

por una fase de análisis, y consiste fundamentalmente en comparar las asercio-

nes con la información obtenida por el análisis. Por tanto, la comprobación de

aserciones se realiza realmente en el dominio abstracto. Si es posible verificar que

una aserción es correcta en el contexto determinado por el dominio abstracto,

entonces se puede cambiar su estado a checked. Del mismo modo, si se puede

determinar que una aserción es incorrecta en el dominio abstracto, se puede cam-

biar su estado a false. La corrección de la interpretación abstracta garantiza de

forma suficiente la comprobación de las aserciones sobre el dominio concreto.

Es importante destacar que la precisión del análisis influye directamente sobre

el número de aserciones que el sistema es capaz de comprobar que son correctas
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(o incorrectas). Por ello, cuanto más preciso sea el análisis del programa (por

ejemplo, mediante analizadores dependientes del contexto y polivariantes), más

aserciones se pueden comprobar o bien determinar su falsedad.

Comprobación de aserciones en un módulo

El marco de trabajo de análisis modular descrito en los apartados anteriores

es independiente del lenguaje de aserciones. Sin embargo, las aserciones pueden

contener información relevante para el analizador. Con este objetivo, cuando se

computa el análisis del módulo m, LAT = analysis(m,E,AT ) –LAT es la tabla

de resultados local del análisis del módulo m con el conjunto de patrones de

entrada del análisis E y utilizando la tabla de resultados global AT–, también

puede referirse a información recogida directamente de las aserciones, en lugar de

hacerlo de otros pasos anteriores del análisis modular. Esto da lugar a poĺıticas

de entrada y de resultados adicionales respecto a las descritas anteriormente.

Cuando se comprueban las aserciones de programas modulares, un módulo

determinado puede considerarse tanto en el contexto de un programa o sepa-

radamente, tomando en consideración solamente los procedimientos importados.

Cuando un módulo se trata en el contexto de un programa, el contexto de llamada

de un módulo m se denomina conjunto de llamadas iniciales.

Se dice que el conjunto de llamadas iniciales a un módulo m es válido si y sólo

si todas las aserciones calls de cada procedimiento exportado de m obtienen

estado checked respecto a dicho conjunto de llamadas.

Se puede definir que un módulo m es parcialmente correcto en contexto con

respecto a un conjunto de llamadas iniciales si y sólo si: (1) todas las aserciones

calls de m obtienen estado checked respecto al conjunto de llamadas; (2) todas

las aserciones success tienen estado true o checked respecto a dicho conjunto; y

(3) todas las aserciones calls de procedimientos importados por m tienen estado

checked respecto al conjunto de llamadas inicial.

Un módulo m es parcialmente correcto si y sólo si es parcialmente correcto en

contexto respecto a cualquier conjunto válido de llamadas iniciales.

Como se ha dicho antes, las aserciones se comprueban respecto a toda la

información de análisis disponible después de analizar el código. Esta información

de análisis es polivariante y cubre todos los puntos de programa en los que se llama

a cada procedimiento. Se puede por tanto demostrar que se verifica lo siguiente:
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Sea m un módulo y LAT = analysisSP+(m, CPAsst
m , AT ), donde AT

es una tabla de respuestas con sobreaproximaciones de (algunos módu-

los de) imports(m).

El módulo m es parcialmente correcto si todas las aserciones success

obtienen estado true con respecto a LAT y todas las aserciones calls

en m y los módulos importados por m tienen estado checked respecto

a LAT .

Esta proposición considera la corrección de un módulo independientemente del

contexto de llamada del módulo, pues el punto de inicio del análisis es el conjunto

de precondiciones de las aserciones pred (representado con CPAsst
m ). Respecto a

la tabla de respuestas de los procedimientos importados AT , ésta debe contener

sobreaproximaciones, pero puede estar incompleta o incluso vaćıa (pues la poĺıtica

de resultados es sobreaproximadora: SP+). No obstante, cuanto más precisa es

AT , más aserciones obtienen estado true o checked.

Si los módulos importados por m no están implementados, todav́ıa se puede

utilizar la información de aserciones (si existe) para obtener una LAT más precisa.

En este caso, La corrección de m no se puede garantizar. En su lugar, se puede

proporcionar una noción más débil, corrección parcial condicional. Es importante

tener en cuenta que en este caso el análisis se basa en aserciones escritas por el

usuario que posiblemente no han sido verificadas.

Sea m un módulo, y LAT = analysisSP+(m, CPAsst
m ,AT Asst

m ). m

es condicionalmente parcialmente correcto si todas las aserciones

success tienen estado true y todas las aserciones calls de procedi-

mientos en m y los módulos importados por m tienen estado checked

respecto de LAT .

Esta noción más débil de corrección se convierte en corrección parcial cuando

se considera todo el programa en conjunto, como se verá a continuación.

Comprobación de aserciones en un programa modular

La comprobación de aserciones en un programa modular compuesto por varios

módulos (también denominado program unit) difiere de la comprobación de aser-

ciones en un único módulo en diversos aspectos. Por una parte, se puede obtener
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el conjunto más preciso de llamadas iniciales a un módulo del programa, a partir

de las llamadas realizadas por los módulos del programa que lo importan. Por

otra parte, los patrones de entrada de procedimientos importados de otros módu-

los también pueden ser más precisos si se considera todo el programa modular.

Esto da lugar a la noción de corrección de un programa modular:

Sea mtop el módulo principal que define un programa modular U . U

es parcialmente correcto si y sólo si mtop es parcialmente correcto, y

todos los módulos que dependen de mtop son parcialmente correctos en

contexto respecto de los conjuntos de llamadas iniciales inducidas por

las llamadas iniciales de mtop.

A continuación se proponen tres algoritmos para la verificación de programas

modulares, en función de la información de análisis disponible.

Verificación de un programa modular con información de análisis inter-

modular. En este primer caso se describe un algoritmo básico para comprobar

aserciones en un programa modular, aprovechando la modularidad del programa.

Antes de la comprobación de aserciones se realiza el análisis intermodular del

programa. Una vez hecho esto, se recorren los módulos uno a uno y se comprueban

las aserciones locales al módulo y las de los procedimientos importados.

Como la información de análisis utilizada en cada módulo ha sido generada

por el análisis intermodular, los resultados de la comprobación de aserciones son

correctos independientemente de la poĺıtica de resultados SP utilizada. Es más,

si se utiliza una poĺıtica SP−, la precisión del análisis intermodular es similar a

la del análisis monoĺıtico, y los resultados de la comprobación de aserciones igual

de precisos (con la excepción de algunas aserciones que sean true con el análisis

monoĺıtico, y checked con el análisis intermodular).

Verificación de un programa modular sin información de análisis in-

termodular. Como se ha comentado anteriormente, cada aserción calls de

un procedimiento exportado P se comprueba en todos los módulos que importan

dicho procedimiento. Si en todos los módulos del programa modular se puede

determinar que dicha aserción calls obtiene el estado true, entonces esto quiere
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decir que la precondición de la aserción es una aproximación de todas las llama-

das a P en el programa. Por tanto, las aserciones calls se pueden utilizar como

el punto de inicio del análisis de cada módulo en el programa.

Esto da lugar a un escenario para la comprobación de aserciones en el que no

es necesario realizar un análisis intermodular previo, y que tiene como objetivo

probar que todos los módulos son condicionalmente correctos, en lugar de probar

que son correctos en contexto. Este nuevo algoritmo analiza una sola vez cada

uno de los módulos del programa y comprueba sus aserciones, utilizando la infor-

mación de las aserciones tanto para definir el conjunto de llamadas iniciales de

cada módulo, como para obtener información de los procedimientos importados

de otros módulos. Con este nuevo enfoque se puede afirmar lo siguiente:

Sea mtop un módulo que define un programa modular U cuyo módulo

principal es mtop. Si cada módulo m ∈ U es condicionalmente par-

cialmente correcto, y mtop es parcialmente correcto, entonces U es

parcialmente correcto.

De esta forma, si las aserciones obtienen el estado true o checked con este

nuevo algoritmo, también lo obtendrán si se utiliza la información del análisis

intermodular. Por tanto, si este algoritmo comprueba que las aserciones son co-

rrectas, entonces no es necesario ejecutar un costoso análisis intermodular de todo

el programa.

Intercalado de análisis modular y comprobación de aserciones. El ma-

yor inconveniente del algoritmo anterior es que puede no ser capaz de determinar

la corrección parcial de un programa modular si el usuario ha introducido pocas

aserciones para los procedimientos exportados, o bien éstas no son suficiente-

mente precisas. En este caso, es necesario suministrar esta información, aśı como

incorporar cierto grado de propagación automática de patrones de entrada y de

salida entre los módulos durante el proceso de comprobación.

La idea básica consiste en intercalar análisis y comprobación de aserciones en

el algoritmo de análisis intermodular. La ventaja principal de este enfoque es que

se detectarán los errores lo antes posible, sin necesidad de calcular un costoso

punto fijo intermodular, y al mismo tiempo se propagan los patrones de entrada

y salida entre los módulos.
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En este nuevo algoritmo, se puede concluir lo siguiente: si se detecta que una

aserción obtiene el estado checked o false en un paso intermedio del algoritmo, al

final del proceso continuará en ese mismo estado. Si la aserción no se ha verificado

o demostrado que es falsa, su estado podŕıa cambiar en pasos posteriores, pues

la información de análisis podŕıa ser más precisa en las iteraciones subsiguientes.

Por otra parte, si en el algoritmo de análisis intermodular se utiliza una poĺıti-

ca de resultados subaproximante SP−, se verifica el siguiente resultado adicional:

si en cualquier paso intermedio del algoritmo el estado de una aserción es check o

pasa a ser false, entonces al final del proceso el estado de dicha aserción será co-

mo mucho check. De este modo, en este caso se puede parar el procesamiento

del programa modular tan pronto como se detecten aserciones con estado false

o check, pues en ningún caso se conseguirán verificar estas aserciones.

Parte IV. Aplicaciones

La parte final de la tesis está formada por dos aplicaciones sobre programas rea-

les de las técnicas desarrolladas. En el primer caso, una aplicación del análisis

de programas modulares de especial relevancia es la posibilidad de utilizar esta

técnica en programas con interfaces con sistemas externos de los que no se dispo-

ne el código fuente. Dentro de éstos, es particularmente importante la utilización

de bases de datos relacionales: por su propia estructura, desde el punto de vista

del análisis es posible determinar en tiempo de compilación gran cantidad de pro-

piedades (tipos de los argumentos, terminación, determinismo, modos y grado de

instanciación de los argumentos, etc.). Esta técnica se aplica por tanto a progra-

mas con accesos a sistemas de bases de datos, con el fin de mejorar los accesos a

éstos con información en tiempo de compilación obtenida mediante interpretación

abstracta. Este caso de estudio es un ejemplo claro de cómo se pueden utilizar

técnicas avanzadas en programas reales.

En segundo lugar, la interpretación abstracta ha jugado un papel fundamental

en el área de especialización y optimización de programas, gracias al concepto de

especialización abstracta [PH03]. En particular, el análisis polivariante ha permi-

tido el desarrollo de la especialización abstracta múltiple. No obstante, tampoco

en este área se han desarrollado técnicas efectivas de especialización múltiple de

programas modulares. En el segundo caso de estudio, la especialización de pro-

gramas modulares se utilizará en particular para la especialización de las libreŕıas
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del sistema utilizadas por un programa dado, con el objetivo de reducir el tamaño

del mismo para su ejecución en dispositivos con recursos limitados de computa-

ción (dispositivos móviles, etc.). Este algoritmo está basado en el algoritmo de

especialización múltiple no modular de [PH99]. Este enfoque es innovador res-

pecto al modelo utilizado tradicionalmente, consistente en proporcionar libreŕıas

especiales para estos dispositivos, con importantes limitaciones‡.

Contribuciones

A continuación se enumeran las principales contribuciones de esta tesis. Varios

resultados obtenidos han sido publicados y presentados en foros internacionales;

esta situación se menciona expĺıcitamente. Se puede observar que la mayor parte

de los trabajos publicados han sido realizados en colaboración con otros investi-

gadores tanto del grupo de investigación CLIP, al que pertenece el doctorando,

como de otros centros de investigación. En todos los trabajos la contribución del

doctorando ha sido muy relevante, como lo demuestra el hecho de que el docto-

rando está entre los primeros autores en todas las publicaciones, en las que los

autores están ordenados por su grado de aportación en los art́ıculos. Además,

esta colaboración ha permitido al doctorando aprender nuevos enfoques debido a

la distinta procedencia y área de investigación de los demás coautores.

Entre las contribuciones más importantes que se deben destacar, se encuentran

las siguientes:

• Se ha considerado el problema de analizar un programa compuesto por

varios módulos utilizando un analizador dependiente del contexto y poli-

variante, y se han identificado los principales aspectos relacionados con el

análisis modular separado. Este marco de trabajo general ha sido publi-

cado, conjuntamente con Manuel Hermenegildo, Francisco Bueno, Maŕıa

Garćıa de la Banda, Kim Marriott y Peter Stuckey, en Program Develop-

ment in Computational Logic, A Decade of Research Advances in Logic-

Based Program Development (Springer-Verlag, Lecture Notes in Computer

Science) [PCH+04].

‡Por ejemplo, el entorno de ejecución Java 2 Platform Micro Edition (accesible en la dirección

http://java.sun.com/products).
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• Se ha implementado un algoritmo de punto fijo paramétrico para el análisis

incremental de programas modulares, y se ha evaluado experimentalmen-

te para distintos valores de los parámetros. Además, se han examinado

y evaluado diversos escenarios incrementales caracteŕısticos utilizando es-

te algoritmo. Esta evaluación experimental ha sido presentada en el 15th

International Symposium on Logic-based Program Synthesis and Transfor-

mation (LOPSTR’05) [CPHB06], como un trabajo conjunto con Manuel

Hermenegildo y Francisco Bueno.

• Se han desarrollado dos técnicas espećıficas para permitir el análisis de tipos

de programas modulares utilizando el marco de trabajo desarrollado para

esta tesis, y se han evaluado experimentalmente las mejoras producidas por

estas técnicas. Este trabajo ha sido aceptado para su presentación en ACM

SIGPLAN 2008 Workshop on Partial Evaluation and Program Manipula-

tion (PEPM’08) [PCPH08], como un trabajo conjunto con PaweÃl Pietrzak

y Manuel Hermenegildo.

• Se ha estudiado el problema de verificar que un programa dividido en módu-

los satisface una especificación parcial expresada mediante aserciones. Se

han propuesto diversos algoritmos para implementar la verificación de pro-

gramas modulares, dependiendo de la calidad de la información proporcio-

nada sobre la especificación del programa y de la eficiencia del algoritmo.

Este trabajo fue desarrollado conjuntamente con PaweÃl Pietrzak y Manuel

Hermenegildo, y presentado en el 13th International Conference on Logic for

Programming Artificial Intelligence and Reasoning (LPAR’06) [PCPH06].

• Se han estudiado en detalle dos casos de estudio de especialización de pro-

gramas. En el primero de ellos, se incide en la especialización de un progra-

ma que accede a un sistema externo de bases de datos para generar senten-

cias SQL optimizadas en tiempo de compilación. En el segundo, las libreŕıas

del sistema Ciao son especializadas con respecto a un programa dado con el

objetivo de reducir el tamaño del conjunto final de módulos de libreŕıa nece-

sarios para la ejecución del programa. El primer caso de estudio ha sido pre-

sentado en diversos foros internacionales, conjuntamente con José Manuel

Gómez, Manuel Carro, Daniel Cabeza y Manuel Hermenegildo. Este caso de

estudio fue presentado inicialmente en el taller de trabajo Second CoLogNet
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Workshop on Implementation Technology for Computational Logic Systems

(Formal Methods ’03 Workshop), (ITCLS’03) [CGC+03b]. Posteriormente,

fue presentada una versión mejorada como contribución de congreso en el

6th International Symposium on Practical Aspects of Declarative Langua-

ges, (PADL’04) [CGC+04a]. Aśımismo, un resumen de este trabajo ha sido

presentado en forma de poster en 19th Internacional Conference on Logic

Programming (ICLP’04) [CGC+03a].

• Como resultado de las contribuciones mencionadas, se ha desarrollado una

herramienta, implementada e integrada en el sistema Ciao/CiaoPP, y con-

tribuyendo al sistema global con más de 4000 ĺıneas de código (se puede

encontrar más información sobre el sistema en [BLGPH06b, BLGPH06a])

• Por último, esta tesis demuestra la factibilidad de la utilización de técnicas

de compilación avanzadas en programas reales.
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Carro, Francisco Bueno, Daniel Cabeza, Maŕıa Garćıa de la Banda, Peter Stuckey,

and Kim Marriott.

I have to mention also the members of the CLIP group, with whom I have

shared good times. I do not have enough space here to refer to all of them without

missing any one, but I want to thank especially to Astrid Beascoa, who was so

many times the key for finishing the work on time, and for sharing with her the

daily difficulties.

I also want to seize the opportunity to thank the professors that invited me to

stay in their respective universities their support and welcome: John Gallagher

at Roskilde University, and Deepak Kapur at the University of New Mexico.

Finally, I want to thank my parents who gave me what they did not have to

make me reach this point. And nothing of this could have been possible without

the unconditional support and patience of Beatriz, to whom I dedicate this thesis.





Abstract

There are many advanced techniques for static program verification and opti-

mization which have been demonstrated extremely useful in detecting bugs and

improving the efficiency and which have as common factor the need for precise

global analysis information. Abstract interpretation is one of the most established

analysis techniques, which has allowed the development of innovative methods for

program verification.

The ability to automatically detect bugs in programs and to make sure that

a program is correct with respect to a given specification is one of the most

important challenges in computer science, in order to produce reliable software.

Program verification is an important area of research, and providing advanced

techniques for detecting errors and verifying systems in complex, real-life pro-

grams is among the most relevant areas in today’s computer industry. An inter-

esting approach to program verification is abstract verification, a technique that

aims at the verification of a program by means of over-approximations to the

concrete semantics of the program.

Nevertheless, most of these methods are not directly applicable to modular,

real-life programs, since advanced techniques like the ones aforementioned are in

many cases in a prototypical or proof-of-concept state and the advances made so

far in this direction have allowed their application in a restricted way only.

The purpose of this PhD Thesis is to enable and show the feasibility of precise

analysis and verification techniques to be used in large, modularized and incom-

plete programs in an accurate and efficient way. In order to assess the practical

usefulness of the proposed techniques, the resulting algorithms have been imple-

mented and integrated into the Ciao system and experimentally evaluated, that

has allowed us to apply them to real-life case studies.
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Chapter 1

Introduction

There are many advanced techniques for automatic program verification and op-

timization which have been demonstrated extremely useful in detecting bugs and

improving the efficiency. These techniques have as common factor the need for

precise global analysis information. Abstract interpretation is one of the most

established techniques to infer information about the execution of the program

without actually executing it [CC77a, CC92]. Since the general framework of

abstract interpretation appeared, a great number of techniques and tools based

on it have been developed, which obtain precise information about the behavior

of the program.

The ability to automatically detect bugs in programs and to make sure that

a program is correct with respect to a given specification is one of the most

important challenges in computer science. Program verification is an impor-

tant area of research, and providing advanced techniques for detecting errors

and verifying systems in complex, real-life programs is among the most rele-

vant areas in today’s computer industry. An interesting approach to program

verification is abstract verification, a technique that aims at the verification of

a program by means of over-approximations to the concrete semantics of the

program [HPBLG05, HPBLG03a]. Abstract verification takes advantage of the

information obtained by abstract interpretation-based analyses, and uses it to

verify the correctness of the program. Among the advantages of abstract verifi-

cation, there are some of them of special relevance. First, it allows an automatic

verification, with no need of user interaction during the verification process. Sec-

ond, it is possible to provide a partial specification of the program, instead of a
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complete specification required by other approaches.

Unfortunately, advanced techniques like the ones aforementioned are in many

cases in a prototypical or proof-of-concept state. Therefore, they often address

small programs without the complexity of real-life systems, including: interfaces

to external systems, databases, third-party libraries, components implemented in

other languages, and using all the features provided by modularity. This is in

contrast to the fact that, in some cases, the existing approaches to the analysis

and verification of complex, modular programs either impose strong requirements

to the abstract domain for which the program is analyzed, or demand giving up

any accuracy achievable in the case of monolithic, small programs. In the partic-

ular case of program verification, current systems often require that all the code

composing the program and a complete specification of the program are available

to the verifier. This requirement is not realistic for large and complex programs,

and in particular those legacy systems developed some time ago, and for which

there is often not even a complete, up-to-date human-readable user documenta-

tion available. The best solution in those cases is to allow a partial specification

of the program, and to use advanced analysis techniques to infer what is missing

from the specification. This results, of course, in weaker verification, since those

aspects about the program not specified are assumed to be satisfied by the code.

However, the inferred information can be used to verify the correctness of the

program with respect to that partial specification.

The purpose of this thesis is to enable and show the feasibility of precise

analysis and verification techniques to be used in large, modularized and incom-

plete programs. Two frameworks for the analysis and verification of modular

programs have been fully implemented in the scope of this thesis, and have been

evaluated with several experiments that measure up the different configurations of

the framework parameters. In addition, some experiments have also been made

addressing the interesting case of incremental reanalysis of modular programs

after certain modifications in some of the modules in the program.

This thesis has used Ciao [BCC+02] as target programming language. Ciao

is a multi-paradigm programming system, allowing programming in logic, con-

straint, and functional styles (as well as a particular form of object-oriented pro-
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gramming). At the heart of Ciao is an efficient logic programming-based kernel

language. The (constraint) logic programming area has been affected by the lack

(until 2000) of a standard for describing modularity, and that led to the coexis-

tence of several approaches to modularity for different variants of the language.

The Ciao language includes specific language constructs to represent strict mod-

ularity, and share the same guidelines described in the ISO standard. In contrast,

the state of the art in the analysis of logic programming languages is pretty ad-

vanced. This allows the use of the very large body of approximation domains,

inference techniques, and tools for abstract interpretation-based semantic anal-

ysis which have been developed to a powerful and mature level in this area. In

addition, we take as starting point CiaoPP [HPBLG05], a preprocessor containing

a large set of advanced tools such as analyzers, parallelizers, specializers, etc.

The CiaoPP framework uses incremental abstract interpretation to obtain in-

formation about the program, which is then used to verify the program, to detect

bugs with respect to partial specifications written using assertions (in the pro-

gram itself and/or in system libraries), to generate run-time tests for properties

which cannot be checked completely at compile-time and simplify them, and to

perform high-level program transformations such as multiple abstract special-

ization, partial evaluation, parallelization, and resource usage control, all in a

provably correct way.

Specifically, CiaoPP includes a context-sensitive, multivariant analyzer based

on abstract interpretation which is parametric with respect to the abstract do-

mains used. In this thesis some of the tools available in CiaoPP have been ex-

tended in order to accurately and efficiently deal with modular and incomplete

programs. The frameworks developed in the scope of this thesis have been fully

integrated in CiaoPP and are now part of the system. Although this thesis has

focused in the Ciao language, the techniques developed are also applicable to

other programming paradigms.

1.1 Thesis objectives

The main objective of this thesis is the development, implementation and exper-

imental evaluation of novel techniques for accurately and efficiently dealing with

modular, real-life (constraint) logic programs.
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First, this thesis aims at the development of analysis tools based on the well

known technique of abstract interpretation for inferring precise run-time infor-

mation of modular programs at compile-time.

Based on the previous objective, the second objective is to use the information

obtained from the inter-modular analysis to develop new algorithms and tools

to verify programs structured in modules, and to highlight the advantages and

drawbacks of this approach.

1.2 Structure of the Work

This thesis is composed of three main parts, plus an additional introductory part

for providing background concepts on which the rest of the thesis will be built.

The central parts of the thesis focus on analysis and abstract verification of mod-

ular programs, respectively. Finally, the fourth part describes several applications

of the techniques developed to real programs. The following subsections describe

them in more detail.

1.2.1 Part I. Background

The first part of this thesis states the basis that will be used in subsequent parts.

It is composed of three chapters. In the first chapter of this part, the concept

of module to be used throughout the thesis is addressed. Several approaches to

modular logic programming have been developed over the years, with different

characteristics and semantic backgrounds, and only relatively recently an official

standard has been defined [PRO00]. The approach used in this thesis is close to

the ones most widely used in current commercial and non-commercial systems,

and follows the guidelines described in the standard. Furthermore, due to its

extra logical nature, this approach can be easily extended to other programming

paradigms different from (constraint) logic programming.

In addition to the advantages offered by modularity to the programmer, it

has been used for improving compilation performance by means of separate com-

pilation. Nonetheless, modularity not only helps in separate compilation. It also

contributes with additional features. The most relevant one is that it may provide

modularity to the analysis as well. This means that, if the language is extended
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by using library modules (as it is the case in the Ciao system used for this thesis)

and the module system is strict, some specific features of the language which are

specially difficult for a source code handling tool need only be taken into account

when analyzing modules that import the library modules defining such features.

Among such especially difficult features we can mention higher order procedures,

database handling and dynamic procedures, constraint programming features, to

name a few. This approach allows the user to set up the most appropriate tools

for each module. For example, the analysis approach to be used can be different

for different modules: in some modules a bottom-up analysis algorithm is more

appropriate, whereas in other modules a top-down algorithm provides better re-

sults. In the same way, we can choose an accurate but expensive abstract domain

for analysing a given module accurately, and then choose a cheap, though less

accurate, abstract domain for other modules in which a very high precision is not

required. Similarly, parameters for the abstract domain can also be fine tuned to

bring different levels of efficiency and precision in different modules.

The second chapter in this part is an introductory description of abstract

interpretation in the context of (constraint) logic programming. As already men-

tioned, abstract interpretation [CC77a, CC92] is one of the most established

techniques to infer provably correct information about the execution of the pro-

gram without actually executing it. It has several advantages with respect to

designing test cases for the analysis of the execution of a program, since it allows

capturing the behavior of the program in all possible executions and contexts,

instead of the particular cases of the run-time tests designed by a developer. In

addition, it does not need to actually execute the program, which in some cases is

not possible. When abstractly interpreting a program, an abstraction of the data

is used, instead of the data themselves, and the program is therefore interpreted

with respect to that abstract domain.

Some optional features of abstract interpretation have been applied in the

context of logic programming in order to produce more accurate analysis infor-

mation. First, context sensitivity allows having analysis information about a

procedure that depends on the context for which that procedure is called, instead

of obtaining more general (but less precise) information about the procedure re-

gardless the context in which it is called. Second, polyvariance allows having

separate analysis results for each calling context, instead of joining together the
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calling contexts of a procedure to obtain a single, but less accurate, result of the

analysis of the procedure. These two techniques applied together often result in

important accuracy gains in the analysis of logic programs.

The third chapter of this part introduces CiaoPP, the Ciao system prepro-

cessor, and briefly describes in a tutorial way the most relevant components of

the preprocessor, introducing some concepts of the Ciao assertion language and

its applications. The goal of this chapter is to provide the reader with a quick

introduction to CiaoPP, where the techniques developed in this thesis have been

integrated.

1.2.2 Part II. Analysis of Modular Programs

It is sometimes the case that loading the entire program into the analyzer and

performing the analysis of all the program monolithically is not possible. In some

cases, the cost of the analysis in terms of memory usage is expensive enough

to make the analyzer run out of memory if all the program code is loaded into

memory and analyzed at the same time. In other cases, it is not possible to load all

the code because parts of it are under development, and therefore not completely

implemented yet, or they are implemented in other programming languages, or

even the code may be developed by a third party, and only compiled code may be

available. Also, even if it is possible to analyze the whole program at once, after

some modification of the code, it is usually faster to incrementally reanalyze the

modules involved in the modification, instead of running an expensive analysis

from scratch. In this part of the thesis all these aspects are dealt with, proposing

a general, parametric framework, that provides a unified view of those issues.

On the other hand, in the previous part of the thesis two main additional tech-

niques have been described that allow improving the results of abstract interpre-

tation in (constraint) logic programs: both context-sensitivity and polyvariance

allow having precise information on calls and successes of program procedures.

However, they require the development of an intermodular fixed-point algorithm

to obtain the maximum precision in the analysis results. The way in which

the intermodular fixed-point is performed is relevant for both the precision and

efficiency of the analysis. In this part of the thesis several parameters of the in-

termodular analysis are highlighted and empirically evaluated, and a parametric

intermodular fixed-point algorithm proposed, instantiating it for several schedul-
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ing policies. In addition, incremental intermodular analysis is also experimentally

assessed for some predefined, characteristic changes in the code, showing the ad-

vantages of using an intermodular approach, instead of analyzing the program

from scratch again.

As a final chapter of this part, two techniques are described to improve the

efficiency of the analysis for type domains. This is important since the most

widely used domains for descriptive types turn out not to be directly appropriate

for the analysis of modular programs due to efficiency issues. In this case, new

types are inferred during the analysis. In order to speed up analysis, the accuracy

of the inferred types can be optionally reduced by using only the types predefined

by the user or present in the libraries. In every iteration, analysis replaces the

inferred types by the most precise approximation using defined types. We show

that in this way we ensure faster convergence to the fixpoint and that analysis

times are reduced significantly. The second technique is based on the use of

parametric type assertions in the specification. Such assertions are especially

useful in the module interface of libraries implementing generic data manipulation

predicates (like, e.g., lists or binary trees) in order not to reanalyze them for

different calling patterns every time we analyze a program that uses the library.

In this case, parameters can be instantiated in the trusted assertion (now playing

the role of module interface) according to the actual call pattern, and then simply

reuse the resulting success pattern without analyzing the library module. By

applying the two techniques proposed, the existing analysis domains can be used

in a modular context by sharing some specific characteristics of strongly typed

logic programming languages [MO84, HL94b], but without changing the source

language and while remaining in descriptive types, i.e., types which describe

approximations of the untyped semantics. The techniques developed have also

been implemented and evaluated experimentally, checking their applicability to

real programs, showing the important improvement obtained with this techniques.

Incremental reanalysis in the type domain has been assessed as well.
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1.2.3 Part III. Compile-time Assertion Checking of Mod-

ular Programs

Many existing debugging and verification tools check programs with respect to

a specification provided in the form of assertions [PBH00b, DNTM89] written

by the user. In some cases, the specification of the program must be complete,

whereas in other tools a partial specification may be provided to the verifier. An

interesting approach to program verification is abstract verification, a technique

that aims at the verification of a program by means of over-approximations to

the concrete semantics of the program. Using the exact semantics for verification

is in general not realistic, since it can be infinite, too expensive, or only partially

known. The abstract verification approach has the advantage of computing safe

approximations of the program semantics.

In the scope of abstract verification, a framework for static (i.e., compile-time)

checking of assertions in modular logic programs is proposed in this part of the

thesis. In our framework, the specification of the program through assertions may

be partial: those assertions not directly written by the user are inferred by the

global analysis.

When considering a program split in several modules, the correctness of a

module can be seen as conditional, depending on the correctness of the rest of

the modules in the program. Using this approach, different concepts for correct-

ness of assertions in modular programs are studied. As a consequence, this work

has allowed us to develop several approaches to intermodular verification, which

affect how the analysis information of the program is obtained. For example,

in the case that there are enough assertions specified by the user, computing an

expensive intermodular fixed-point may be avoided in the case that it is possible

to perform a single traversal of the modules in the program during the analysis

phase. Another alternative, if there are not enough user assertions, is to inter-

leave intermodular analysis and checking in order to obtain as soon as possible

(in)correctness information for the partial specification of the program. Several

algorithms are provided in this thesis, and the relation between the analysis pa-

rameters and correctness conditions are studied in depth.
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1.2.4 Part IV. Applications

This final part of the thesis consists of two applications of program analysis to the

handling of real-life programs. In the first case, an application of modular pro-

gram analysis is presented in the context of programs with interfaces to external

systems for which the source code is not available. Among them, is particularly

important the use of relational database systems: its own structure, from the

point of view of the analysis, brings a great deal of information (types of the ar-

guments, termination, determinism, modes and instantiation level of arguments,

etc.). This technique is therefore applied to programs which access to external

database systems, in order to improve accesses to the database with compile-time

information obtained by means of abstract interpretation. This case study is a

clear example about how advanced techniques can be used for real-life programs.

In the second case, a novel modular specialization algorithm is developed in

order to reduce the size of code in libraries for a given program. This algorithm is

based in the non-modular multiple specialization algorihm of [PH03], and prop-

agates specialized versions of predicates across the modular graph. In this case,

it has been applied to strip-down the code of the libraries used by a program, in

order to reduce the total size of the object code and make them fit in a small

device.

1.3 Contributions

This thesis has contributed to the state of the art in several ways, detailed as

follows:

• The problem of analyzing a program split in modules using a context-

sensitive, polyvariant analyzer has been addressed, and the main issues

related to the separate modular analysis approach have been identified.

The general analysis framework, co-authored with Manuel Hermenegildo,

Francisco Bueno, Maŕıa Garćıa de la Banda, Kim Marriott, and Peter

Stuckey, has been published in Program Development in Computational

Logic, A Decade of Research Advances in Logic-Based Program Develop-

ment (Springer-Verlag, Lecture Notes in Computer Science) [PCH+04].
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• A parametric fixed point algorithm for the incremental analysis of a modu-

lar program has been implemented and experimentally evaluated for dif-

ferent parameters of the algorithm. In addition, several characteristic

incremental scenarios have been examined and assessed using that algo-

rithm. This experimental evaluation has been presented at 15th Interna-

tional Symposium on Logic-based Program Synthesis and Transformation

(LOPSTR’05) [CPHB06]. It was co-authored with Manuel Hermenegildo

and Francisco Bueno.

• Two techniques for enabling type analysis for modular programs have been

developed, and their impact experimentally evaluated. This work has been

co-authored with PaweÃl Pietrzak and Manuel Hermenegildo, and is to be

presented at the ACM SIGPLAN 2008 Workshop on Partial Evaluation

and Program Manipulation (PEPM’08) [PCPH08].

• The issue of verifying that a program split in modules satisfies a (possibly

partial) specification given as assertions has been studied. Several algo-

rithms for implementing modular program verification have been proposed,

depending on the quality of the information provided about the specification

of the program. This work was co-authored with PaweÃl Pietrzak and Manuel

Hermenegildo, and presented at 13th International Conference on Logic for

Programming Artificial Intelligence and Reasoning (LPAR’06) [PCPH06].

• Two case studies have been studied in detail. In the first case study, special

emphasis is made in programs that access external database systems and in

the generation or efficient SQL statements at compilation time. This case

study, co-authored with José Manuel Gómez, Manuel Carro, Daniel Cabeza,

and Manuel Hermenegildo, has been presented at 6th International Sympo-

sium on Practical Aspects of Declarative Languages, (PADL’04) [CGC+04a].

An abstract of this work, co-authored with the same authors, was pre-

sented as a poster at the 19th Internacional Conference on Logic Program-

ming [CGC+03a].

• In the second case study, Ciao system libraries are specialized with respect

to a given program in order to reduce the size of the runtime system needed

for the execution of the program. This has been applied in the context of
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the EU IST Programme project Advanced Specialization and Analysis for

Pervasive Systems (ASAP, IST-2001-38059).

• The contributions listed above have been implemented and integrated into

the Ciao/CiaoPP system, contributing to the overall system with more

than 4,000 lines of code (more information about the system can be found

in [BLGPH06b, BLGPH06a])

• Finally, this thesis demonstrates the feasibility of using multivariant,

context-sensitive analysis and verification for real-life programs.
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Chapter 2

Module Systems for Logic

Programs

Modularity is a programming concept that has received much attention in the

context of logic programming over the years. Diverse approaches, with different

features and limitations have been proposed. Nevertheless, the logic program-

ming community has not agreed in a common standard for describing modular

programs until relatively recently [PRO00]. This has led to the coexistence of

several concepts of modularity in different logic programming systems. An early

survey of the most important approaches to modular logic programming can be

found in [BLM94]. There, the authors identify two main approaches to modu-

larity. The first approach refers to modular programming in-the-small: in this

approach, basic constructs in the modular language are integrated in the under-

lying logical foundations, and in most cases they are extended. That enables

the main features of modularity (encapsulation and code reuse), together with

other characteristics provided by the extended frameword. The second approach,

modular programming in-the-large, is focused in how to structure the code of

complex programs. In this case, the language constructs are extra-logical, and

provide the facilities of splitting the code in modules, although do not extend the

logical foundations. The ISO Prolog standard fits in this second approach.

In our context, a program is said to be modular when its source code is

distributed in several source units named modules, and they contain language

constructions to clearly define the interface of every module with the rest of the

modules in the program. This interface is composed of two sets of predicates:
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the set of exported predicates (those accessible from other modules), and the

set of imported modules. The module system we consider is strict in the sense

that procedures defined in a module m are visible in another module m′ which

uses m only if such procedures are exported by m, i.e., procedures which are not

exported are not visible outside the module in which they are defined. Non strict

module systems can be used for separate compilation, but they are not useful

to separate context-sensitive analysis: there is no way to know at compile time

which procedures will be called from outside, nor the corresponding call patterns.

As a result, all procedures must be analyzed for the most general call pattern,

which defeats the spirit of context sensitivity.

We now introduce some notation. We will use m and m′ to denote modules.

Given a module m, by imports(m) we denote the set of modules which m imports.

Figure 2.1 presents a modular program. Modules are represented as boxes and

there is an arrow from m to m′ iff m imports m′. In our example, imports(a) =

{b, c}. By depends(m) we refer to the set generated by the transitive closure of

imports, i.e. depends(m) is the least set such that imports(m) ⊆ depends(m)

and m′ ∈ depends(m) implies that imports(m′) ⊆ depends(m). In our example,

depends(a) = {b, c, d, e, f}. Note that there may be circular dependencies among

modules. In our example, e ∈ depends(d) and d ∈ depends(e). A module m is a

leaf if depends(m) = ∅. In our example, the only leaf module is f . By callers(m)

we denote the set of modules which import m. In the example, callers(e) =

{b, c, d}. Also, we define related(m) = callers(m) ∪ imports(m). In our example,

related(b) = {a, d, e}.

The program unit of a given module m is the finite set of modules containing

m and the modules on which m depends: program unit(m) = {m}∪depends(m)∗.

The module m is called the top-level module of its program unit. In our example,

program unit(a) = {a, b, c, d, e, f} and program unit(c) = {c, d, e, f}. A program

unit U is self-contained in the sense that ∀ m ∈ U : m′ ∈ imports(m)→ m′ ∈ U .

Finally, exported preds(m) is the set of predicate names exported by module

m, and imported preds(m) is the set of predicate names imported by m from any

module ni imports(m). Given a program unit program unit(m), we can always

obtain a single-module program that behaves like program unit(m) [BLM94]: we

∗As discussed later, library modules and builtins require special treatment in order to avoid

reanalysis of all used library predicates every time a user program is analyzed.
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Figure 2.1: An Example of Module Dependencies

will denote such program as flatten(m), defined as

flatten(m) =
⋃

n∈program unit(m) ren(n)

where ren(n) stands for a suitable predicate renaming so that no conflicts arise

between predicates with the same name in different modules, and

exported preds(flatten(m)) = exported preds(m).

The frameworks included in this thesis assume that the module system used is

static, in the sense that module-related language constructs like module importa-

tion and exported procedures specification must be described in the program by

means of static declarations, instead of specifying it as a result of the execution

of some program code. This aspect is particularly important for modular prepro-

cessing tools, since otherwise the modules of the program cannot be processed

separately at compile time, because the list of modules to be used by the program

would be unknown at compile time.

In particular, there are two aspects of the modular system that are required

to be static:

• On one hand, the modular structure of the program must be known in

advance. That means that imports(m), for all m ∈ program unit(mtop),

cannot change during the execution of the program. The preprocessing

tools must know which are the modules and the relations among them in

order to build the graph of inter-modular relations and to be able to decide

how the information obtained for a given module affects the rest of the

program.

• On the other hand, the list of exported predicates exported preds(m) must

be statically fixed. One of the most important advantages of modularity
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from the point of view of preprocessing tools (like analyzers or verifiers)

is that the interface of the module is known in advance, and therefore it

is guaranteed that the only calls to a non-exported predicate are the ones

inside the module defining it.

2.1 The Ciao Module System

For concreteness, and because of its appropriateness for global analysis, in our

implementation we will use the module system of Ciao [CH00]. The Ciao lan-

guage implements an extra-logical approach to modularity, and to a great extent

it complies with the guidelines described in the ISO standard.

The Ciao language has been designed to facilitate the work of global prepro-

cessing tools, but at the same time to implement advanced language features (as

e.g. higher-order programming or dynamic modular constructs). That means

that some features of the language that prevent from using the frameworks de-

veloped in this thesis are actually available in the Ciao system. Nevertheless,

the modular structure itself is of great help in this issue: such features are only

activated if a specific module (the one defining the compiler itself) is loaded from

a module in the user program. Therefore, it is easy to identify which modules

use dynamic modular constructs. [Cab04] describes extensively the Ciao module

system and its design guidelines.

The basic language declarations available in Ciao for expressing modularity

are the following:

:- module(M,Exp,Pkg). This declaration is the main module declaration. It

must appear before any code that belongs to this module. M is the module

name (which usually must match with the file name that contains the source

code), Exp is the list of exported procedures of the module. It represents

the public interface of the module. Finally, Pkg is optional, and indicates

whether the module uses Ciao syntax extensions, such as DCGs, functional

syntax, or assertions for providing information about the program.

:- export(Exp). This is another way to declare a predicate or a list of predicates

as exported. It is equivalent to adding Exp to the second argument of the

module declaration.
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:- use module(IM,Proc). The set of imported modules is declared in Ciao us-

ing this construct. A use module declaration must be used for each im-

ported module IM. Proc is an optional argument that indicates the predi-

cates to be used from that imported module. The predicates in Proc must

have been exported by IM.

Example 2.1.1. Figure 2.2 shows an example of a modular program. It is com-

posed of three modules, namely test, qsort, and lists.

The top-level module of this program is the module test, that sorts a list given

as input, and then checks that the resulting list is indeed sorted and has the same

length as the input list. The module declaration states that the name of the module

is test, exports a procedure, test/1, and uses the package assertions, that

extends the language allowing assertions for describing procedures. It is important

to note that module test defines two procedures, test/1 and sorted/1, although

only test/1 is exported. sorted/1 is internal to the module, and it is therefore

guaranteed by the strictness property of the module system that there will be no

calls from anywhere in any program using this module apart from those inside

module test. Module test also imports the other two modules, qsort and lists

(lines 2 and 3). Finally, in line 4 there is an example of assertion, stating that the

exported predicate will be called using a list of numbers as argument. Chapter 4

includes an overall description of the assertion language.

Module qsort contains two procedures, of which only one procedure is ex-

ported, qsort/2. In addition, it uses module lists (line 2), but only imports

append/3.

Finally, module lists is an excerpt of the Ciao library module with the same

name. It contains four predicates, of which only append/3 and length/2 are

exported.
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:- module(test,[test/1],[assertions]).

:- use_module(qsort).

:- use_module(lists).

:- entry test(X) : list(X,num).

test(L) :- length(L,Length), qsort(L,Res), sorted(Res), length(Res,Length).

sorted([]).

sorted([_]).

sorted([X,Y|Z]) :- X =< Y, sorted([Y|Z]).

%%------------------------------------------------------

:- module(qsort, [qsort/2],[]).

:- use_module(lists, [append/3]).

qsort([X|L],R) :-

partition(L,X,L1,L2), qsort(L2,R2), qsort(L1,R1), append(R1,[X|R2],R).

qsort([],[]).

partition([],_,[],[]).

partition([E|R],C,[E|Left1],Right) :- E < C, !,partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]) :- E >= C, partition(R,C,Left,Right1).

%%------------------------------------------------------

:- module(lists,[append/3,length/2],[]).

append([], L, L).

append([E|Es], L, [E|R]) :- append(Es, L, R).

length(L, N) :- var(N), !, llength(L, 0, N).

length(L, N) :- dlength(L, 0, N).

llength([], I, I).

llength([_|L], I0, I) :- I1 is I0+1, llength(L, I1, I).

dlength([], I, I) :- !.

dlength([_|L], I0, I) :- I0<I, I1 is I0+1, dlength(L, I1, I).

Figure 2.2: A modular program.
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Chapter 3

Abstract Interpretation of Logic

Programs and its Applications

3.1 Semantics of Logic Programs and Abstract

Interpretation

We recall some classical definitions in logic programming. An atom has the form

p(t1, ..., tn) where p is a predicate symbol and the ti are terms. A predicate

descriptor is an atom p(X1, . . . , Xn) where X1, . . . , Xn are distinct variables. We

shall use predicate descriptors to refer to a certain form of atoms, as well as to

predicate symbols. A clause is of the form H:-B1, . . . , Bn where H, the head,

is an atom and B1, . . . , Bn, the body, is a possibly empty finite conjunction of

atoms. In the following we assume that all clause heads are normalized, i.e., H

is of the form of a predicate descriptor. Furthermore, we require that each clause

defining a predicate p has an identical sequence of variables Xp1
, ..., Xpn

in the

head. We call this the base form of p. This is not restrictive since programs

can always be normalized, and it will facilitate the presentation of the algorithms

later. However, both in the examples and in the implementation we handle non-

normalized programs. A definite logic program, or program, is a finite sequence of

clauses. ren denotes a set of renaming substitutions over variables in the program

at hand.

We will consider two kinds of concrete semantics for this thesis. On one hand

we can use the important class of semantics referred to as fixpoint semantics.
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In this setting, a (monotonic) semantic operator (which we refer to as SR) is

associated with each program R. This SR function operates on a semantic domain

D which is generally assumed to be a complete lattice or, more generally, a chain

complete partial order. The meaning of the program (which we refer to as [[R]])

is defined as the least fixpoint of the SR operator, i.e., [[R]] = lfp(SR). A well-

known result is that if SR is continuous, the least fixpoint is the limit of an

iterative process involving at most ω applications of SR and starting from the

bottom element of the lattice.

On the other hand, another concrete semantics used for reasoning about

programs will use the notion of generalized and trees, as they are described

in [Bru91]. We will use a standard notion of substitutions and use notation θ|V

to denote a projection of the substitution θ over the set variables V . Every node

of a generalized and tree, denoted 〈θc, (A,H), θs〉, contains a call to a predicate

A and a head H of the matching clause (not present if A is a built-in), with a call

substitution θc and corresponding success subtitution θs, defined over variables

of the clause where A occurs. Sometimes one or both substitutions, or the clause

head of some nodes might be not known, or simply not applicable. In such cases

we will write them as −.

Definition 3.1.1. A generalized and tree is defined as follows:

Initialization An initial call A with call substitution θc forms a single-node gen-

eralized and tree 〈θc, (A,−),−〉.

Procedure entry Given a generalized and tree with a leaf node 〈θc, (A,−),−〉

corresponding to a call, and a renamed apart clause C = H ← B1, . . . , Bn

defining A, the node becomes 〈θc, (A,H),−〉, and B1, . . . , Bn are added as

its children, with B1 being adorned to the left by the call substitution ψ =

(θ ◦ θc)|vars(C), where θ = mgu(A,H) 6= fail. If n = 0 then ψ is a success

substitution for C.

Interpretation of a built-in Given a generalized and tree with a leaf node

〈θc, A,−〉 corresponding to a call to a built-in, the new tree is obtained

by transforming the node to 〈θc, A, θs〉 where θs is a success substitution

for A. If A is the last literal in the clause body then θs becomes a success

substitution of the clauses, otherwise it is a call substitution for the next

call.
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Procedure exit Given a generalized and tree with a node 〈θc, (A,H),−〉 being

a parent of a clause body with a success substitution ψ, the node becomes

〈θc, (A,H), θs〉, where θs = (θ ◦ ψ)|vars(C), where θ = mgu(A,H), and C is

a clause containing a call A.

The concrete semantics of a program R for a given set of queries Q, JRKQ, is

the set of generalized and trees that represent the execution of the queries in Q

for the program R∗. When the set of queries is not relevant, we will refer to the

concrete semantics simply as [[R]].

Definition 3.1.2. calling context(P,R,Q) of a predicate given by the predicate

descriptor P defined in R for a set of queries Q is the set {θc|∃T ∈ JRKQ s.t.

∃〈θ′c, (A,−),−〉 in T ∧ ∃ψ s.t. Pψ = A ∧ θc = ψ ◦ θ′c}

success context(P,R,Q) of a predicate given by the predicate descriptor P

defined in R for a set of queries Q is the set of pairs {(θc, θs)|∃T ∈ JRKQ s.t.

∃〈θ′c, (A,H), θ′s〉 in T ∧ ∃ψ s.t. Pψ = A ∧ θc = ψ ◦ θ′c ∧ θs = ψ ◦ θ′s}

Abstract interpretation [CC77a] is a technique for static program analysis in

which execution of the program is simulated on a description (or abstract) domain

(Dα) which is simpler than the actual (or concrete) domain (D). Values in the

description domain and sets of values in the actual domain are related via a pair

of monotonic mappings 〈α, γ〉: abstraction α : 2D → Dα and concretization γ :

Dα→ 2D which form a Galois connection, i.e.

∀x ∈ 2D : γ(α(x)) ⊇ x and ∀λ ∈ Dα : α(γ(λ)) = λ.

The set of all possible descriptions represents a description domain Dα which is

usually a complete lattice or cpo for which all ascending chains are finite. Note

that in general v is induced by ⊆ and α (in such a way that ∀λ, λ′ ∈ Dα : λ v

λ′ ⇔ γ(λ) ⊆ γ(λ′)). Similarly, the operations of least upper bound (t) and

greatest lower bound (u) mimic those of 2D in some precise sense. A description

λ ∈ Dα approximates a set of concrete values x ∈ 2D if α(x) v λ. Correctness of

abstract interpretation guarantees that the descriptions computed approximate

all of the actual values which occur during execution of the program.

∗We find this formalization more suitable than the derivation-based one used in a previ-

ous work [PBH00d] because it simplifies the presentation of the subsequent material. This

formalization will be used for Part III mainly.
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One of the fundamental results of abstract interpretation is that an abstract

semantic operator Sα
R for a program R can be defined which is correct w.r.t. SR

in the sense that γ(lfp(Sα
R)) is an approximation of [[R]], and, if certain conditions

hold (e.g., ascending chains are finite in the Dα lattice), then the computation of

lfp(Sα
R) terminates in a finite number of steps. We will denote lfp(Sα

R), i.e., the

result of abstract interpretation for a program R, as [[R]]α.

Typically, abstract interpretation guarantees that [[R]]α is an over -approximation

of the abstract semantics of the program itself, α([[R]]). Thus, we have that

[[R]]α ⊇ α([[R]]), which we will denote as [[R]]α+ . Alternatively, the analysis can in

principle be designed to safely under -approximate the actual semantics [Sch07],

and then we have that [[R]]α ⊆ α([[R]]), which we denote as [[R]]α− .

Different description domains may be used which capture different properties

with different accuracy and cost. Also, for a given description domain, program,

and set of initial call patterns there may be many different analysis graphs. How-

ever, for a given set of initial call patterns, a program and abstract operations

on the descriptions, there is a unique least analysis graph which gives the most

precise information possible.

Goal-dependent abstract interpretation takes as input a program R and a

call pattern† P :λ, where P is an atom, and λ is a restriction of the run-time

bindings of P expressed as an abstract substitution in the abstract domain Dα.

Such an abstract interpretation (denoted analysis(R,P :λ)) returns OR-nodes of

the abstract and-or trees in the form of triples {〈P1, λ
c
1, λ

s
1〉, . . . , 〈Pn, λ

c
n, λ

s
n〉}.

Let P :λ be an abstract initial call pattern, and let Q be the set of concrete

queries described by P :λ, i.e. Q = {Pθ | θ ∈ γ(λ)}. Correctness of abstract

interpretation guarantees:

• The abstract success substitutions cover all the concrete success substitu-

tions which appear during execution, i.e., ∀i = 1..n ∀θc ∈ γ(λc
i) if Piθc

succeeds in R with computed answer θs then θs ∈ γ(λs
i ).

• The abstract call substitutions cover all the concrete calls which appear

during execution of initial queries in Q. Formally, ∀P ′ in R ∀θc ∈

calling context(P ′, R,Q) ∃〈P ′, λc, λs〉 ∈ analysis(R,P :λ) s.t. θc ∈ γ(λc).

†Note that we shall use sets of call patterns instead in the subsequent chapters –the extension

is trivial.
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As usual in abstract interpretation, ⊥ denotes the abstract substitution such

that γ(⊥) = ∅. A tuple 〈Pj, λ
c
j,⊥〉 indicates that all calls to predicate pj with

substitution θ ∈ γ(λc
j) either fail or loop, i.e., they do not produce any success

substitutions.

An analysis is said to be multivariant (on calls) if more than one entry

P :λc
1 7→ λs

1, . . . , P :λc
n 7→ λs

n n ≥ 0 with λc
i 6= λc

j for some i, j may be com-

puted for the same predicate. As it is shown in this thesis, multivariant analyzers

may provide valuable information (for example, for assertion checking, as it will

be seen in Part III) not obtainable otherwise. Note that if n = 0 then the cor-

responding predicate is not needed for solving any goal in the considered class

(p, λ) and is thus dead code and may be eliminated, as explained in the applica-

tion shown in Chapter 10. An analysis is said to be multivariant on successes if

more than one entry P :λc 7→ λs
1, . . . , P :λc 7→ λs

n n ≥ 0 with λs
i 6= λs

j for some

i, j may be computed for the same predicate p and call substitution λc. Different

analyses may be defined with different levels of multivariance [VDLM93]. Many

implementations of abstract interpreters are multivariant on calls. However, most

of them are not multivariant on successes, mainly for efficiency reasons (such as

the analyzer in CiaoPP [HPMS00] used in this thesis, that allows both types of

multivariance, but multivariance on success is switched off by default). An ab-

stract interpretation process is monotonic, in the sense that the more specific the

initial call pattern is, the more precise the results of the analysis are. The output

of the abstract interpreter is kept in an answer table (AT ), as it will be detailed

in Chapter 5. In the rest of this thesis, entries of AT will be denoted P :λc 7→ λs.

Example 3.1.3. The traditional append/3 predicate for concatenating lists, de-

fined as

app([],Y,Y).

app([A|X1],Y,[A|Z1]):- app(X1,Y,Z1).

may be called in different ways. If it is called with first and second arguments

instantiated to lists, then on success the third argument will be instantiated to a

list, the result of concatenating them. On the other hand, if it is called with the

third argument instantiated to a list, then on success first and second arguments

will be both lists, a possible decomposition of the third argument in two sublists.

As instance, the following predicate for inserting an element into a list
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insert(X,L1,L2):- app(A,B,L1), app(A,[X|B],L2).

produces both calling patterns for append/3 when it is called with L1 instantiated

to a list.

When analyzing append/3 using a monovariant, context-sensitive analyzer

with respect to both different calling patterns, it actually analyzes it with respect

to their least upper bound. If A, B, and C represent the arguments of append/3,

the calling abstract substitution in a type domain would be:

(list(A) ∧ list(B) ∧ any(C)) t (any(A) ∧ any(B) ∧ list(C))

= (any(A) ∧ any(B) ∧ any(C)) = >

The result of analyzing append/3 with respect to > would be

append(A,B,C) : > 7→ (list(A) ∧ any(B) ∧ any(C))

In contrast, a multivariant, context-sensitive analysis considers both calling pat-

terns separately, obtaining more accurate results:

append(A,B,C) : (list(A) ∧ list(B) ∧ any(C)) 7→ (list(A) ∧ list(B) ∧ list(C))

append(A,B,C) : (any(A) ∧ any(B) ∧ list(C)) 7→ (list(A) ∧ list(B) ∧ list(C))

A partial ordering on answer tables over a given module can be defined in the

following sense:

Definition 3.1.4. Let AT1 and AT2 be answer tables over a given module m.

AT1 ¹ AT2 iff ∀(P : CP1 7→ AP1) ∈ AT1, (∃(P : CP2 7→ AP2) ∈ AT2 s.t.

CP1 v CP2 and ∀(P : CP ′
2 7→ AP ′

2) ∈ AT2, if CP1 v CP ′
2 then AP1 v AP ′

2).

3.2 Applications of Abstract Interpretation

In this section some applications of abstract interpretation will be described,

namely abstract verification and debugging, and program transformation, which

will be used in the rest of this thesis. In this section we follow [HPBLG05].
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Property Definition

P is partially correct w.r.t. I [[P ]] ⊆ I

P is complete w.r.t. I I ⊆ [[P ]]

P is incorrect w.r.t. I [[P ]] 6⊆ I

P is incomplete w.r.t. I I 6⊆ [[P ]]

Table 3.1: Set theoretic formulation of verification problems

3.2.1 Abstract Verification and Debugging

Both program verification and debugging compare the actual semantics of the

program, i.e., [[P ]], with an intended semantics for the same program, which we

will denote by I. This intended semantics embodies the user’s requirements, i.e.,

it is an expression of the user’s expectations. In Table 3.1 we define classical

verification problems in a set-theoretic formulation as simple relations between

[[P ]] and I.

Using the exact actual or intended semantics for automatic verification and

debugging is in general not realistic, since the exact semantics can be typically

only partially known, infinite, too expensive to compute, etc. On the other hand

the abstract interpretation technique allows computing safe approximations of the

program semantics. The key idea in our approach [BDD+97, HPB99, PBH00d]

is to use the abstract approximation [[P ]]α directly in program verification and

debugging tasks.

A number of approaches have already been proposed which make use to some

extent of abstract interpretation in verification and/or debugging tasks. Ab-

stractions were used in the context of algorithmic debugging in [LS88]. Abstract

interpretation for debugging of imperative programs has been studied by Bour-

doncle [Bou93], by Comini et al. for the particular case of algorithmic debugging

of logic programs [CLV95] (making use of partial specifications) [CLMV99], and

very recently by P. Cousot [Cou03b].

Our first objective herein is to present the implications of the use of approxima-

tions of both the intended and actual semantics in the verification and debugging

process. As we will see, the possible loss of accuracy due to approximation pre-

vents full verification in general. However, and interestingly, it turns out that in
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many cases useful verification and debugging conclusions can still be derived by

comparing the approximations of the actual semantics of a program to the (also

possibly approximated) intended semantics.

In our approach we actually compute the abstract approximation [[P ]]α of the

concrete semantics of the program [[P ]] and compare it directly to the (also ap-

proximate) intention (which is given in terms of assertions [PBH00b]), following

almost directly the scheme of Table 3.1. This approach can be very attractive in

programming systems where the compiler already performs such program analy-

sis in order to use the resulting information to, e.g., optimize the generated code,

since in these cases the compiler will compute [[P ]]α anyway. Alternatively, [[P ]]α
can always be computed on demand.

For now, we assume that the program specification is given as a semantic value

Iα ∈ Dα. Comparison between actual and intended semantics of the program is

most easily done in the same domain, since then the operators on the abstract

lattice, that are typically already defined in the analyzer, can be used to perform

this comparison. Thus, it is interesting to study the implications of comparing

Iα and [[P ]]α, which is an approximation of α([[P ]]).

In Table 3.2 we propose (sufficient) conditions for correctness and complete-

ness w.r.t. Iα, which can be used when [[P ]] is approximated. Several instrumental

conclusions can be drawn from these relations.

Analyses which over-approximate the actual semantics (i.e., those denoted as

[[P ]]α+), are specially suited for proving partial correctness and incompleteness

with respect to the abstract specification Iα. It will also be sometimes possible

to prove incorrectness in the extreme case in which the semantics inferred for the

program is incompatible with the abstract specification, i.e., when [[P ]]α+ ∩ Iα =

∅. We also note that it will only be possible to prove total correctness if the

abstraction is precise, i.e., [[P ]]α = α([[P ]]). According to Table 3.2 completeness

requires [[P ]]α− and partial correctness requires [[P ]]α+ . Thus, the only possibility

is that the abstraction is precise.

On the other hand, we use [[P ]]α− to denote the less frequent case in which

analysis under-approximates the actual semantics. In such case, it will be possible

to prove completeness and incorrectness. In this case, partial correctness and

incompleteness can only be proved if the analysis is precise.

If analysis information allows us to conclude that the program is incorrect
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Property Definition Sufficient condition

P is partially correct w.r.t. Iα α([[P ]]) ⊆ Iα [[P ]]α+ ⊆ Iα

P is complete w.r.t. Iα Iα ⊆ α([[P ]]) Iα ⊆ [[P ]]α−

P is incorrect w.r.t. Iα α([[P ]]) 6⊆ Iα [[P ]]α− 6⊆ Iα, or

[[P ]]α+ ∩ Iα = ∅ ∧ [[P ]]α 6= ∅

P is incomplete w.r.t. Iα Iα 6⊆ α([[P ]]) Iα 6⊆ [[P ]]α+

Table 3.2: Validation problems using approximations

or incomplete w.r.t. Iα, an (abstract) symptom has been found which ensures

that the program does not satisfy the requirement. Thus, debugging should

be initiated to locate the program construct responsible for the symptom. Since

[[P ]]α+ often contains information associated to program points, it is often possible

to use the this information directly and/or the analysis graph itself to locate the

earliest program point where the symptom occurs (see Section 4.2).

It is important to point out that the use of safe approximations is what gives

the essential power to the approach. As an example, consider that classical ex-

amples of assertions are type declarations. However, herein we are interested in

supporting a much more powerful setting in which assertions can be of a much

more general nature, stating additionally other properties, some of which cannot

always be determined statically for all programs. These properties may include

properties defined by means of user programs and extend beyond the predefined

set which may be natively understandable by the available static analyzers. Also,

only a small number of (even zero) assertions may be present in the program, i.e.,

the assertions are optional. In general, we do not wish to limit the programming

language or the language of assertions unnecessarily in order to make the validity

of the assertions statically decidable (and, consequently, the proposed framework

needs to deal throughout with approximations).

Additional discussions and more details about the foundations and imple-

mentation issues of our approach can be found in [BDD+97, HPB99, PBH00d,

PBH00a].
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Property Definition Sufficient condition

L is abstractly RT (L, P ) ⊆ TS(L, P ) ∃λ′ ∈ ATS(B,Dα) :

executable to true in P λL v λ′

L is abstractly RT (L, P ) ⊆ FF (L, P ) ∃λ′ ∈ AFF (B,Dα) :

executable to false in P λL v λ′

Table 3.3: Abstract Executability

3.2.2 Abstract Executability and Program Transforma-

tion

In our program development framework, abstract interpretation also plays a fun-

damental role in the areas of program transformation and program optimiza-

tion. Optimizations are performed by means of the concept of abstract exe-

cutability [GH91, PH97]. This allows reducing at compile-time certain program

fragments to the values true, false, or error, or to a simpler program fragment, by

application of the information obtained via abstract interpretation. This allows

optimizing and transforming the program (and also detecting errors at compile-

time in the case of error).

For simplicity, we will limit herein the discussion to reducing a procedure call

or program fragment L (for example, a “literal” in the case of logic programming)

to either true or false. Each run-time invocation of the procedure call L will have

a local environment which stores the particular values of each variable in L for that

invocation. We will use θ to denote this environment (composed of assignments

of values to variables, i.e., substitutions) and the restriction (projection) of the

environment θ to the variables of a procedure call L is denoted θ|L.

We now introduce some definitions. Given a procedure call L without

side-effects in a program P we define the trivial success set of L in P as

TS(L, P ) = {θ|L : Lθ succeeds exactly once in P with empty answer substi-

tution (ε)}. Similarly, given a procedure call L from a program P we define the

finite failure set of L in P as FF (L, P ) = {θ|L : Lθ fails finitely in P}.

Finally, given a procedure call L from a program P we define the run-time

substitution set of L in P , denoted RT (L, P ), as the set of all possible substitu-

tions (run-time environments) in the execution state just prior to executing the
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procedure call L in any possible execution of program P .

Table 3.3 shows the conditions under which a procedure call L is abstractly

executable to either true or false. In spite of the simplicity of the concepts, these

definitions are not directly applicable in practice since RT (L, P ), TS(L, P ), and

FF (L, P ) are generally not known at compile time. However, it is usual to use a

collecting semantics as concrete semantics for abstract interpretation so that anal-

ysis computes for each procedure call L in the program an abstract substitution

λL which is a safe approximation of RT (L, P ) , i.e. ∀L ∈ P RT (L, P ) ⊆ γ(λL).

Also, under certain conditions we can compute either automatically or by

hand sets of abstract values ATS(L,Dα) and AFF (L,Dα) where L stands for the

base form of L, i.e., where all the arguments of L contain distinct free variables.

Intuitively they contain abstract values in domain Dα which guarantee that the

execution of L trivially succeeds (resp. finitely fails). For soundness it is required

that ∀λ ∈ ATS(L,Dα) γ(λ) ⊆ TS(L, P ) and ∀λ ∈ AFF (L,Dα) γ(λ) ⊆ FF (L, P ).

Even though the simple optimizations illustrated above may seem of narrow

applicability, in fact for many builtin procedures such as those that check basic

types or which inspect the structure of data, even these simple optimizations are

indeed very relevant. Two non-trivial examples of this are their application to

simplifying independence tests in program parallelization [PH99] (Section 4.3)

and the optimization of delay conditions in logic programs with dynamic proce-

dure call scheduling order [PdlBMS97].

These and other more powerful abstract executability rules are embedded

in the multivariant abstract interpreter in our program development framework.

The resulting system performs essentially all high- and low-level program opti-

mizations and transformations during program development and in compilation.

In fact, the combination of the concept of abstract executability and multivariant

abstract interpretation has been shown to be a very powerful program transfor-

mation and optimization tool, capable of performing essentially all the transfor-

mations traditionally done via partial evaluation [PH99, PHG99, CC02b, Leu98].

Also, the class of optimizations which can be performed can be made to cover

traditional lower-level optimizations as well, provided the lower-level code to be

optimized is “reflected” at the source level or if the abstract interpretation is

performed directly at the object level.
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Chapter 4

The Ciao System Preprocessor

In this chapter we present CiaoPP, the preprocessor of the Ciao program de-

velopment system. CiaoPP uses incremental abstract interpretation to obtain

information about the program, which is then used to verify programs, to detect

bugs with respect to partial specifications written using assertions (in the pro-

gram itself and/or in system libraries), to generate run-time tests for properties

which cannot be checked completely at compile-time and simplify them, and to

perform high-level program transformations such as multiple abstract specializa-

tion, parallelization, and resource usage control, all in a provably correct way.

The usage of CiaoPP in this thesis is twofold. On one hand, the tools available in

CiaoPP like static analysis algorithms, abstract verification code, etc. are taken

as starting point for the frameworks developed in this thesis; on the other hand,

in this thesis we provide frameworks which allow the use of analysis and verifi-

cation on modular programs and integrate them into CiaoPP. In this chapter we

follow [HPBLG05].

Ciao is a multi-paradigm programming system, allowing programming in

logic, constraint, and functional styles (as well as a particular form of object-

oriented programming). At the heart of Ciao is an efficient logic programming-

based kernel language. This allows the use of the very large body of approxima-

tion domains, inference techniques, and tools for abstract interpretation-based

semantic analysis which have been developed to a powerful and mature level in

this area (see, e.g., [MH92, LV94, GdW94, BCHP96, dlBHB+96a, HBPLG99] and

their references). These techniques and systems can approximate at compile-time,

always safely, and with a significant degree of precision, a wide range of proper-
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ties which is much richer than, for example, traditional types. This includes data

structure shape (including pointer sharing), independence, storage reuse, bounds

on data structure sizes and other operational variable instantiation properties, as

well as procedure-level properties such as determinacy, termination, non-failure,

and bounds on resource consumption (time or space cost).

4.1 Static Analysis and Program Assertions

The fundamental functionality behind CiaoPP is static global program analy-

sis, based on abstract interpretation. For this task, CiaoPP uses the PLAI ab-

stract interpreter [MH92, BdlBH99] including extensions for, e.g., incremental-

ity [HPMS00, PH96], analysis of constraints [dlBHB+96b], and analysis of con-

currency [MdlBH94].

The system includes several abstract analysis domains developed by several

groups in the LP and CLP communities and can infer information on variable-

level properties such as moded types, definiteness, freeness, independence, and

grounding dependencies: essentially, precise data structure shape and pointer

sharing. It can also infer bounds on data structure sizes, as well as procedure-

level properties such as determinacy, termination, non-failure, and bounds on

resource consumption (time or space cost). CiaoPP implements several tech-

niques for dealing with “difficult” language features (such as side-effects, meta-

programming, higher-order, etc.). As a result, it can for example deal safely

with arbitrary ISO-Prolog programs [BCHP96]. A unified language of assertions

[BCHP96, PBH00b] is used to express the results of analysis, to provide input

to the analyzer, and, as we will see later, to provide program specifications for

debugging and verification, as well as the results of the comparisons performed

against the specifications.

Assertions and Properties: CiaoPP Assertions are a means of specifying

properties which are (or should be) true of a given predicate, predicate argument,

and/or program point. If an assertion has been proved to be true it has a prefix

true –like the ones above. Assertions can also be used to provide information

to the analyzer in order to increase its precision or to describe predicates which

have not been coded yet during program development. These assertions have a

trust prefix [BCHP96]. For example, if we commented out the use module/2
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:- module(qsort, [qsort/2], [assertions]).

:- use_module(compare,[geq/2,lt/2]).

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2), qsort(L1,R1),

append(R1,[X|R2],R).

qsort([],[]).

partition([],_B,[],[]).

partition([E|R],C,[E|Left1],Right):-

lt(E,C), partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-

geq(E,C), partition(R,C,Left,Right1).

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

Figure 4.1: A module defining qsort.

declaration in Figure 4.1, we could describe the mode of the (now missing) geq

and lt predicates to the analyzer for example as follows:

:- trust pred geq(X,Y) => ( ground(X), ground(Y) ).

:- trust pred lt(X,Y) => ( ground(X), ground(Y) ).

The same approach can be used if the predicates are written in, e.g., an external

language such as, e.g., C or Java. Finally, assertions with a check prefix are the

ones used to specify the intended semantics of the program, which can then be

used in debugging and/or verification, as we will see in Section 4.2. Interestingly,

this very general concept of assertions is also particularly useful for generating

documentation automatically (see [Her00] for a description of their use by the

Ciao auto-documenter).

Assertions refer to certain program points. The true pred assertions above

specify in a combined way properties of both the entry (i.e., upon calling) and

exit (i.e., upon success) points of all calls to the predicate. It is also possible to

express properties which hold at points between clause literals. As an example
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of this, the following is a fragment of the output produced by CiaoPP for the

program in Figure 4.1 when information is requested at this level:

:- true pred qsort(A,B)

: mshare([[A],[A,B],[B]])

=> mshare([[A,B]]).

qsort([X|L],R) :-

true((ground(X),ground(L),var(R),var(L1),var(L2),var(R2), ...

partition(L,X,L1,L2),

true((ground(X),ground(L),ground(L1),ground(L2),var(R),var(R2), ...

qsort(L2,R2), ...

In Chapter 8 there is a more detailed discussion about the assertions used for

describing the intended semantics of programs.

In CiaoPP properties are just predicates, which may be builtin or user defined.

For example, the property var used in the above examples is the standard builtin

predicate to check for a free variable. The same applies to ground and mshare.

The properties used by an analysis in its output (such as var, ground, and mshare

for the previous mode analysis) are said to be native for that particular analysis.

The system requires that properties be marked as such with a prop declaration

which must be visible to the module in which the property is used. In addition,

properties which are to be used in run-time checking (see later) should be defined

by a (logic) program or system builtin, and also visible. Properties declared

and/or defined in a module can be exported as any other predicate. For example:

:- prop list/1.

list([]).

list([_|L]) :- list(L).

defines the property “list”. A list is an instance of a very useful class of user-

defined properties called regular types [YS87, DZ92, GdW94, GP02, VB02], which

herein are simply a syntactically restricted class of logic programs. We can mark

this fact by stating “:- regtype list/1.” instead of “:- prop list/1.” (this

can be done automatically). The definition above can be included in a user

program or, alternatively, it can be imported from a system library, e.g.:

:- use module(library(lists),[list/1]).
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Type Analysis: CiaoPP can infer (parametric) types for programs both at the

predicate level and at the literal level [GdW94, GP02, VB02]. The output for

Figure 4.1 at the predicate level, assuming that we have imported the lists

library, is:

:- true pred qsort(A,B)

: ( term(A), term(B) )

=> ( list(A), list(B) ).

:- true pred partition(A,B,C,D)

: ( term(A), term(B), term(C), term(D) )

=> ( list(A), term(B), list(C), list(D) ).

:- true pred append(A,B,C)

: ( list(A), list1(B,term), term(C) )

=> ( list(A), list1(B,term), list1(C,term) ).

where term is any term and prop list1 is defined in library(lists) as:

:- regtype list1(L,T) # "@var{L} is a list of at least one @var{T}’s."

list1([X|R],T) :- T(X), list(R,T).

:- regtype list(L,T) # "@var{L} is a list of @var{T}’s."

list([],_T).

list([X|L],T) :- T(X), list(L).

We can use entry assertions [BCHP96] to specify a restricted class of calls to the

module entry points as acceptable:

:- entry qsort(A,B) : (list(A, num), var(B)).

This informs the analyzer that in all external calls to qsort, the first argument

will be a list of numbers and the second a free variable. Note the use of builtin

properties (i.e., defined in modules which are loaded by default, such as var, num,

list, etc.). Note also that properties natively understood by different analysis

domains can be combined in the same assertion. This assertion will aid goal-

dependent analyses obtain more accurate information. For example, it allows the

type analysis to obtain the following, more precise information:

:- true pred qsort(A,B)

: ( list(A,num), term(B) )

=> ( list(A,num), list(B,num) ).

:- true pred partition(A,B,C,D)
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: ( list(A,num), num(B), term(C), term(D) )

=> ( list(A,num), num(B), list(C,num), list(D,num) ).

:- true pred append(A,B,C)

: ( list(A,num), list1(B,num), term(C) )

=> ( list(A,num), list1(B,num), list1(C,num) ).

Chapter 8 shows an alternative way for specifying entry points to a module,

by means of check assertions. Chapter 7 proposes some techniques to improve

the performance of the general type analysis domain, in order to enable it for the

modular analysis framework.

The CiaoPP framework includes other analysis domains which are out of the

scope of this thesis. Among them, there are:

Non-failure and Determinacy Analysis: CiaoPP includes a non-failure anal-

ysis, based on [DLGH97] and [BLGH04], which can detect procedures and

goals that can be guaranteed not to fail, i.e., to produce at least one solution

or not terminate. It also can detect predicates that are “covered”, i.e., such

that for any input (included in the calling type of the predicate), there is at

least one clause whose “test” (head unification and body builtins) succeeds.

CiaoPP also includes a determinacy analysis based on [LGBH05], which can

detect predicates which produce at most one solution, or predicates whose

clause tests are mutually exclusive, even if they are not deterministic (be-

cause they call other predicates that can produce more than one solution).

Size, Cost, and Termination Analysis: CiaoPP can also infer lower and up-

per bounds on the sizes of terms and the computational cost of predi-

cates [DLGHL94, DLGHL97]. The cost bounds are expressed as functions

on the sizes of the input arguments and yield the number of resolution steps.

Various measures are used for the “size” of an input, such as list-length,

term-size, term-depth, integer-value, etc. Note that obtaining a non-infinite

upper bound on cost also implies proving termination of the predicate.

Decidability, Approximations, and Safety: As a final note on the analyses,

it should be pointed out that since most of the properties being inferred

are in general undecidable at compile-time, the inference technique used,

abstract interpretation, is necessarily approximate, i.e., possibly imprecise.

38



On the other hand, such approximations are also always guaranteed to be

safe, in the sense that (modulo bugs, of course) they are never incorrect.

4.2 Program Debugging and Assertion Valida-

tion

CiaoPP is also capable of combined static and dynamic verification, and debug-

ging using the ideas outlined so far. To this end, it implements the framework

described in [HPB99, PBH00a] which involves several of the tools which com-

prise CiaoPP. Figure 4.2 depicts the overall architecture. Hexagons represent

the different tools involved and arrows indicate the communication paths among

them.

Program verification and detection of errors is first performed at compile-time

by using the sufficient conditions shown in Table 3.2, i.e., by inferring properties

of the program via abstract interpretation-based static analysis and comparing

this information against (partial) specifications Iα written in terms of assertions.

Dynamic checking verifies at runtime that the program execution complies

with the specification. This is usually done only for those specifications which

cannot be checked at compile-time.

Both the static and the dynamic checking are provably safe in the sense that

all errors flagged are definite violations of the specifications.

In this thesis we will focus on static checking only.

Static Debugging: The idea of using analysis information for debugging comes

naturally after observing analysis outputs for erroneous programs. Consider the

program in Figure 4.3. The result of regular type analysis for this program

includes the following code:

:- true pred qsort(A,B)

: ( term(A), term(B) )

=> ( list(A,t113), list(B,^x) ).

:- regtype t113/1.

t113(A) :- arithexpression(A).

t113([]).
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Figure 4.2: Architecture of the Preprocessor

:- module(qsort, [qsort/2], [assertions]).

:- entry qsort(A,B) : (list(A, num), var(B)).

qsort([X|L],R) :-

partition(L,L1,X,L2),

qsort(L2,R2), qsort(L1,R1),

append(R2,[x|R1],R).

qsort([],[]).

partition([],_B,[],[]).

partition([e|R],C,[E|Left1],Right):-

E < C, !, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-

E >= C, partition(R,C,Left,Right1).

append([],X,X).

append([H|X],Y,[H|Z]):- append(X,Y,Z).

Figure 4.3: A tentative qsort program.

t113([A|B]) :- arithexpression(A), list(B,t113).

t113(e).
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where arithexpression is a library property which describes arithmetic expres-

sions and list(B,^x) means “a list of x’s.” A new name (t113) is given to one

of the inferred types, and its definition included, because no definition of this

type was found visible to the module. In any case, the information inferred does

not seem compatible with a correct definition of qsort, which clearly points to a

bug in the program.

Static Checking of Assertions in System Libraries: In addition to manual

inspection of the analyzer output, CiaoPP includes a number of automated facili-

ties to help in the debugging task. For example, CiaoPP can find incompatibilities

between the ways in which library predicates are called and their intended mode

of use, expressed in the form of assertions in the libraries themselves. Also, the

preprocessor can detect inconsistencies in the program and check the assertions

present in other modules used by the program.

For example, turning on compile-time error checking and selecting type and

mode analysis for our tentative qsort program in Figure 4.3 we obtain the fol-

lowing messages:

WARNING: Literal partition(L,L1,X,L2) at qsort/2/1/1 does not succeed!

ERROR: Predicate E>=C at partition/4/3/1 is not called as expected:

Called: num>=var

Expected: arithexpression>=arithexpression

where qsort/2/1/1 stands for the first literal in the first clause of qsort and

partition/4/3/1 stands for the first literal in the third clause of partition.∗

The first message warns that all calls to partition will fail, something nor-

mally not intended (e.g., in our case). The second message indicates a wrong

call to a builtin predicate, which is an obvious error. This error has been de-

tected by comparing the mode information obtained by global analysis, which

at the corresponding program point indicates that E is a free variable, with the

assertion:

:- check calls A<B (arithexpression(A), arithexpression(B)).

which is present in the default builtins module, and which implies that the two

arguments to </2 should be ground. The message signals a compile-time, or

∗In the actual system line numbers and automated location of errors in source files are

provided.
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abstract, incorrectness symptom [BDD+97], indicating that the program does

not satisfy the specification given (that of the builtin predicates, in this case).

Checking the indicated call to partition and inspecting its arguments we detect

that in the definition of qsort, partition is called with the second and third

arguments in reversed order – the correct call is partition(L,X,L1,L2).

After correcting this bug, we proceed to perform another round of compile-

time checking, which produces the following message:

WARNING: Clause ’partition/4/2’ is incompatible with its call type

Head: partition([e|R],C,[E|Left1],Right)

Call Type: partition(list(num),num,var,var)

This time the error is in the second clause of partition. Checking this clause we

see that in the first argument of the head there is an e which should be E instead.

Compile-time checking of the program with this bug corrected does not produce

any further warning or error messages.

Static Checking of User Assertions and Program Validation: Though,

as seen above, it is often possible to detect error without adding assertions to

user programs, if the program is not correct, the more assertions are present in

the program the more likely it is for errors to be automatically detected. Thus,

for those parts of the program which are potentially buggy or for parts whose

correctness is crucial, the programmer may decide to invest more time in writing

assertions than for other parts of the program which are more stable. In order to

be more confident about our program, we add to it the following check assertions:†

:- calls qsort(A,B) : list(A, num). % A1

:- success qsort(A,B) => (ground(B), sorted_num_list(B)). % A2

:- calls partition(A,B,C,D) : (ground(A), ground(B)). % A3

:- success partition(A,B,C,D) => (list(C, num),ground(D)). % A4

:- calls append(A,B,C) : (list(A,num),list(B,num)). % A5

:- comp partition/4 + not_fails. % A6

:- comp partition/4 + is_det. % A7

:- comp partition(A,B,C,D) + terminates. % A8

:- prop sorted_num_list/1.

†The check prefix is assumed when no prefix is given, as in the example shown.
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sorted_num_list([]).

sorted_num_list([X]):- number(X).

sorted_num_list([X,Y|Z]):-

number(X), number(Y), X=<Y, sorted_num_list([Y|Z]).

where we also use a new property, sorted num list, defined in the module itself.

These assertions provide a partial specification of the program. They can be

seen as integrity constraints: if their properties do not hold at the corresponding

program points (procedure call, procedure exit, etc.), the program is incorrect.

Calls assertions specify properties of all calls to a predicate, while success

assertions specify properties of exit points for all calls to a predicate. Properties

of successes can be restricted to apply only to calls satisfying certain properties

upon entry by adding a “:” field to success assertions. Finally, Comp assertions

specify global properties of the execution of a predicate. These include complex

properties such as determinacy or termination and are in general not amenable

to run-time checking. They can also be restricted to a subset of the calls using

“:”. More details on the assertion language can be found in [PBH00b].

CiaoPP can perform compile-time checking of the assertions above, by com-

paring them with the assertions inferred by analysis (see Table 3.2 and [BDD+97,

PBH00d] for details), producing as output the following assertions (refer also to

Figure 4.2, output of the comparator):

:- checked calls qsort(A,B) : list(A,num). % A1

:- check success qsort(A,B) => sorted_num_list(B). % A2

:- checked calls partition(A,B,C,D) : (ground(A),ground(B)). % A3

:- checked success partition(A,B,C,D) => (list(C,num),ground(D) ).% A4

:- false calls append(A,B,C) : ( list(A,num), list(B,num) ). % A5

:- checked comp partition/4 + not_fails. % A6

:- checked comp partition/4 + is_det. % A7

:- checked comp partition/4 + terminates. % A8

Note that a number of initial assertions have been marked as checked, i.e., they

have been verified. If all assertions had been moved to this checked status, the

program would have been verified. In these cases CiaoPP is capable of gener-

ating certificates which can be checked efficiently for, e.g., mobile code appli-

cations [APH04]. However, in our case assertion A5 has been detected to be

false. This indicates a violation of the specification given, which is also flagged

by CiaoPP as follows:
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ERROR: (lns 22-23) false calls assertion:

:- calls append(A,B,C) : list(A,num),list(B,num)

Called append(list(^x),[^x|list(^x)],var)

The error is now in the call append(R2,[x|R1],R) in qsort (x instead of X).

Assertions A1, A3, A4, A6, A7, and A8 have been detected to hold, but it was not

possible to prove statically assertion A2, which has remained with check status.

Note that though the predicate partition may fail in general, in the context

of the current program it can be proved not to fail. Note also that A2 has been

simplified, and this is because the mode analysis has determined that on success

the second argument of qsort is ground, and thus this does not have to be checked

at run-time. On the other hand the analyses used in our session (types, modes,

non-failure, determinism, and upper-bound cost analysis) do not provide enough

information to prove that the output of qsort is a sorted list of numbers, since

this is not a native property of the analyses being used. While this property could

be captured by including a more refined domain (such as constrained types), it

is interesting to see what happens with the analyses selected for the example.‡

Part III of this thesis describes a framework and proposes several scenarios

for extending the static checking of assertions to modular programs.

Performance Debugging and Validation: Another very interesting feature

of CiaoPP is the possibility of stating assertions about the efficiency of the pro-

gram which the system will try to verify or falsify. This is done by stating lower

and/or upper bounds on the computational cost of predicates (given in number

of execution steps).

‡Note that while property sorted num list cannot be proved with only (over approxima-

tions) of mode and regular type information, it may be possible to prove that it does not hold

(an example of how properties which are not natively understood by the analysis can also be

useful for detecting bugs at compile-time): while the regular type analysis cannot capture per-

fectly the property sorted num list, it can still approximate it (by analyzing the definition)

as list(B, num). If type analysis for the program were to generate a type for B not compatible

with list(B, num), then a definite error symptom would be detected.
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4.3 Source Program Optimization

We now turn our attention to the program optimizations that are available in

CiaoPP. These include abstract specialization, parallelization (including granu-

larity control), multiple program specialization, and integration of abstract inter-

pretation and partial evaluation. All of them are performed as source to source

transformations of the program. In most of them static analysis is instrumental,

or, at least, beneficial.

Abstract Specialization: Program specialization optimizes programs for known

values (substitutions) of the input. It is often the case that the set of possible

input values is unknown, or this set is infinite. However, a form of specialization

can still be performed in such cases by means of abstract interpretation, spe-

cialization then being with respect to abstract values, rather than concrete ones.

Such abstract values represent a (possibly infinite) set of concrete values.

CiaoPP can also apply abstract specialization to the optimization of programs

with dynamic scheduling (e.g., using delay declarations) [PdlBMS97]. The trans-

formations simplify the conditions on the delay declarations and also move delayed

literals later in the rule body, leading to substantial performance improvement.

This is used by CiaoPP, for example, when supporting complex computation

models, such as Andorra-style execution [HBC+99].

Parallelization: An example of a non-trivial program optimization performed

using abstract interpretation in CiaoPP is program parallelization [BdlBH99]. It is

also performed as a source-to-source transformation, in which the input program

is annotated with parallel expressions. The parallelization algorithms, or anno-

tators [MBdlBH99], exploit parallelism under certain independence conditions,

which allow guaranteeing interesting correctness and no-slowdown properties for

the parallelized programs [HR95, dlBHM00]. This process is complicated by the

presence of shared variables and pointers among data structures at run-time.

The tests in the above example aim at strict independent and-parallelism.

However, the annotators are parameterized on the notion of independence. Dif-

ferent tests can be used for different independence notions: non-strict indepen-

dence [CH94], constraint-based independence [dlBHM00], etc. Moreover, all

forms of and-parallelism in logic programs can be seen as independent and-

parallelism, provided the definition of independence is applied at the appropriate
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granularity level.§

Resource and Granularity Control: Another application of the informa-

tion produced by the CiaoPP analyzers, in this case cost analysis, is to perform

combined compile–time/run–time resource control. An example of this is task

granularity control [LGHD96] of parallelized code. Such parallel code can be the

output of the process mentioned above or code parallelized manually.

In general, this run-time granularity control process involves computing sizes

of terms involved in granularity control, evaluating cost functions, and compar-

ing the result with a threshold¶ to decide for parallel or sequential execution.

Optimizations to this general process include cost function simplification and

improved term size computation, both of which are illustrated in the following

example.

Multiple Specialization: Sometimes a procedure has different uses within

a program, i.e. it is called from different places in the program with different

(abstract) input values. In principle, (abstract) program specialization is then

allowable only if the optimization is applicable to all uses of the predicate. How-

ever, it is possible that in several different uses the input values allow different

and incompatible optimizations and then none of them can take place. In CiaoPP

this problem is overcome by means of “multiple program specialization” where

different versions of the predicate are generated for each use. Each version is

then optimized for the particular subset of input values with which it is to be

used. The abstract multiple specialization technique used in CiaoPP [PH99] has

the advantage that it can be incorporated with little or no modification of some

existing abstract interpreters, provided they are multivariant (PLAI and similar

frameworks have this property).

This specialization can be used for example to improve automatic paralleliza-

tion in those cases where run-time tests are included in the resulting program.

In such cases, a good number of run-time tests may be eliminated and invariants

extracted automatically from loops, resulting generally in lower overheads and in

several cases in increased speedups.
§For example, stream and-parallelism can be seen as independent and-parallelism if the

independence of “bindings” rather than goals is considered.

¶This threshold can be determined experimentally for each parallel system, by taking the

average value resulting from several runs.
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Integration of Abstract Interpretation and Partial Evaluation: In the

context of CiaoPP we have also studied the relationship between abstract multiple

specialization, abstract interpretation, and partial evaluation. Abstract special-

ization exploits the information obtained by multivariant abstract interpretation

where information about values of variables is propagated by simulating program

execution and performing fixpoint computations for recursive calls. In contrast,

traditional partial evaluators (mainly) use unfolding for both propagating values

of variables and transforming the program. It is known that abstract interpre-

tation is a better technique for propagating success values than unfolding. How-

ever, the program transformations induced by unfolding may lead to important

optimizations which are not directly achievable in the existing frameworks for

multiple specialization based on abstract interpretation. In [PAH06] we present a

specialization framework which integrates the better information propagation of

abstract interpretation with the powerful program transformations performed by

partial evaluation. We have added state of the art local and global control strate-

gies [PAH05, APG06] which makes CiaoPP’s partial evaluator a quite competitive

system
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Part II

Analysis of Modular Programs

49





Chapter 5

Intermodular, Context-sensitive

Analysis of Logic Programs

Context-sensitive analysis provides information which is potentially more accu-

rate than that provided by context-free analysis. Such information can then be

applied in order to validate/debug the program and/or to specialize the program

obtaining important improvements. Unfortunately, context-sensitive analysis of

modular programs poses important theoretical and practical problems. One so-

lution, used in several proposals, is to resort to context-free analysis. Other

proposals do address context-sensitive analysis, but are only applicable when the

description domain used satisfies rather restrictive properties. In this chapter,

it is argued that a general framework for context-sensitive analysis of modular

programs, i.e., one that allows using all the domains which have proved useful in

practice in the non-modular setting, is indeed feasible and very useful. Driven

by the experience in the design and implementation of context-sensitive analysis

and specialization techniques in the CiaoPP system, the Ciao system prepro-

cessor, in this chapter a number of design goals for context-sensitive analysis of

modular programs are discussed, as well as the problems which arise in trying to

meet these goals. A high-level description of a framework for analysis of modular

programs is also provided, which does substantially meet these objectives. This

framework is generic in that it can be instantiated in different ways in order to

adapt to different contexts. Finally, the behavior of the different instantiations

w.r.t. the design goals that motivate this work is also discussed.
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5.1 Introduction

Analysis of logic programs has received considerable theoretical and practical at-

tention. A number of successful compile-time techniques have been proposed and

implemented which allow obtaining useful information on the program and using

such information to debug, validate, and specialize the program, obtaining im-

portant improvements in correctness and efficiency. Unfortunately, most of the

existing techniques are still only used in prototypes and, though numerous experi-

ments demonstrate their effectiveness, they have not made their way into existing

real-life systems. Perhaps one of the reasons for this is that most of these tech-

niques were originally designed to be applied to a complete, monolithic program,

while programs in practice invariably have a more complex structure combining a

number of user modules with system libraries. Clearly, organizing program code

in this modular way has many practical advantages for both program develop-

ment and maintenance. On the other hand, performing global techniques such

as program analysis on modular programs differs from doing so in a monolithic

setting in several interesting ways and poses non-trivial problems which must be

solved.

Driven by our experience in the design and implementation of context-

sensitive analysis and specialization techniques in the CiaoPP system [PH03,

HPBLG03b], in this chapter a high level description of a framework for analysis

of modular programs is presented. This framework is generic in that it can be

instantiated in different ways in order to adapt to different contexts. The cor-

rectness, accuracy, and efficiency of the different instantiations is discussed and

compared.

Performing global analysis on modular programs differs from doing so in a

monolithic setting in several interesting ways and poses non-trivial problems

which must be solved, and it has been addressed in a number of previous works.

(see, for example, [CC02a] and its references where the main approaches to sep-

arate modular static analysis by abstract interpretation are described)

However, most of them have focused on specific analyses with particular prop-

erties and using more or less ad-hoc techniques. In [CDG93] a framework is

proposed for performing compositional analysis of logic programs in a modular

fashion, using the concept of an open program, introduced in [BGLM94]. An
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open program is a program in which part of the code is not available to the an-

alyzer. Nevertheless, this interesting framework is valid only for a particular set

of abstract domains of analysis—those which are compositional.

Another interesting framework for compositional analysis for logic programs

is presented in [VB00], in this case, for binding-time analysis. Although the most

natural way to describe abstract interpretation-based binding-time analyses is

arguably to use a top-down, goal-dependent framework, in this work a goal-

independent analysis framework is used in order to simplify the handling of the

issues stemming from modularity. The choice is based on the fact that context-

sensitivity brings important problems to a top-down analysis framework. Both

this paper and [CDG93] stress compositionality as a very attractive property,

since it greatly facilitates modular analysis. However, there are many useful

abstract domains which do not meet this property, and thus these approaches are

not of general applicability.

In [Pro02] a control-flow analysis-based technique is proposed for call graph

construction in the context of object oriented languages. Although there has been

other work in this area, the novelty of this approach w.r.t. previous proposals

is that it is context-sensitive. Also, [BJ03] shows a way to perform modular

class analysis by translating the object oriented program into open DATALOG

programs, in the sense of [BGLM94]. These two contributions are tailored to

specific analysis domains with particular properties, so an important part of their

work is not generally applicable nor reusable in a general framework.

In [RRL99] a two-phase analysis is proposed for incomplete imperative pro-

grams, starting with a fast, imprecise global analysis and then continuing with

a (possibly context sensitive) analysis for each module in the program. This ap-

proach is not abstract interpretation-based. It is interesting to see that it appears

to follow from the theory of abstract interpretation that if in such a two-pass ap-

proach the first pass “overshoots” the fixed-point, the maximum precision may

not be recovered in the second pass.

In [TJ94] a method for performing separate control-flow analysis by means

of abstract interpretation is proposed. This paper does not deal with the inter-

modular approach studied in the present work, although it does have points

in common with our module-aware analysis framework (Section 5.5). However,

in this work the initial information needed by the abstract interpretation-based
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analyzer is provided by other analysis techniques (types and effects techniques),

instead of taking advantage of the actual results from the analysis of the rest of

the modules in the program.

And finally, in [Log04b, Log04a] an abstract interpretation based approach to

the analysis of class-based, object-oriented languages is presented. The analysis

is split in two separate semantic functions, one for the analysis of an object and

another one for the analysis of the context that uses that object. The interdepen-

dence between context and object is expressed by two mutually recursive equa-

tions, that can be solved using a fixpoint computation, which somehow resembles

the technique used in this thesis. In addition, the work presented in [Log04b] is

context-sensitive and multivariant, since it keeps track of what is called “interac-

tion history” at every program point. The overall fixed point (equivalent to our

intermodular fixed point) starts assuming a worst-case approximation, similar to

SP+ success policies that will be described below in Section 5.5.1. This may

lead to a non-least fixed point if there are mutually recursive methods in the

program. In addition, the imperative nature of the target language makes the

theoretical framework much more complex than the one used for logic programs

and applied in this thesis. In [Log07], a later paper from the same author, Cibai

is presented as an abstract interpretation-based analyzer for modular analysis of

Java classes. However, in this case the intermodular analysis is not context sensi-

tive, and a single bottom-up traversal of the class dependency graph is performed

for a given domain (dynamic octagons). These works are quite close to the ap-

proach proposed in this thesis. However, there is no experimental evaluation of

the framework, except for some preliminary tests performed on Cibai, where no

intermodular fixed point is evaluated.

A preliminary study of the extension of context-sensitive analysis and spe-

cialization to the case of modular programs was presented in [PH00]. A full

practical proposal for context-sensitive modular program analysis was presented

in [BdlBH+01], which also proposed a collection of models and reported some very

preliminary data from its implementation in the context of the Ciao system. Also,

an implementation of [BdlBH+01] in the context of the HAL system [GDMS02]

has been reported in [Net02].

These early experimental results provided initial evidence on the overall po-

tential of the approach, but were limited in that they studied only a partial
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implementation. It was left as future work to perform further experimentation in

order to understand the many issues and trade-offs left open in the design, and to

study whether the proposed models scale and are usable in the context of large,

real-life modular programs.

The rest of this chapter proceeds as follows: Section 5.2 presents a review of

program analysis based on abstract interpretation and of the non-modular frame-

work that we use as a starting point. Section 5.3 then presents some additional

notation related to modular programs and a first, simple approach to extending

the framework to handling such modular programs: the “flattening” approach.

This approach is used as baseline for comparison throughout the rest of the the-

sis. Section 5.4 then identifies a number of characteristics that are desirable of a

modular analysis system and which the simple approach does not meet in general.

Achieving (at least a subset of) these characteristics justifies the more involved ap-

proach presented in the rest of the chapter. To this end, Section 5.5 first discusses

the modifications made to the analysis framework for non-modular programs in

order to be able to handle one module at a time. Section 5.6 then presents the

actual full framework for analysis of modular programs. The framework pro-

posed is parametric on the scheduling policies. The following sections discuss two

scheduling policies which are fundamentally different: manual scheduling (Sec-

tion 5.7), which corresponds to a scenario where one or more users decide when

and what modules to analyze individually (but in a context-sensitive way), such

as in distributed program development, and automatic scheduling (Section 5.8),

where a full scheduling policy automatically determines in which order the mod-

ules will be analyzed and continues until the process is completed (a fixed-point is

reached). Section 5.9 addresses some practical implementation issues, including

persistence and handling of libraries. Finally, Section 5.10 compares the behavior

of the different instantiations of the generic framework proposed together with

that of the flattening approach w.r.t. the desirable design features discussed in

Section 5.4, and presents some conclusions.

55



5.2 A Non-Modular Context-Sensitive Analysis

Framework

The aim of context-sensitive program analysis is, for a particular description

domain, to take a program and a set of initial call patterns and to annotate the

program with information about the current environment at each program point

whenever that point is reached when executing calls described by the initial call

patterns.

5.2.1 The Generic Non-Modular Analysis Framework

We will now briefly describe the main ingredients of a generic context-sensitive

analysis framework which computes the least analysis graph. This framework

generalizes the particular analysis algorithms used in systems such as PLAI

[MH90a, MH92], GAIA [LV94], and the CLP(R) analyzer [KMM+98], and we

believe captures the essence of most context-sensitive, non-modular analysis sys-

tems. More details on this generic framework can be found in [HPMS00, PH96].

We first introduce some notation. CD and AD stand for descriptions in the

abstract domain. The expression P : CD denotes a call pattern. This consists of

a predicate call together with a call description for that predicate call. Similarly,

P : AD denotes an answer pattern, though it will be referred to as AD when it is

associated to a call pattern P : CD for the same predicate call.

The least analysis graph for the program is implicitly represented in the al-

gorithm by means of two data structures, the answer table and the dependency

table. Given the information in these data structures it is straightforward to

construct the graph and the associated program point annotations. The answer

table contains entries of the form P : CD 7→ AD. It is interpreted as: the an-

swer pattern for calls of the form CD to P is AD. A dependency is of the form

P : CD0 ⇒ Bkey : CD1. This is interpreted as follows: if the procedure P is

called with description CD0 then this causes the procedure B to be called with

description CD1. The subindex key can be used in order to uniquely identify the

program point within P where B is called with calling pattern CD1. Dependency

arcs represent the arcs in the program analysis graph from procedure calls to the

corresponding call pattern.
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Figure 5.1: Non-Modular Analysis Framework

Intuitively, different analysis algorithms correspond to different graph traver-

sal strategies which place entries in the answer table and dependency table as

new nodes and arcs in the program analysis graph are encountered. To capture

the different graph traversal strategies used in different fixed-point algorithms, we

use a priority queue. The queue contains the events to process. Different priority

strategies correspond to different analysis algorithms. Thus, the third, and final,

structure used in our generic framework is a tasks queue.

When an event being added to the tasks queue is already in the queue, a single

event with the maximum of the priorities is kept in the queue. Also, only one

arc of the form P : CD ⇒ Bkey : CD′ for each tuple (P,CD, Bkey) exists in the

dependency table: the last one added. The same holds for entries P : CD 7→ AD

for each tuple (P,CD) in the answer table.

Figure 5.1 shows the architecture of the framework. The Code corresponds to

the (source) code of the program to be analyzed. By Entries we denote the initial

starting points for analysis. The box Description Domain Operations represents

the definition of operations which are domain dependent. The circle represents

the Analysis Engine, which has the three data-structures mentioned above, i.e.,

the answer table, the dependency table, and the tasks queue. Initially, for each

analysis these three structures are empty and the analysis engine takes care of

processing the events on the priority queue by repeatedly removing the highest

priority event and calling the appropriate event-handling function. This in turn

consults and modifies the contents of the answer and dependency tables. When
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the tasks queue becomes empty then the analysis engine has reached a fixed-

point. This implies that the least analysis graph has been found. We will use

AnalysisDα
(Q,E) = (AT,DT ) to denote that the analysis of program Q for ini-

tial descriptions E in domain Dα produces the answer table AT with dependency

table DT .

5.2.2 Predefined Procedures

In order to simplify their presentation, formalizations of program analysis often

do not consider predefined procedures. However, in practice, program analysis

implementations allow the use of predefined (language built-in and/or library)

procedures∗ in the programs to be analyzed. These external procedures whose

code is not available in the program being analyzed are often handled in an ad-

hoc way. Thus, in fairness, non-modular program analyses are more accurately

represented by adding to the framework a builtin procedure function which es-

sentially hardwires the answer table for these external procedures. This function

is represented in Figure 5.1 by the box builtin procedure function. We will use

CP and AP to denote, respectively, the set of all call patterns and the set of all

answer patterns. The builtin procedure function can be formalized as a function

BF : CP → AP . For all call pattern P : CD where P is a builtin procedure

BF (P : CD) returns a description AD which is assumed to be correct in the sense

that it is a safe approximation, i.e. an over-approximation of the actual answer

pattern for P : CD.

It is important to note that the data structures which are outside the anal-

ysis engine, code, entries, description domain operations, and builtin procedure

function are read-only. However, though the code and entries are supposed to

change for the analysis of each particular program, the builtin procedure function

can be considered to be fixed, for each description domain Dα, in that it does not

vary from the analysis of one program to another. Indeed, it can be considered

to be part of the analyzer. Thus, the builtin procedure function is not explicitly

represented as an input to the analysis algorithm.

∗In our modular design, a library can be treated simply as (yet another) module in the

program. However, special practical considerations for them will be discussed in Section 5.9.3.
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5.3 The Flattening Approach to Modular Pro-

cessing

Several compilation tasks such as program analysis and specialization are tradi-

tionally considered global, as opposed to local. Usually, local tasks process one

procedure or module at a time and all the information required for performing

the task can be obtained by inspecting that procedure. In contrast, in global

tasks the results of processing a part of the program (say, a procedure) may be

needed in order to process other parts of the program. Thus, global processing

often requires iterating on the whole program until a fixed-point is reached.

In a modular setting, it may well be the case that part of the information

needed to perform the task on (a procedure in) module m has to be computed

in modules other than m. We will refer to the information originated in modules

different from m as inter-modular information in contrast to the information

originated in m itself, which we will call intra-modular.

Example 5.3.1. In context-sensitive program analysis there is an information

flow of both call and success patterns to and from procedures in different modules.

Thus, program analysis requires inter-modular information. For example, the

module c receives call patterns from module a since callers(c) = {a}, and it has

to propagate the corresponding success patterns to a. In turn, c provides {e, f} =

imports(c) with call patterns and receives success patterns from them.

5.3.1 Flattening a Program Unit vs. Modular Processing

Applying a framework for non-modular programs to a module m has the difficulty

that m may not be self-contained. However, there should be no problem in

applying the framework if m is a leaf module. Furthermore, given a global process

such as program analysis, at least in principle, it is not obvious that it makes much

sense to apply the process to a module m alone. In principle, it makes more

sense to apply it to program units since they are conceptually self-contained.

Thus, given a module m one natural approach seems to be to apply the tool

(simultaneously) to all the modules in U = program unit(m).

Given a program unit U it is always possible to build a single module mflat

which is equivalent to U and which is a leaf. The process of constructing such a
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module mflat usually only amounts to renaming apart identifiers in the different

modules in U so as to avoid name clashes. We will use flatten(U) = mflat to de-

note that the module mflat is the result of renaming apart the code in each module

in U and concatenating its code into a monolithic module mflat. This points to

a simple solution to the problem of processing modular programs (at least for

the case in which all the code is available): to transform program unit(m) into

the equivalent monolithic program mflat. It is then straightforward to apply any

tool for non-modular programs to the leaf module mflat. Figure 5.2 represents

the case in which the non-modular analysis framework is used on the flattened

program.
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Figure 5.2: Using non-modular analysis on a flattened program

Given the existence of an implementation for non-modular analysis, this ap-

proach is often simple to apply. Also, this flattening approach has theoretical

interest. It can be used, for example, in order to compare the efficiency of differ-

ent approaches to modular handling of programs w.r.t. the flattening approach.

However, as a practical way in which to actually perform analysis of program

units this approach has important drawbacks. This issue will be discussed in

more detail in Section 5.10. The most obvious one is that the complete program

must be loaded into the analyzer, and thus large programs may make the analyzer

run out of memory. Moreover, as the internal analysis data structures include

information for all the program source code, in the monolithic case analysis of

a given procedure may take more time than when keeping in memory only the

module in which such procedure resides. Another, perhaps more important draw-

back is that the program must be self-contained: this can be a problem if the

analyzer is used while developing the program, when some modules are not yet
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implemented, or if there are calls to external procedures, i.e., procedures for which

the source code is not available, or which are implemented in other languages.†

5.4 Design Goals for Analysis of Modular Pro-

grams

Before presenting our proposals for analysis of modular programs, we will discuss

the main features which should be taken into account when designing and/or

implementing a tool for context-sensitive analysis of modular programs. As often

happens in practice, some of the features presented are conflicting with others

and this might make it impossible to find a framework which behaves optimally

w.r.t. all of them.

Module-Awareness We consider a framework module-aware when it has been

designed with modules in mind. Thus, it is applicable to a module m by using the

code of m and some “interface” information for the modules in imports(m). Such

interface information will in general consist of a summary of previous analysis

results for such modules, if such results are available, or a safe approximation if

they are not.

Though transforming a non-modular framework into a module-aware one may

seem trivial, it requires identifying precisely which is the required information on

the result of applying the tool in each of the modules in imports(m) which should

be stored in order to apply the tool to m. This corresponds in general to the inter-

modular information. It is also desirable that the amount of such information be

minimal.

Example 5.4.1. The framework for non-modular analysis in Section 5.2 is indeed

non-modular since it requires the code of all procedures (except possibly for some

predefined ones) to be available to the analyzer. It will produce wrong results when

applied to non-leaf modules since a missing procedure can only be deemed as an

error, unless the framework is aware that such a procedure can be imported.

†However, several approaches have been proposed for the analysis of incomplete programs

(open programs), for example [BCHP96, BJ03].
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Correctness The results of applying the tool to a module m should produce

results which are correct. The notion of correctness itself can in general be lifted

from the non-modular case to the modular case without great difficulties. A more

complex issue is how to extend a framework to the modular case in such a way

that correctness is preserved.

Accuracy Similarly, the analysis results for a module m should be as accurate

as possible. The notion of accuracy can be defined by comparing the analysis

results with those which would be obtained using the flattening approach pre-

sented in Section 5.3.1 above, since the latter always computes the most accurate

information possible, which corresponds to the least analysis graph.

Termination A framework for analysis of modular programs should guaran-

tee termination (at least) in all cases in which the flattening approach terminates

(which, typically, is for every program). Such termination is guaranteed by choos-

ing description domains with some specific characteristics such as having finite

height, finite ascending chains, etc., and/or incorporating a widening operator.

Efficiency in Time The time required to apply the tool should be reasonable.

We will understand “reasonable” as not over an acceptable threshold on the time

taken using the flattening approach.

Efficiency in Memory In general, one of the main expected advantages of the

modular approach is that the total amount of memory required to handle each

module separately should be smaller than that needed in the flattening approach.

No Need for Analyzing All Call Patterns Under certain circumstances,

applying a tool on a module m may require processing only a subset of the call

patterns rather than all call patterns for m. In order to achieve this, the model

must keep track of fine-grained dependencies. This will allow marking exactly

those call patterns which need processing. Other call patterns not marked do not

need to be processed.

Support for the Co-Existence of Multiple Program Units/Applications

In a modular setting it is often the case that a particular module is used in several
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applications. Support for software reuse is thus a desirable feature. However,

this poses additional and interesting challenges to the tools, some of which will

be discussed in Section 5.9.

Support for Source Changes What happens if the source of a module

changes during processing? Some tools will not allow this at all and if it happens

all the processing has to start again from scratch. This has the disadvantage

that the tool is then not incremental since a (possibly minor) change in a module

invalidates the information for all the program unit. Other tools may delete the

information which may depend on the changed code, but still keep the informa-

tion which does not depend on it.

Persistence This feature indicates that the inter-modular information can be

stored in a persistent medium, such as a file stored on disk or a database, and

allow later recovery of such information.

5.5 Analysis of Modular Programs: The Local

Level

As a first step towards introducing our analysis framework for modular programs,

which will be presented in Section 5.6 below, in this section we discuss the main

ingredients which have to be added to an analysis framework for non-modular

programs in order to be able to handle one module at a time.

Analyzing a module separately presents the difficulty that, from the point of

view of analysis, the code to be analyzed is incomplete in the sense that the code

for procedures imported from other modules is not available to analysis. More

precisely, during analysis of a module m there may be calls P : CD such that

the procedure P is not defined in m but instead it is imported from another

module m′ ∈ imports(m). We refer to determining the value of AD to be used for

P : CD 7→ AD as the imported success problem. In addition, in order to obtain

analysis information for m′ which is as accurate as possible we need to somehow

propagate the call P : CD from m to m′ so that the next time m′ is analyzed

such a call pattern is taken into account. We refer to this as the imported calls
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Figure 5.3: Module-aware analysis framework

problem. Note that in this case analysis has to be module-aware in order to

determine whether a given procedure is either local or imported (or predefined).

Figure 5.3 shows the architecture of an analysis framework which is module-

aware. This framework is an extension of the non-modular framework in Fig-

ure 5.1. One minor change is that the read/write data structures internal to the

analysis engine have been renamed with the prefix “local”. So now we have the

local answer table, the local dependency table, and the local task queue. Also, the

box which represents the code now contains m indicating that it contains the

single module m.

The shaded boxes in Figure 5.3 indicate the main differences w.r.t. the non-

modular framework. One is that in the module-aware framework there is an

additional read-only‡ data structure, the global answer table, or GAT for short.

Its contents are identical in format to those in the answer table of the non-modular

framework. There are however some differences: (1) the GAT contains analysis

results which were obtained previously to the current analysis step. (2) The GAT

contains entries which correspond to predicates defined in imports(m), whereas

all entries in the local answer table (or LAT for short) are for predicates defined

in m itself. (3) Only information of exported predicates is available in GAT. The

LAT contains information for all predicates in m regardless of whether they are

exported or not.

‡In fact, this data structure is read/write at the global level discussed in Section 5.6 below,

but it is read-only as regards our engine for analysis of one module.
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5.5.1 Solving the Imported Success Problem

The second important difference is that the module-aware framework requires

the use of a success policy, or SP for short, which is represented in Figure 5.3

with a shaded box surrounding the GAT. The SP can be seen as an intermediator

between the GAT and the analysis engine. The behavior of the analysis engine for

predicates defined in m remains exactly as before. SP is needed because though

the information in the GAT will be used in order to obtain answer patterns

for imported predicates, given a call pattern P : CD it will often be the case

that an entry of exactly the form P : CD 7→ AD does not exist in GAT. In

such case, the information already present in GAT may be of value in order

to obtain a (temporary) answer pattern AD, and continue the analysis of the

module. Note that the GAT together with SP will allow solving the “imported

success problem”.

In contrast, in many formalizations of non-modular analysis there is no explicit

success policy. This is because if the call pattern P : CD has not been analyzed

yet, the analysis algorithm forces its computation. Thus, the results of analysis do

not depend on any particular success policy: when analysis reaches a fixed-point

there is always an entry of the form P : CD 7→ AD for any call pattern P : CD

which appears in the analysis graph. Unfortunately, in a modular setting it is

not directly possible to force the analysis of predicates defined in other modules.

Those modules may have already been analyzed or they may be analyzed in the

future. We will simply do the best possible given the information available in

GAT.

We will use GAT to denote the set of all global answer tables. The success

policy can be formalized as a function SP : CP × GAT → AP . Several

success policies can be defined which provide over- or under-approximations of

the exact answer pattern AD= with different degree of accuracy. Note that this

exact value AD= is the one which the flattening approach (that we will thus

denote SP=) would compute. In this work we consider two kinds of success

policies, those which are guaranteed to always provide over-approximations, i.e.

AD= v SP(P : CD, AT ), and those which provide under-approximations, i.e.,

SP(P : CD, AT ) v AD=. We will use the superscript + (resp −) to indicate

that a success policy over-approximates (resp. under-approximates). As will be

discussed later in this chapter, both over- and under-approximations are useful in

65



different contexts and for different purposes. Since it is always required to know

whether a success policy over- or under-approximates we will mark all success

policies in either way.

Example 5.5.1. A very precise over-approximating success policy is the function

SP+
All defined below, already proposed in [PH00]:

SP+
All(P : CD, GAT ) = topmost(CD) uAD′

∈app
AD′ where

app = {AD′ | (P : CD′ 7→ AD′) ∈ GAT and CD v CD′}

The function topmost obtains the topmost answer pattern for a call pattern. The

notion of topmost description was already introduced in [BCHP96]. Informally,

a topmost description preserves the information on those properties which are

downwards closed whereas it loses information for those which are not. Note

that taking > as answer pattern is a correct over-approximation, but often less

accurate than using topmost substitutions. For example, if a variable is known to

be ground in the call pattern, it will continue being ground in the answer pattern

and taking > as the answer pattern would lose this information. However, the

fact that a variable is free on call does not guarantee that it will keep on being

free on success.

We refer to this success policy as SP+
All because it uses all entries in GAT

which are applicable to the call pattern in the sense that the call pattern already

computed is more general than the call being analyzed.

Example 5.5.2. The counter-part of SP+
All is the function SP−

All which is defined

as:

SP−
All(P : CD, GAT ) = tAD′

∈app
AD′ where

app = {AD′ | (P : CD′ 7→ AD′) ∈ GAT and CD′ v CD}

Note the change in the direction of the applicability relation (the call pattern in

the GAT has to be more particular than the one being analyzed) and the use of

the lub operator instead of the glb. Also, note that taking, for example, ⊥ as an

under-approximation is correct but SP−
All is more precise.

5.5.2 Solving the Imported Calls Problem

The third important difference w.r.t. the non-modular framework is the use of the

temporary answer table (or TAT for short) and which is represented as a shaded
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box within the analysis engine of Figure 5.3. This answer table will be used to

store call patterns for imported predicates which are not yet present in GAT and

whose answer pattern has been obtained (approximated) using the success policy

on the entries currently stored in GAT. The TAT is used as a cache for imported

call patterns and their corresponding answer patterns, thus avoiding having to

repeatedly apply the success policy on the GAT for equivalent call patterns, which

is an expensive operation. Also, after analysis of the current module is finished,

the existence of the TAT simplifies the way in which the global data structures

need to be updated. This will be discussed in more detail in Section 5.6 below.

We use analysisSP (m,Em, GAT ) = (LATm, LDTm, TATM) to denote that the

module-aware analysis framework returns (LATm, LDTm, TATM ) when applied

to module m with respect to the set of initial call patterns Em with success policy

SP and GAT. In subsequent chapters in which LDT and TAT are irrelevant, we

will assume that the result of the module-aware analysis of a module will simply

be the local answer table, analysisSP (m,Em, GAT ) = LATm. The success policy

and the global answer table will be omitted as well when they are irrelevant or

not needed for describing the analysis of a module.

Depending on how the module is being analyzed and what will be the analysis

results used for, there are several entry policies applicable. For example, if the

module m is analyzed during the computation of an intermodular fixed point, as

it will be shown in Section 5.8, the best entry policy applicable is to take as entry

points of the analysis the GAT entries of the modules which import m. If on

the other hand it will be used during the development or verification of a single

module, as described in Section 5.7, an entry policy that takes into account all

exported predicates will be preferred.

5.6 Analysis of Modular Programs: The Global

Level

After discussing the local-level issues which appear when analyzing a module,

in this section we present a complete framework for the analysis of modular

programs. Since analysis is a global task, an analysis framework should not

only deal with local-level information, but also with global-level information. A
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Figure 5.4: A two-level framework for analysis of modular programs

graphical representation of our framework is depicted in Figure 5.4. The main idea

is that we have to add a higher-level component to the framework which takes care

of the inter-modular information, as opposed to the intra-modular information

which is handled by the local-level subsystem described in the previous section.

As a result, analysis of modular programs is best seen as a two-level process.

Note that the inner, lightly shaded, rectangle corresponds exactly to Figure 5.3

as it is a module-aware analysis system. It is interesting to see how the data

structures in the global and local levels are indeed very similar. The similari-

ties and differences between the GAT and LAT have been discussed already in

Section 5.5 above. Regarding the global and local dependency tables (GDT and

LDT respectively), they are used in order to be able to propagate as precisely as

possible which parts of the analysis graph have to be recomputed. The GDT is

used in order to add events to the global task queue (GTQ) whereas the LDT is

used to add events (arcs) to be (re-)analyzed to the local task queue (LTQ). We

can define the events to be processed at the global level using different levels of

granularity. As usual, the finer-grained these events are, the more detailed and

thus more effective the handling of the events can be. One obvious possibility

is to use modules as events. This means that all call patterns which correspond

to a module are handled simultaneously whenever the module is selected at the

global level. A more refined possibility is to keep events at the call pattern level.

This, together with sufficiently detailed information in the GDT will allow incre-

mentality at the call pattern level rather than module level.
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5.6.1 Parameters of the Framework

The framework has three parameters. The program unit corresponds to the pro-

gram unit to be analyzed. Note that the code may not be physically stored in

the tool’s memory since it is already on external storage. However, the frame-

work may maintain some information on the program unit, such as dependencies

among modules, strongly connected components, and any other information which

may be useful in order to guide analysis. In the figure the program unit is rep-

resented, as an example, containing a program unit composed of four modules.

The second parameter is the entry policy, which determines the way in which

the GTQ and GAT should be initialized whenever analysis of a program unit is

started. Depending on how the success policy is defined, entries for all procedures

exported in each of the modules in the program unit may be required in GAT

and GTQ or not.

Finally, the scheduling policy determines the order in which the entries in the

GTQ should be processed. The efficiency with which the fixed-point is reached

can differ very much from some scheduling policies to others. Since the framework

presented in Figure 5.4 has just one analysis engine, processing a call pattern in

a different module from that currently loaded has a relevant cost associated to

it, since this often requires context switching from the current module to a new

module. Thus, it is often a good idea to process all or many of the call patterns

in GTQ which correspond to the module which is being analyzed in order to

minimize the number of times the analysis tool has to switch from one module to

another. In the rest of the chapter we consider that events in GTQ are answer

patterns which would benefit from (re-)analysis. The role of the scheduling policy

is to select a set of patterns from GTQ which must necessarily belong to the same

module m to be analyzed. Note that a scheduling policy based on modules can

always be obtained by simply processing at each analysis step all events in GTQ

which correspond to m.

5.6.2 How the Global Level Works

As already mentioned, analysis of a modular program starts by initializing the

global data structures as indicated by the entry policy. At each step, the schedul-

ing policy is used to determine the set Em of entries for module m which
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are to be processed. They are removed from GTQ and copied into the data

structure Entries. The code of the module m is also copied to code. Then,

analysisSP (m,Em, GAT ) = (LATm,LDTm,TATm) is computed. Then, the

global data structures are updated, as detailed in Section 5.6.3 below. As a

result of this, new events may be added to GTQ. Analysis terminates when there

are no more events to process in GTQ or when the scheduling strategy does not

select any further events.

Each entry in GTQ is of one of the following three types: over-approximation,

under-approximation, or invalid, according to the reason why they should be re-

analyzed. An entry P : CP 7→ AP which is an over-approximation is marked

P : CP 7→+ AP . This indicates that the answer pattern AP is possibly an

over-approximation since it depends on a call pattern whose answer pattern has

been determined to be an over-approximation. In other words, the accuracy of

P : CP 7→ AP may be improved by re-analysis. Similarly, under-approximations

are marked P : CP 7→− AP and they indicate that AP is probably an under-

approximation since it depends on a call pattern whose success pattern has in-

creased. As a result, the call pattern should be re-analyzed to guarantee cor-

rectness. Finally invalid entries are marked P : CP 7→⊥ AP . They indicate

that the relation between the current answer pattern AP and one resulting from

recomputing it for P : CP is unpredictable. This often indicates that the source

code of the module has changed in a way that the analysis results for some of

the exported procedures are just incompatible with previous ones. Handling this

kind of events is discussed in more detail in Section 5.6.4 below.

5.6.3 Updating the Global State

In Section 5.5 it has been presented how the local level subsystem, given a module

m, can compute the corresponding LATm, LDTm, and TATm. However, once

analysis of module m is done, the analysis results of module m have to be used in

order to update the global state prior to starting analysis of any other module.

We now briefly discuss how this updating is done. For each initial call pattern

P : CP in Entries we compare the previous answer pattern AP with the newly

computed one AP ′. If AP = AP ′ then this call pattern has not been affected by

the latest analysis. However, it is also possible that the answer pattern “evolves”

in different analysis iterations. If we use SP+, the natural thing is that the new
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answer pattern is more specific than the previous one, i.e., AP ′
@ AP . In such

case those call patterns which depend on P : CP can also improve their success

pattern. We use the GDT to locate all such patterns and we add them to the

GTQ with the + mark. Conversely, if we use SP−, the natural thing is that

AP @ AP ′. We then add events marked −.

In a typical situation, and if modules do not change, all events in GTQ will

be approximations of the same sign. This depends on the success policy used.

If the success policy is of kind SP+ (resp. SP−) then the events which will be

added to GTQ will also be over-approximations (resp. under-approximations).

In turn, when they are processed they will introduce other over-approximations

(resp. under-approximations).

The TATm is also used to update the global state. All entries in TATm are

added to GAT and GTQ marked with the same sign as the success policy used.

Last, we also have to update the GDT. For this, we first erase all entries for

any of the call patterns which we have just analyzed, and which are thus stored

in entriesm. Then we add an entry of the form P : CP → H : CP ′ for each

imported procedure H which is reachable with call pattern CP ′ from an initial

call pattern P : CP . Note that this can easily be determined using LDT.

5.6.4 Recovering from an Invalid State

If code of a module m has changed since it was last analyzed, it can be the case

that the global information available is invalid. This happens when in the results

of re-analysis of m any of the exported predicates has an answer pattern which is

incompatible with the previous results. In this case, all information dependent on

the new answer patterns might have become invalid, as discussed in Section 5.6.2.

The question is how to minimize the impact of such a situation.

The simplest solution is to (transitively) erase any information of other mod-

ules which depends on the invalidated one. This solution may not be very efficient,

as it ignores all results of previous analyses of other modules even if the changes

performed in the module are minor, or only affect directly related modules. An-

other alternative is to launch an automatic recovery process as soon as invalid

analysis results are detected (see [BdlBH+01]). This process has to reanalyze the

modules directly affected by the invalidated answer pattern(s). If the new answer

patterns coincide with the old ones then the changes do not affect this module
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and the process terminates. Otherwise, it continues transitively with the directly

related modules.

5.7 Using a Manual Scheduling Policy

Consider, for example, the relevant case of independent development of different

parts of the program, which can then even be performed in parallel by different

teams. In this setting, it makes sense that the analyzer performs its job on the

current module without analyzing other modules in the program unit, i.e., it

allows separate analysis. This will typically allow early detection of compile-time

errors in the current module without having to wait for the code of the dependent

modules to be fully developed. Moreover, in this setting, it is the user (or users)

who decide when and what to analyze. Thus, we refer to this as the manual

setting. Furthermore, we assume that in this setting analysis for a module m has

to do its best with only the code for m plus the results of previous analyses (if any)

of the modules in depends(m). These assumptions have important implications.

The setting allows the users of different modules to decide when they should be

processed. And thus, any module could be (re-)analyzed at any point. As a result,

strong requirements must hold for the whole approach to be correct. In return,

the results obtained may not be optimal (in terms of error detection, degree of

optimization, etc., depending on the particular tools) w.r.t. those achievable using

automatic scheduling.

So the question is, is there any combination of the three parameters of the

global analysis framework which allows handling the manual setting? The answer

to this question is yes. Our earlier paper [BdlBH+01] essentially describes such

an instantiation of the analysis framework. In the terminology of the current

chapter, the model in [BdlBH+01] corresponds to waiting until the user requests

that a module m in the program unit U be analyzed. The success policy is over-

approximating. This guarantees that in the absence of invalidated entries in the

GTQ all events will be marked +. This means that the analysis information avail-

able is correct, though perhaps not as accurate as possible. Since the scheduling

is manual, no other analyses should be triggered until the user requires so. Fi-

nally, the entry policy is simply to include in GTQ an event such as P : > 7→+ >

per predicate exported by any of the modules in U to be analyzed (it is called
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all entry policy). The initial events are required to be so general to keep the

overall correctness of the analysis while allowing the users to choose the order of

the modules to be analyzed.§ The model in [BdlBH+01] has the very important

feature of being guaranteed to always provide correct results without the need of

reaching a global fixed-point.

5.8 Using an Automatic Scheduling Policy

In spite of the evident interest of the manual setting, there are situations in which

the user is interested in obtaining the most accurate analysis results possible. For

this, it may be required to analyze the modules in the program unit several times

in order to converge to a distributed global fixed-point. We will refer to this as

the automatic setting, in which the user decides when to start global analysis

of a program unit. From then on it is the global analysis framework by means

of its scheduling policy who decides when and what to analyze. Note that the

manual and automatic settings roughly correspond to scenario 1 and scenario 2

of [PH00] respectively. Since we admit circular dependencies among modules,

the strategy has to be able to deal with such circularities correctly and efficiently

without entering infinite loops. The question now is what are the values for the

different parameters to our generic framework which should be used in order to

obtain satisfactory results? One major difference of the automatic setting w.r.t.

the manual setting is that in addition to over-approximations, now also under-

approximations can be used. This is because though under-approximations do not

guarantee correctness in general, when an inter-modular fixed-point is reached,

analysis results are guaranteed to be correct. Below we consider the use of SP+

and SP− separately.

We will use the function GAT = modular analysis(m) to refer to the analysis

of the program unit m reaching an intermodular fixed-point, that returns as

result the global answer table. When computing the intermodular fixed point,

analysis(n,E,AT ) is invoked for each module n in the program unit, where E is

the set of calling patterns in GAT for predicates defined in n which need to be

(re)analyzed, AT is the current state of the GAT , and the GAT is updated after

§In the case of the Ciao system it is possible to use entry declarations (see for exam-

ple [PBH00b]) in order to improve the set of initial call patterns for analysis.
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analysis with information from the resulting LAT . See [PCH+04] for details. We

can define a partial ordering on answer tables over a given module in the following

sense: AT1 ¹ AT2 iff ∀(P : CP1 7→ AP1) ∈ AT1, (∃(P : CP2 7→ AP2) ∈ AT2 s.t.

CP1 v CP2 and ∀(P : CP ′
2 7→ AP ′

2) ∈ AT2, if CP1 v CP ′
2 then AP1 v AP ′

2).

5.8.1 Using Over-Approximating Success Policies

If a success policy SP+ is used, we are in a situation similar to the one in Sec-

tion 5.7 in that independently of how many times each module has been analyzed,

if there have not been any code changes, the analysis results are guaranteed to

be correct. The main difference is that now the system keeps on automatically

requesting further analysis steps until a fixed-point is reached.

The drawback is that when the fixed point is reached it may not be minimal,

i.e., information is not as precise as it could be. It can be verified that, in the

common case in which there are not mutually recursive calls that traverse module

boundaries, the least fixed point will be reached.

Regarding the entry policy, an important observation is that in the automatic

mode, much as in the case of intra-modular analysis, inter-modular analysis will

eventually compute all call patterns which are needed in order to obtain infor-

mation which is correct w.r.t. calls, i.e., the set of computed call patterns covers

all possible calls which may occur at run-time for the class of initial calls con-

sidered, i.e., those for the top-level of the program unit U . This will allow us

to use a different entry policy from that used in the manual mode: rather than

introducing events of the form P : > 7→+ > in the GTQ for exported predicates

in all modules in U , it suffices to introduce them for predicates exported by the

top-level of U (this entry policy is named top-level entry policy). This has several

important advantages: (1) It avoids analyzing all predicates for the most general

call pattern, since this may end up introducing plenty of call patterns which are

not used in our particular program unit U . (2) It will help to have a more guided

scheduling policy since there are no requests for processing a module until it is

certain that a call pattern should be analyzed. (3) If multiple specialization is

being performed based on the set of call patterns for each procedure (possibly

proceeded by a minimization step for eliminating useless versions [PH99]), the

fact that a call pattern with the most general call pattern exists implies that a

non-optimized version of the predicate must always exist. Another way out of this

74



problem is to eliminate useless call patterns once an inter-modular fixed-point has

been reached.

Since reaching a global fixed-point can be a costly task, one interesting pos-

sibility can be the introduction of a time-out. The user can ask the system to

request (re-)analysis as needed towards improving the analysis information. How-

ever, if after performing n analysis steps the time-out is reached before analysis

n + 1 is finished, the global state corresponding to state n is guaranteed to be

correct. In this case, the entry policy used has to be to introduce most general

call patterns for all exported predicates, either before starting analysis or when

a time-out is reached.

5.8.2 Using Under-Approximating Success Policies

Another alternative is to use SP−. As a result, the analysis results are not

guaranteed to be correct until an inter-modular fixed-point is reached. Thus,

it may take a large amount of time to perform this global analysis. On the

other hand, once a fixed-point is reached, the accuracy which will be obtained

is optimal, since it corresponds to the least analysis graph, which is exactly the

same which the flattening approach would have obtained.

Regarding the entry policy, the same discussion as above applies. The only

difference being that the GTQ should be initialized with events of the form P :

> 7→− ⊥ since now the framework computes under-approximations. Clearly, ⊥

is an under-approximation of any description.

Another important thing to note is that, since the final results of automatic

analysis are optimal, they do not depend on the use of a particular success policy

SP−
1 or another SP−

2 . Of course, the efficiency using SP−
1 can be very different

from that obtained using SP−
2 .

5.8.3 Hybrid policy

In practice we may wish to use a manual scheduling policy with an over-approxi-

mating success policy during program development, and then use an automatic

scheduling policy with an under-approximating success policy just before program

release, so as to ensure that the analysis is as precise as possible, thus allowing

as much optimization as possible in the final version.
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Fortunately, in such a situation we can often reuse much of the analysis in-

formation obtained using the over-approximating success policy. The reason is

that if the analysis with the over-approximating success policy has reached a

fixed-point, the answers obtained for module m are as accurate as those obtained

with an under-approximating success policy as long as there are no cyclic de-

pendencies between the modules in depends(m). Thus in the common case that

no modules are mutually dependent we can simply use the answer tables from

the manual scheduling policy and use an automatic scheduling policy with an

over-approximating success policy to obtain the fixed-point. Even in the case

that some modules are mutually dependent we can use this technique to compute

the answers for the modules which do not contain cyclic dependencies or do not

depend on modules that contain them (e.g., leaf-modules).

5.8.4 Computation of an Intermodular Fixed-Point

Determining the optimal order in which the different modules in the program

unit should be analyzed in order to get to a fixed-point as efficiently as possible

is not trivial.

Finding good scheduling strategies for intra-modular analysis is a topic which

has received considerable attention and highly optimized algorithms exist which

converge to a fixed-point quickly. Unfortunately, it is not possible to directly

translate the same heuristics used in the intra-modular case to the inter-modular

case. In the inter-modular case we have to take into account the time required to

change from analysis of one module to another since this typically means reading

a new module from disk. Thus, requests to process call patterns have to be

grouped by modules in order to reduce the number of times we change context.

Taking the heuristics in [PH96, HPMS00] as a starting point we have ex-

perimented with different scheduling policies which take into account different

aspects of the structure of the program unit such as dependencies, strongly con-

nected components, etc. with promising results. In the current implementation

two simple strategies have been used which allow studying the behavior of the

analysis of modular programs in two clearly different situations. Both strategies

take the list of modules in a given order (a top-down and a bottom-up traversal

76



of the intermodule dependency graph, respectively),¶ and traverse the list ana-

lyzing the modules which have pending call patterns, updating the corresponding

global tables with the analysis results. This process is repeated until there are no

pending call patterns for any module in the program. It has also been explored

which of the approaches to success policy results in more efficiently reaching a

global fixed-point in combination with specific abstract domains, and whether

the heuristics to be applied in either case coincide or are mostly different. The

results of all those experiments can be seen in Chapter 6.

5.9 Some Practical Implementation Issues

In this section we discuss several issues not addressed in the previous sections and

which are very important in order to have practical implementations of context-

sensitive analysis systems. These issues are related to the persistence of global

information and the analysis of libraries.

5.9.1 Making Global Information Persistent

The two-level framework presented in Section 5.6 needs to keep information both

at the local and global level. One relevant question, due to its practical implica-

tions, is where this global information actually resides. One possibility is to have

the global analysis tool running continuously as a kind of “compilation server”

which stores the global state in its program memory. In a manual setting, this

global tool would wait for the user(s) to place requests to analyze modules. When

a request is received, the corresponding module is analyzed for the appropriate

call patterns and using the global information available at the time in the mem-

ory of the global analyzer. After analysis terminates, the global information is

updated and remembered by the process for subsequent requests. If we are in an

automatic setting, the global tool itself requests the analysis of different modules

until a global fixed-point (or a time-out) is reached.

This approach outlined above is not fully persistent in the sense that if the

computer crashes all information about the global state is lost and analysis would

¶All modules which belong to the same cycle in the graph have been considered at the same

depth, and therefore those modules will be selected in any order.
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have to start from scratch again. In order to implement the more general kind

of persistence discussed in Section 5.4, a way to save and restore the global state

of analysis is needed. This requires storing the value of the three global-level

data-structures: GAT , GDT , and GTQ. A level of granularity which seems

appropriate in this context is clearly the module level. I.e., the global state of

analysis is saved and restored between two consecutive steps of (module) analysis,

but not during the analysis of a given module, which, from the point of view of

the two-level framework, is an atomic operation.

The ability to save and restore the global state of analysis has several advantages:

1. The global tool does not need to be running continuously: it can save

its state, stop, restart when needed, and restore the global state. This

is specially interesting when using a manual scheduling policy, since two

consecutive analysis requests can be separated by large intervals.

2. Even if the automatic scheduling policy is used, any information about the

global state which is still valid can be directly used. This means that anal-

ysis can be incremental in the sense that (global level) analysis information

which is known to be valid is reused.

5.9.2 Splitting Global Information

Consider the analysis of module b in the program unit U = {a, b, c, d, e, f, g, h}

depicted in Figure 5.5. In principle, the global state includes information regard-

ing exported predicates in any of the modules in U . As a result, if we can save

the global state to disk and restore it, this would involve storing and retrieving

information about all modules in U . However, analysis of b only requires retriev-

ing the information for modules in related(m). The small boxes which appear on

the side of every module represent the portion of the global structures related to

each module. To analyze the module b, the information of the global tables that

we need is that of modules a, d and e, as indicated by the dashed curved line.

This is straightforward to do in practice by splitting the information in the

global data structures into several parts, each one associated to a module. This

allows easily identifying the pieces of global information which are needed in order

to process a given module.

This optimization of the handling of global information has several advantages:
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1. The time required to save and restore the information to disk is reduced

since the total amount of information transferred is smaller.

2. The use of the data structures during analysis can be more efficient since

search space is reduced.

3. The total amount of memory required in order to analyze a module can be

significantly reduced: only the local data structures plus a possibly very

reduced part of the global data structures are actually required to analyze

the module.

One question which we have intentionally left open is where the persistent

information should reside. In fact, all the discussion above is independent on how

and where the global state is stored, as long as it is persistent. One possibility

is to use a database which stores the global state and information is grouped

by modules in order to minimize the amount of information which has to be

retrieved or updated for each analysis. Another, very common, possibility is to

store the global information associated to each module to disk, in the same way

as temporary information (such as relocatable code) is stored in many traditional

compilers. In fact, the actual implementation of modular analysis in both CiaoPP

and HAL [Net02] systems is based on this idea: a module m has a m.reg file

associated to it which contains the part of the global data structures which are

associated to m.

5.9.3 Handling Libraries and Predefined Modules

Many compilers and program development systems include a large number of

predefined modules and libraries which can be readily reused by programmers –an

obviously interesting feature since it greatly reduces the time required to develop

applications. From the point of view of analysis, these predefined modules and

libraries differ from user programs in a number of ways:

1. They are designed with reusability in mind and thus they can be used by a

comparatively large number of user programs.

2. Sometimes the source code for libraries and predefined modules may not be

available. One common reason for this is that they are implemented in a

lower-level language.
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3. The total amount of code available as libraries can be extremely large.

Thus, reanalyzing the libraries over and over again for slightly different call

patterns can be costly.

Given these characteristics, it makes sense to develop a specialized treatment

for libraries. We propose the following scheme. For each library module, the

analysis results for a sufficient set of call patterns should be precomputed. This

set should cover all possible correct call patterns for the library. In addition, the

answer pattern for those call patterns have to be an over-approximation of the

actual answers, independently of whether a SP+ or SP− success policy is used

for the programs which use such library. In addition, in order to provide more

accurate information, more particular call patterns which are expected to occur

often in programs which use that library module can also be included. This

information is added to the GAT of the program units which use the library.

Thus, the success policy will be able to use this information directly for obtaining

answer patterns. The reason for requiring pre-computed answer patterns for

library modules to be over-approximations is that, much in the same way as for

predefined procedures, even if an automatic scheduling policy is used, library

modules are (in principle) not analyzed for calling patterns other than those

which are pre-computed. Note that this is conceptually equivalent to considering

the interface information of library modules read-only, since any program using

them can read this information, but no additional call patterns will be analyzed.

As a result, the global level framework will ignore new call patterns to library

procedures that might be generated during the analysis of user programs. More

precisely, entries of the form P : CP 7→ AP in TAT such that P is a library

predicate do not need to be added to the GTQ since they will not be analyzed.

In addition, no entries of the form P : CP → H : CP ′ need be added to GDT if

H is a library predicate, since the answer pattern for library predicates is never

modified and thus those dependencies are useless.

Deciding which is the best set of call patterns for which a library module

should be analyzed is a non-trivial problem. One possibility can be to extract

call patterns from correct programs which use the library and study which are the

call patterns most often used. Another possibility is to have the library developer

decide which are the call patterns of interest.
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Figure 5.5: Using Distributed Scheduling and Local Data Structures

In spite of the considerations above, it is sometimes the case that we are

interested in treating a library module using the general scheme, i.e., effectively

considering the library information writable and allowing the analysis of new call

patterns and the storage of the corresponding results. This can be interesting

if the source code of a library is available and the set of initial call patterns for

which it has been analyzed is not very representative. Note that hopefully this

will happen often only when the library is relatively new. Once the code of the

library stabilizes and a good set of initial patterns is obtained, it will generally

be considered read-only. Allowing reanalysis of a library can also be useful when

we are interested in using the analysis results from such call patterns to optimize

the code of the library for the particular cases that correspond to those calls. For

this case it may be interesting to store the corresponding information locally to

the calling module, as opposed to inserting it into the library directories.

In summary, the implementation of the framework needs to treat libraries in

a special way and also allow applying the general scheme for some designated

library modules.

5.10 Discussion and Conclusions

Table 5.1 summarizes some characteristics of the different instantiations of the

generic framework presented in this chapter, in terms of the design features dis-

cussed in Section 5.4. The corresponding entries for the flattening approach of

Section 5.3 –our baseline as usual– are also provided for comparison, listed in
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the column labeled Flattening. The Manual column lists the characteristics of the

manual scheduling policy described in Section 5.7. The last two columns corre-

spond to the two instantiations of the automatic scheduling policy, which were

presented in Sections 5.8.1 and 5.8.2 respectively. Automatic+ (resp. Automatic−)

indicate that an over-approximating (resp. under-approximating) success policy

is used.

The first three rows, i.e., Scheduling policy, Success policy, and Entry policy

correspond to the values of these parameters in each instantiation.

All instances of the framework for modular analysis are module-aware, in

contrast to Flattening, which is not. Both instances described of the modular

framework proposed are incremental, in the sense that only a subset (instead of

every module) in the program unit needs to be re-analyzed, and they also both

achieve the goal of not needing to reanalyze all call patterns every time a module

is considered for analysis.

Regarding correctness, both the Flattening and Automatic− approaches have

in common that correctness is only guaranteed when analysis comes to an end.

This is because the approximations used are under-approximations and thus the

results are only guaranteed to be correct when a (global) fixed-point is reached.

However, in the Manual and Automatic+ approaches the information in the global

state is correct after any number of local analysis steps.

On the other hand, both the Flattening and Automatic− approaches are guar-

anteed to obtain the most accurate information possible, i.e., the least analysis

graph, when a fixed-point is reached. In contrast, the Manual approach cannot

guarantee optimal accuracy for two reasons. The first one is that there is no

guarantee that modules will be processed the number of times that is necessary

for an inter-modular fixed-point to be reached. Second, even if such a fixed-point

is reached, it may not be the least fixed-point. This is because this approach uses

over-approximations of the analysis results which are improved (“narrowed”) in

the different analysis iterations until a fixed-point is reached. On the other hand,

if there are no circular dependencies among predicates in different modules, then

the fixed-point obtained will be the least one, i.e., the most accurate.

Regarding efficiency in time we will consider two cases. The first one is when

we have to perform analysis of the program unit from scratch. In this case,

Flattening can be highly optimized in order to converge quickly to a fixed-point.
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In contrast, in this situation the instances of the modular framework have the

disadvantage that loading and unloading modules during analysis introduces a

significant overhead. As a result, in order to maintain the number of context

changes low, call patterns may be solicited from imported modules which use

temporary information and which are not needed in the final analysis graph.

These call patterns which end up being useless are known as spurious versions.

This problem also occurs in Flattening, though to a much lesser degree if good

algorithms are used. Therefore, the modular approaches may end up performing

work which is speculative, and thus the total amount of work performed in the

automatic approaches to modular analysis is in principle an upper bound of that

needed in Flattening.

On the other hand, consider the second case in which a relatively large amount

of intra-modular analysis has already taken place for the modules to be analyzed

in our programming unit and that the global information is persistent. In this

case, the automatic approaches can update their global data structures using the

precomputed information, rather than starting from scratch as is done in Flat-

tening. In such a case the automatic approaches may perform much less work

than Flattening. It is to be expected that once module m becomes stable, i.e., it

is fully developed, it will quickly be analyzed for a relatively large set of calling

patterns. In such a case it is likely that it will be possible to analyze any other

module m′ which uses m by simply reusing the existing analysis results for m.

This is specially true in the case of library modules, as discussed in Section 5.9.3.

Regarding the efficiency in terms of memory, it is to be expected that the

instances of the modular framework will outperform the non-modular, flattening

approach. This was in fact already observed in the case of [BdlBH+01]. Indeed,

one important practical difficulty that appears during the (monolithic) analysis

of large programs is that the amount of information which is kept in memory is

very large and the storage needed can become too large to fit in memory. The

modular framework proposed needs less memory because: a) at each point in

time, only one module requires to be loaded in the code area, and b) the local

answer table only needs to hold entries for the module being analyzed, and not

for other modules. Also, in general, the total amount of memory required to

store the global data structures is not very high when compared to the memory

required locally for the different modules. In addition, not all the global data
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Table 5.1: Comparison of Approaches to Modular Analysis

Flattening Manual Automatic+ Automatic−

Scheduling policy automatic manual automatic automatic

Success policy SP− SP+ SP+ SP−

Entry policy top-level all top-level top-level

Module-aware no yes yes yes

No Rean. of all CPs no n/a yes yes

Correct at fixed-point yes yes at fixed-point

Accurate yes no no circ. yes

Efficient in time yes n/a no no

Efficient in memory no yes yes yes

Termination finite asc. finite asc. finite finite asc.

chains chains chains chains

structures are required when analyzing a module m, but only that associated

with the modules in related(m).

Finally, regarding termination, except for Flattening, in which only one level

of termination is required, the three other cases require two levels of termina-

tion: at the intra-modular and at the inter-modular level. In Flattening, since

analysis results increase monotonically until a fixed-point is reached, termina-

tion is often guaranteed by considering description domains which do not contain

infinite ascending chains: no matter what the current description is, top (>),

which is trivially guaranteed to be a fixed-point, is only a finite number of steps

away. Exactly the same condition is required for guaranteeing termination of

Automatic−. The manual approach only requires guaranteeing intra-modular ter-

mination since the number of call patterns analyzed is finite. However, in the

case Automatic+, finite ascending chains are required for ensuring local termina-

tion and finite descending chains are required for ensuring global termination. As

a result, termination requires domains with finite chains, or appropriate widening

operators.

In summary, the proposed two-level generic framework for analysis and its

instantiations meet a good subset of our stated objectives. We hope the dis-

cussion and the concrete proposal presented in this work will provide a better

understanding of the handling of context-sensitive program analysis on modular
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programs and contribute to the widespread use of such context-sensitive analysis

techniques for modular programs in practical systems. An implementation of the

framework, as a generalization of the pre-existing CiaoPP modular analysis com-

ponents, is currently being completed. In this context, we are experimenting with

different scheduling policies for the global level, for concrete, practical analysis

situations.
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Chapter 6

Experimental Evaluation of the

Intermodular Analysis Algorithm

6.1 Introduction and Motivation

Several models for context-sensitive analysis of modular programs have been pro-

posed, each with different characteristics and representing different trade-offs.

The advantage of these context-sensitive analyses is that they provide informa-

tion which is potentially more accurate than that provided by context-free anal-

yses. Such information can then be applied to validating/debugging the program

and/or to specializing the program in order to obtain important performance im-

provements. Some preliminary experimental results have also been reported for

some of these models, providing some initial evidence on their potential. How-

ever, further experimentation, needed in order to understand the many issues left

open and to show that the proposed modes scale and are usable in the context

of large, real-life modular programs, was left as future work. The aim of this

chapter is twofold. On one hand we provide an empirical comparison of the dif-

ferent models proposed in Chapter 5 and in [BdlBH+01], as well as experimental

data on the different choices left open in those designs. Our second aim is to

explore the scalability of these models and of the implementation. To this end we

have used some larger modular programs as benchmarks, including some real-life

examples such as a working partial evaluator and parts of the Ciao compiler.

To this end we have completed a full implementation in CiaoPP [HPBLG05] (the
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preprocessor of the Ciao system [BCC+04]) of the framework for context-sensitive

analysis described in [PCH+04] and its different instances, and we have studied

experimentally the behavior of the resulting system. These results have been

compared with traditional, non modular analyses in terms of time and memory

consumption. Our experimental results shed light on the practical implications

of the different design choices and of the models themselves. We also show that

context-sensitive analysis of modular programs is indeed feasible in practice, and

that in certain critical cases it provides better performance results than those

achievable by analyzing the whole program at once. This is specially the case

regarding memory consumption and when reanalyzing after making changes to a

program, as is often the case during program development.

Following Section describes the tests performed and analyzes the results ob-

tained. Section 8.6 presents our conclusions.

6.2 Empirical results

As mentioned above, the framework has been fully implemented in CiaoPP. This

implementation allows performing both monolithic and modular analysis, and the

modular analysis is parametric in several ways. This makes it possible to study

the overall behavior of the system for different strategies and policies and thus

performing several experiments and comparisons:

Flattened vs. modular First, the flattened approach of Section 5.3.1 has been

compared to the intermodular fixpoint of Section 5.8.4. Although it is

predictable that the analysis of a program for the first time in a modular,

separate analysis fashion will be slower than the flattened approach (due to

the overhead in loading/unloading modules, etc.), it is interesting to study

by how much. On the other hand, in some cases the analysis of a whole

program may be unfeasible due to hardware (memory) limitations, but in

the intermodular fixpoint approach this limitation can be overcome.

Intermodular scheduling policies Another aspect to study is related to the

influence of the module selection policy in the efficiency of the analysis. The

scheduling policies used have been already described in Section 5.6. We will

refer to them as naive top down and naive bottom up, respectively.
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Success policies Two success policies have been compared in both scheduling

policies: an over-approximating policy, SP+
all, and an under-approximating

one, SP−
all, as described in Section 5.5. Although there may be other success

policies, we estimate that these ones are the most effective policies, as they

bring the closest results to SP=.

Incremental analysis of modular programs Finally, the analysis of a modu-

lar program from scratch using the monolithic approach has been compared

to the reanalysis of that program after making specific modifications in the

source code. This comparison illustrates the advantages of analyzing only

the module which has changed (and the modules affected by that change)

instead of reanalyzing the whole program from scratch.

Three different kinds of source code modifications have been studied: 1) a

simple change that keeps the same analysis results, 2) a change that results

in the exported predicates producing a more precise answer pattern, and

3) a modification in the source code such that after the change exported

predicates produce more general analysis results.

Note that when there are changes in the source code which do not improve

or invalidate previous analysis results, nor generate new call patterns for

imported modules (i.e., case 1 above), using the modular approach is clearly

advantageous (at least theoretically), since it is more incremental and only

one module needs to be analyzed after each change. In contrast, in the

monolithic (non-modular) analysis the whole program must be (re)analyzed.

The second kind of change studied represents a change that makes the anal-

ysis results for exported predicates be more precise than the ones obtained

before. This is done by removing all clauses of exported predicates of a

module except the first non recursive one.∗ This will bring in general anal-

ysis results which are more specific than the results previously obtained,

making them invalid in most cases, and producing the reanalysis of the

calling modules.

The third type of source change corresponds to performing a modification

∗Mutually recursive predicates are also considered. If the exported predicate has only re-

cursive clauses, they are replaced by a fact with all arguments ground.
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in an exported predicate which results in this predicate providing more

general analysis results. The change consists in the addition of a clause to

all the exported predicates of a module in which all arguments are pairwise

distinct and free variables.† This approach generally forces the reanalysis of

the modules which use the changed module. In turn, this may transitively

require reanalysis of other modules until analysis information stabilizes.

In the following subsections the selected benchmark programs are described,

and the results of the tests are studied in detail. Two “modes” domains have been

considered: Def [dlBH93], which keeps track of properties (in particular, ground-

ness) through definite propositional implications and Sharing-freeness [MH91],

which keeps track of information on variable sharing and freeness in a combined

way.

6.2.1 Brief description of the benchmarks used

The central focus of this chapter is to study how the intermodular analysis frame-

work of CiaoPP will behave with real-life programs. Therefore, we have striven in

the selection of benchmark programs to include not only characteristic examples

used in the LP analysis literature, but also other programs which are specially

difficult to analyze in a modular setting (for example, because there are several

mutually recursive predicates which conform intermodular cycles), and real-life

programs. A brief description of the selected benchmarks follows:

ann This is the &-Prolog implementation of the MEL annotator (by K. Muthuku-

mar, F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo). In this case

the code is distributed in 3 modules with no cycles in the intermodular

dependency graph.

bid This program computes an opening bid for a bridge hand (by J. Conery). It

is composed of 7 modules, with no cycles in the intermodular dependency

graph.

†In the Sharing−Freeness domain this addition might not provide a more general analysis

result, as this kind of clause does not provide a top success substitution. However, the tests

have been performed using the same change also in the case of Sharing − Freeness to make

the tests homogeneous across the different domains.
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boyer The boyer benchmark is a reduced version of the Boyer/Moore theorem

prover (by E. Tick). The program has been separated in four modules with

a cycle between two modules.

peephole This program is the SB-Prolog peephole optimizer. In this case, the

program is split in three modules, but there are two cycles in the intermod-

ular dependency graph, and there are several intermodular cycles at the

predicate call level.

prolog read corresponds to a simplified version of the code used by the Ciao

compiler for reading terms. It is composed by three modules, having a cycle

between two of them.

unfold is a fragment of the CiaoPP preprocessor which contains the partial

evaluator. It is distributed in 7 modules with no cycles between them,

although many other modules of CiaoPP source code, while not analyzed,

are consulted in order to get assertion information.

managing proj is a program used by the authors for EU project management.

It is distributed in 8 modules with no intermodular cycles.

check links is an example program for the Pillow HTML/XML/HTTP connec-

tivity package (by D. Cabeza and M. Hermenegildo) that checks that links

contained in a given URL address are reachable. The whole Pillow pack-

age is analyzed together with the sample program, and it is composed of 6

modules without intermodular cycles.

It should be noted that for all these programs the number of modules indicated

above correspond to the user modules of the benchmark. However, they are not

the only ones processed: any benchmark is likely to use quite a large number of

modules from the system libraries. In particular, in Ciao all builtins are in system

libraries. For efficiency, library modules are pre-analyzed for a representative set

of call patterns and the analysis results are expressed using the assertion language

described in [PBH00b]. Instead of analysing library modules over and over again,

the analysis algorithm computes success information from such assertions using

a SP+ policy.
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Def

Bench Mod Load Ana. Gen. Total

ann 3 387 343 170 1151

bid 8 631 35 182 1177

boyer 4 385 161 100 871

peephole 3 350 205 175 907

prolog read 3 343 279 370 1179

unfold 7 1622 540 117 2744

managing proj 8 1154 6128 302 8025

check links 6 1492 3720 365 6002

Sharing-freeness

Bench Mod Load Ana. Gen. Total

ann 3 387 480 217 1513

bid 8 631 50 192 1400

boyer 4 385 181 102 1098

peephole 3 350 542 305 1643

prolog read 3 343 3112 633 4490

unfold 7 1622 521069 286 523692

managing proj 8 1154 781 256 2911

check links 6 1492 4044 484 6706

Table 6.1: Time spent (in milliseconds) by the monolithic analysis of different

benchmark programs

The benchmarks have been run on a Dell PowerEdge 4600 with two Pentium

processors at 2 Ghz and 4 Gb of memory, and normal workload. Each test has

been run twice, reporting the arithmetic mean of these runs.

6.2.2 Analysis of a modular program from scratch

Table 7.3 shows the absolute times in milliseconds spent in analyzing the pro-

grams using the flattening approach. Mod reflects the number of modules com-

prising each benchmark (excluding system modules). For every benchmark, the

total analysis time is divided into several categories, represented by the following

columns:
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automatic SP+
all automatic SP−

all

Type of test Load Ana. Gen. Total Load Ana. Gen. Total

Def top down 2.25 1.30 1.44 1.47 3.64 1.60 2.39 2.08

bot up 2.26 1.25 1.44 1.45 3.80 1.66 2.47 2.16

Shfr top down 2.23 20.51 1.83 11.60 3.85 3.13 2.65 3.51

bot up 2.23 20.02 1.68 11.43 3.96 3.14 2.75 3.53

Table 6.2: Geometric overall results for analysis of modular programs from scratch

using different global scheduling algorithms and success policies. Numbers rela-

tive to the monolithic approach.

Load This column corresponds to the time spent loading modules into CiaoPP.

This time includes the time used for reading the module to be analyzed and

the time spent in reading the assertions of the imported modules.

Ana. This is the time spent analyzing the program and applying the success

policy for imported predicates together with some preprocessing of the code.

Gen. Corresponds to the task of generating the global information (referred to

before as the GAT and TAT tables). The information generated is related

to the analysis results of all exported and multifile predicates, new call pat-

terns of imported predicates generated during the analysis of each module,

and the modules that import the module and can improve their analysis

results by reanalysis.

Total Time elapsed since the analyzer is called until it finishes completely. It is

the sum of the previous columns, plus some extra time spent in other tasks,

such as the generation of the intermodular dependency graph, handling the

list of modules to get the next module to be analyzed, etc.

Table 6.2 gives the summary of the weighted geometric means of the com-

parative times for all benchmarks for the Def and Sharing-freeness analysis do-

mains. The numbers in this table are relative to the monolithic case (shown in

Table 7.3), and the number of clauses of each program is used as weight for each

benchmark when computing the weighted geometric mean. The naive bottom up

and naive top down global scheduling policies are compared, as well as the SP−
all

and SP+
all success policies. Table columns have the same meaning as before.
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This table shows the overall time spent in the analysis of the different bench-

marks without previous analysis information. It is clear that the modular analysis

from scratch, in general, is slower than monolithic analysis, as expected. Using

Def the intermodular analysis from scratch is only somewhat slower compared

to the monolithic analysis, and in particular the analysis time is not much larger

than the monolithic time in most cases. However, in simple domains like Def ,

the analysis time is not the most important fraction of the total time, and there-

fore other tasks such as module loading or results generation can in fact be more

relevant than the analysis itself. On the other hand, more complex domains as

Sharing−freeness increase the difference with respect to the monolithic case. It

is important to note that using SP+
all is clearly not recommended for performing

modular analysis from scratch in the Sharing− freeness domain. The result in

this case is biased a great deal by the results of the analysis of managing proj, in

which most predicates have many arguments, resulting in large sharing sets that

tend to approximate to > (which is the powerset of the variables in the clause).

However, SP−
all produces reasonable results.

On the other hand, when comparing the global scheduling policies, only a

slight difference in the time taken using the naive top down or the naive bottom up

strategies can be observed. This result seems to reflect that the order of the

modules is not so relevant when analyzing a modular program as was initially

expected.

Memory Consumption when analyzing from scratch. We have also com-

pared the maximum memory required for the analysis in the flattened and the

modular approaches to the analysis of modular programs from scratch. Table 6.3

shows the maximum memory consumption during the analysis of the flattened

approach (column Monolithic), and the use of memory of the modular ap-

proach (using both global scheduling policies described before) relative to the

monolithic case (columns SP+
all and SP−

all for the corresponding success policies).

The results show that the modular approach is clearly better in terms of max-

imum memory consumption than the monolithic approach, except for the out-

lying result of managing proj for the particular case of the combination SP +
all

and Sharing − freeness, as mentioned above. However, given a program split

into N modules, the memory used for analyzing it in a modular way might be
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Global scheduling policy: naive top down

Def Sharing-Freeness

Bench Mod Monolith. SP+ SP− Monolith. SP+ SP−

ann 3 2825160 0.69 0.49 4070806 0.54 0.39

bid 8 2201134 0.54 0.54 3241842 0.36 0.36

boyer 4 2405980 0.42 0.42 3495038 0.61 0.35

peephole 3 2390936 0.68 0.68 3761442 0.42 0.43

prolog read 3 2766260 0.53 0.51 5429194 0.84 0.84

unfold 7 5775798 0.54 0.54 16168722 0.31 0.37

managing proj 8 5555454 0.32 0.32 6565038 3.65 0.26

check links 6 10431662 0.70 0.65 18643226 0.83 0.77

Weighted Geom. mean 0.48 0.46 1.12 0.40

Global scheduling policy: naive bottom up

Def Sharing-Freeness

Bench Mod Monolith. SP+ SP− Monolith. SP+ SP−

ann 3 2825160 0.52 0.49 4070806 0.54 0.39

bid 8 2201134 0.57 0.54 3241842 0.36 0.36

boyer 4 2405980 0.42 0.42 3495038 0.61 0.40

peephole 3 2390936 0.68 0.68 3761442 0.42 0.43

prolog read 3 2766260 0.53 0.51 5429194 0.84 0.84

unfold 7 5775798 0.54 0.54 16168722 0.31 0.37

managing proj 8 5555454 0.33 0.33 6565038 3.65 0.28

check links 6 10431662 0.69 0.66 18643226 0.81 0.78

Weighted Geom. mean 0.47 0.47 1.11 0.41

Table 6.3: Overall memory consumption of Non-modular vs. SP+ and SP−

policies.

expected to be M/N , where M is the memory required for the monolithic anal-

ysis. This is not true because the complexity of the program is in general not

evenly distributed among its modules. Since Table 6.3 shows maximum memory

consumption, figures are strongly influenced by the most complex modules.
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6.2.3 Reanalysis of a modular program after a change in

the code

As explained at the beginning of Section 6.2, we have also studied the incremen-

tal cost of reanalysis of a modular program after a change, for different typical

changes, as explained above.

In the first case, shown in Table 6.4, a simple change in a module with no

implications in the analysis results of that module has been tested. It has been

implemented by “touching” a module, i.e., changing the modification time with-

out actually modifying its contents, in order to force CiaoPP to reanalyze it. As

before, numbers refer to the geometric overall results, relative to those obtained

with the monolithic approach (Table 7.3). As it is suggested in the results shown

in Table 6.4, the modular analysis is clearly better than the monolithic approach

for this kind of change. Obviously, global scheduling and success policies are not

relevant, since only the module which has been modified is reanalyzed.

The second case (summarized in Table 6.5) corresponds to a source code mod-

ification in which, as already mentioned, all the clauses of the exported predicates

of a given module have been replaced by the first non-recursive clause of the pred-

icate. As in the previous case, different policies do not seem to be very relevant

for this change. It is interesting to note that this kind of change is even more effi-

cient than just touching a module: since some part of the code is being removed,

the analysis tends to be simplified (specially the recursive clauses, which cause

more iterations of the fixed-point computation algorithm).

And, finally, the third case shown in Table 6.6 is implemented by adding

a most general fact to all exported predicates of a given module. Like in the

previous case, this kind of change is an extreme situation in which all exported

predicates are affected. Even in this case modular analysis is more efficient than

the monolithic approach. With respect to the differences between the success

policies, the SP− policy is slightly more efficient in complex domains such as

Sharing − freeness, although both policies and domains behave incrementally.

On the other hand, the bottom-up global scheduling policy produces better results

than top-down scheduling.

The overall results in Tables 6.4,6.5, and 6.6 indicate that in many cases

the reanalysis time is much better than in the monolithic case. It is important
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automatic SP+
all automatic SP−

all

Type of test Load Ana. Gen. Total Load Ana. Gen. Total

Def top down 0.68 0.39 0.19 0.44 0.63 0.38 0.19 0.43

bot up 0.66 0.41 0.20 0.45 0.65 0.38 0.19 0.43

Shfr top down 0.67 0.53 0.26 0.44 0.65 0.40 0.25 0.40

bot up 0.65 0.52 0.28 0.43 0.67 0.41 0.26 0.40

Table 6.4: Geometric overall results for reanalysis of modular programs after

touching a module, using different global scheduling algorithms and success poli-

cies. Numbers relative to the monolithic approach.

automatic SP+
all automatic SP−

all

Type of test Load Ana. Gen. Total Load Ana. Gen. Total

Def top down 0.97 0.18 0.33 0.45 0.99 0.20 0.33 0.46

bot up 0.97 0.18 0.32 0.45 1.00 0.20 0.34 0.46

Shfr top down 1.00 0.36 0.41 0.49 0.94 0.26 0.33 0.44

bot up 0.97 0.33 0.39 0.47 0.98 0.27 0.33 0.46

Table 6.5: Geometric overall results for reanalysis of modular programs after

removing all clauses of exported predicates of a module except the first non-

recursive one, using different global scheduling algorithms and success policies.

Numbers relative to the monolithic approach.

automatic SP+
all automatic SP−

all

Type of test Load Ana. Gen. Total Load Ana. Gen. Total

Def top down 1.09 0.63 0.43 0.70 1.05 0.59 0.42 0.66

bot up 1.02 0.58 0.40 0.64 1.04 0.60 0.43 0.66

Shfr top down 1.18 1.00 0.69 0.80 1.27 1.00 0.69 0.86

bot up 1.14 0.97 0.67 0.77 1.21 0.98 0.70 0.83

Table 6.6: Geometric overall results for reanalysis of modular programs after

adding a most general fact to all exported predicates of a module, using differ-

ent global scheduling algorithms and success policies. Numbers relative to the

monolithic approach.

to note that the analysis domain used is very relevant to the efficiency of the

modular approach: the analysis of a complete program in complex domains such
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as Sharing − freeness is much more expensive than the reanalysis of a module,

while the difference is smaller (although still significant) in the case of Def .

This suggests that modular analysis can make it practical to use domains which

are precise but rather costly. On the other hand, the results in Table 6.6 for

reanalysing after a more general change using Sharing− freeness are very close

to monolithic analysis from scratch, although still below it. That means that

even in the presence of the most agressive change in a module, modular analysis

is not more time-consuming than analyzing from scratch. Simpler changes provide

better results of the modular analysis with respect to the flattened approach, as

is shown in Tables 6.4 and 6.5 for other kinds of changes.

6.3 Conclusions

We have presented an empirical study of several proposed models for context-

sensitive analysis of modular programs, with the objective of providing experi-

mental evidence on the scalability of these models and, specially, on the impact

on performance of the different choices left open in those models.

Our results shed some light on the different choices available. In the case of

analyzing a modular program from scratch, the modular analysis approach has

been shown, as expected, to be slower than the flattening approach (i.e., having

the complete program in memory, and analyzing it as a whole), due to the cost

in time of loading and unloading code and related analysis information, and the

restriction of not being able to analyze predicates in modules other than the one

being processed. However, the modular analysis times from scratch are still rea-

sonable, excluding the case of the Sharing−freeness domain with SP+
all success

policy. In addition, our results also provide evidence that modular analysis does

imply a lower maximum memory consumption which in some cases may be of

advantage since it may allow analyzing programs of a certain critical size that

would not fit in memory using the flattening approach.

Across the domains we can see that in simple domains SP+
all and a naive

bottom up scheduling policy appear to be the best. These strategies appear

substantially better for some experiments (in particular, for more general changes)

and not much worse than others on most experiments. Another conclusion which

can be derived from our experiments is that, as already mentioned, no really
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significant difference has been observed between the top-down and bottom-up

strategies.

We have also considered the case of reanalyzing a previously analyzed pro-

gram, after making changes to it. This is relevant because it represents the

standard situation during program development in which some modules change

while others (and the libraries) remain unchanged. While in this phase the analy-

sis results may not be needed in order to obtain highly optimized programs, they

are indeed required for other important steps during development, such as static

program debugging and validation. In this context our results show that modu-

lar analysis, because of its more incremental nature, can offer clear advantages in

both time and memory consumption over the monolithic approach.
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Chapter 7

A Practical Type Analysis for

Verification of Modular Prolog

Programs

Regular types are a powerful tool for computing very precise descriptive types for

logic programs. However, in the context of real-life, modular Prolog programs, the

accurate results obtained by regular types often come at the price of efficiency. In

this chapter we propose a combination of techniques aimed at improving analysis

efficiency in this context. As a first technique we allow optionally reducing the

accuracy of inferred types by using only the types defined by the user or present

in the libraries. We claim that, for the purpose of verifying type signatures

given in the form of assertions the precision obtained using this approach is

sufficient, and show that analysis times can be reduced significantly. Our second

technique is aimed at dealing with situations where we would like to limit the

amount of reanalysis performed, especially for library modules. Borrowing some

ideas from polymorphic type systems, we show how to solve the problem by

admitting parameters in type specifications. This allows us to compose new call

patterns with some precomputed analysis info without losing any information. We

argue that together these two techniques contribute to the practical and scalable

analysis and verification of types in Prolog programs.
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7.1 Introduction

Types are widely recognized as being useful for several purposes, which include

early detection, i.e., at compile-time, of certain programming errors, enforcement

of disciplined programming, and documentation of code. In the terminology

of [Pie02], Pure Logic Programming is a safe programming language in that the

semantics of programs is well-defined and the execution of a program does not

depend on the particular compiler used. This is achieved, without the need for

types, thanks to the declarative nature of Pure Logic Programming, which is

untyped. However, as soon as we introduce predefined operations in the program-

ming language, for example arithmetic, certain type checks are required in order

to preserve the safety of the programming language. As a result, Prolog, which

is the most widely used logic programming language, is no longer an untyped

programming language, but rather it is a dynamically checked typed language:

In order to preserve language safety, calls to predefined operations which do not

satisfy their calling conventions result in run-time errors or exceptions. However,

some of the desirable features of types mentioned above in fact only apply to

statically checked typed languages.

A clear possibility in order to obtain a statically checked typed logic program-

ming language is to design a new programming language from scratch with static

checking in mind. Two proposals along these lines are Gödel [HL94b] and Mer-

cury [SHC96]. In these languages, types (called prescriptive types) are a part of

the language itself (both the syntax and semantics). In spite of the undoubtful

contribution of these proposals, Gödel is no longer maintained and Mercury, while

certainly interesting in many ways, deviates in a number of respects from logic

programming. In practice, Prolog (including its different extensions) remains by

far the most widely used logic programming language.

Another possibility, which is the one we will focus on in this work, is to pro-

vide a mechanism for performing static checking of types directly for Prolog.

We believe that this will have more practical impact than designing yet another

strongly typed logic programming language. Several proposals have been made

and implemented in the direction of augmenting Prolog with static checking, such

as, e.g., Ciao [HPBLG05, BCC+06]. In this context, even though the language

itself is not statically typed, it is possible to infer static information about the
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program in terms of regular types. The types inferred are called descriptive types

in that they describe the program behavior, but they do not provide directly any

assurance about the nonexistence of run-time errors since we can obtain descrip-

tive types for any program. In Ciao, users can optionally provide type definitions

and assign types to predicate arguments and thus describe the expected behavior

of the program [HPBLG05]. Success of static checking occurs if the descriptive

types inferred imply the type declarations provided by the user and those present

in system libraries. Alternatively, type-related errors may be detected statically.

Abstract interpretation-based type analysis using regular types is a power-

ful technique for computing very precise descriptive types for logic programs in

general and for Prolog in particular. In Ciao, a multi-variant, context sensitive

analysis engine [HPMS00] is used which is parametric w.r.t. the abstract domain

of interest and which can analyze [CPHB06, PCH+04] and check [PCPH06] mod-

ular programs Unfortunately, in this setting, the analysis of real-life, modular

Prolog programs, using regular types turns out to be too expensive in practice.

The abstract domain of regular types is infinite and in order to guarantee ter-

mination of the analysis process a widening operator is required. Such operators

may, in some cases, be quite sophisticated procedures (cf. [Mil99]). It is this

ability of the widening-based analyses to create new types that brings the precise

results, but at the same time the presence of a large number of very detailed

types inevitably affects analysis performance.

In this chapter we propose a combination of techniques aimed at improving

analysis efficiency in this context while preserving a reasonable accuracy. The

techniques proposed are implemented as extensions of the generic analyzer in

the Ciao Preprocessor, CiaoPP [HPMS00, HPBLG05], with the type domains

of [JB92, VB02]. As a first technique we allow optionally reducing the accuracy

of inferred types by using only the types defined by the user or present in the

libraries. In every iteration our analysis replaces the inferred types with such

types. We will show that in this way we ensure faster convergence to the fixed

point and that analysis times can indeed be reduced significantly. Also, we claim

that, for the purpose of verifying type signatures given in the form of assertions,

the precision obtained using this approach is adequate.

Our second technique is aimed at dealing with situations where we would like

to limit the amount of reanalysis performed for library modules while increasing
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precision. To this end we allow using parametric type assertions in the specifica-

tion. Such assertions are specially useful in libraries implementing generic data

manipulation predicates (like, e.g., lists or AVL-trees) which we do not want to

have to reanalyze every time we analyze a program that uses the library. In this

case we can instantiate parameters in the trusted assertion (now playing the role

of module interface) according to the actual call pattern, and simply reuse the

resulting success pattern without analyzing the library module. In this way we

incorporate some specific characteristics of polymorphic type systems for logic

programming [MO84, HL94b], without changing the source language and while

remaining in descriptive types, i.e., types which describe approximations of the

program semantics.

The main application of our analysis is in verification of programs with respect

to a partial specification written in the form of a number of type assertions and

type definitions (see [PBH00c, PCPH06]). Note that any assertion present in the

program must refer to types which are defined in user or library modules any-

way, and therefore in this case we may not lose many opportunities for verifying

assertions.

7.2 Related work

The issue of introducing type systems for static checking of types in logic pro-

gramming dates back to the early papers of Mishra [Mis84] and Mycroft–O’Keefe

[MO84]. There has been a number of proposals since then for providing adequate

notions of types and typing (see for example [Pfe92]).

As mentioned before, our work follows the descriptive typing approach in

which types approximate the program semantics. This idea was first presented

in [Mis84], where types are described by regular term grammars that reappeared

in the literature in one formalism or another.

Deriving descriptive types from a program (this process is also called “type

inference” or “type analysis”), essentially means finding, at compile-time, an ap-

proximate description (in our context, a safe approximation) of the values that

program variables can take at run-time. Descriptive types can be inferred that

approximate various semantics of a logic program. In [HJ90] descriptive types

are computed using set constraints analysis. Their types approximate the declar-
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ative semantics of programs. Another approach to approximate the declarative

semantics is to construct an abstract counterpart of the immediate consequences

operator, TP , (see e.g. [Llo87]) in order to obtain a superset of the success set

of the program. An example of this approach is [GdW94], in which regular de-

scriptive types are called “regular approximations”). Also, the TP operator is

approximated in [YS90], but with the goal of verifying a program w.r.t. given

success types, rather than inferring the types. The relative power of different

regular approximations of TP is discussed in [HJ92].

In other approaches, descriptive types approximate operational semantics, fol-

lowing a top-down execution strategy with the Prolog selection rule. This allows

distinguishing call and success types, which makes it feasible to verify call patterns

for certain predicates. Examples of this line are [JB92, VHCL95, VB02]. In our

approach we also deal with operational semantics. As already mentioned, we use

a generic, context-sensitive, multi-variant analysis framework [HPMS00, Bru91,

MH92, dlBHB+96a] based on abstract interpretation [CC77b] and specialized to

our type domain.

In the above mentioned approaches, types are constructed on the fly during

the iterative analysis process over an abstract domain of types which is infinite.

Therefore a widening operator is introduced, to ensure that no infinite ascending

chain is generated during computing the fixed point, and thus that the compu-

tation terminates. For a comprehensive study of different widening operators

see [Mil99].

In our approach, also new type definitions are generated on-the-fly. However,

as soon as they are generated, the analyzer tries to replace them by picking a type

from a predefined collection of definitions. These definitions correspond to the

types which have been defined by the user or which are present in library modules

used by the program. This type replacement has to be correct –we always replace

types with super-types– and accurate –we never lose more precision that strictly

required. Therefore, the type definitions present in the abstract descriptions

at each iteration step originate from a finite set. This guarantees termination

without the need for a widening operator.

Another alternative to the widening option is to generate a type domain which

is specific to a given program. An example of such an approach is [GP02], which

proposes an abstract interpretation over non-deterministic tree automata. The
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authors exploit the observation, due to [CC95], that for a particular program

one may automatically build a finite domain of tree automata (or regular tree

grammars), and thus make sure that the analysis (a fixed point iteration) termi-

nates. Another approach that allows constructing program-specific type domains

is proposed in [GH04]. The constructed domain incorporates also instantiation

information and it is condensing, i.e., combining the result of bottom-up analysis

with an initial goal pattern is as precise as the output of analyzing the program

top-down in the goal-dependent fashion, for the same initial goal pattern. The

fact that the domain is condensing is attractive for intermodular analysis as it

enables fully compositional approach. Nevertheless, in our view, a disadvantage

of these approaches w.r.t. considering the defined types is that since types are

automatically generated the resulting types are not intuitive and are hard to

understand.

Our approach is strongly related to other work in which types for each func-

tion symbol are defined prior to the analysis, and analysis itself infers types for

predicates. In these analyses, the output shown to the user contains familiar types

and, thus, it is easy to interpret. Among other papers, [Lu95] follows this line,

and shows an analysis method that combines types with sharing and aliasing. A

rather complex polymorphic analysis is presented in [Lu98]. In contrast, as our

main concern is simplicity and efficiency, we do not infer polymorphic types, even

if we do make use of parametric type rules for describing module interfaces (see

Section 7.5). In some of this work, like [BG92], only a well-typed part of the

program semantics (a success set in this case) is described by the analysis out-

put. In this sense [BG92] is a prescriptive typing approach. Types for function

symbols are also required by [CL00], where an elegant theory of ACI-unification

(associative, commutative and idempotent) is used to infer (polymorphic) type

information from the program (abstractly compiled before the analysis). The re-

sulting domain is condensing. A technique which for given type definitions infers

a combination of prescriptive and descriptive types is given in [SG95]. In all the

above work, typing rules for function symbols are given prior to the analysis. In

some cases, (like for example [CL00]) the rules are quite restrictive and require

that each function symbol is of exactly one type. In our work, predefined types

are used differently. There is no notion of a type signature for function symbols.

Instead, during the analysis the inferred (descriptive) types are inspected and
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replaced by predefined types that match them as precisely as possible.

There are also some similarities between our work and strongly typed logic

languages such as Gödel [HL94b] or Mercury [SHC96] (whose type systems are

based on [MO84]), especially as regards the usage of parametric rules. However,

in both Gödel and Mercury the programmer is required to write, together with

the code, the types, both for function symbols and for predicates. Moreover, sub-

typing is often not permitted. In contrast, in our setting writing type definitions

is optional and subtyping is allowed.

Our work is thus unique in combining both the flexibility of descriptive typing

approaches, where type definitions are optional and have clear semantics, with

some features of prescriptive types, where the output of analysis is presented in

terms of types known to the user, and parametric type rules are allowed.

7.3 Preliminaries

7.3.1 Regular types domain

Assume a finite set F of ranked function symbols. Let Term(F ,V) denote a set

of terms built from function symbols F and variables V . A regular term grammar

is a tuple G = 〈T ,F , R〉, where:

• T is a set of non-terminal symbols (constants), called here type symbols,

• R is a set of rules of the form l → r, where l ∈ T , r = f(T1, . . . , Tn)

(f/n ∈ F , Ti ∈ T ).

We use the notation t1 ⇒G t2 (or t1 ⇒ t2 if G is clear from the context) to denote

the usual derivability relation, i.e. if t2 is obtained from t1 by replacing t (where

t is a subterm of t1) by a term r where t→ r ∈ R.
∗
⇒ denotes the transitive and

reflexive closure of ⇒.

A type symbol T defined in grammar G denotes a (regular) set of ground

terms TypeG(T ) = {t ∈ Term(F , ∅) | T
∗
⇒ t}. As before, we drop the subscript

G if it is clear from the context. In order to describe sets of numbers or Prolog

atoms, we introduce base types and corresponding base type symbols, like int,

num, atm, etc., denoting respectively sets of integers, all numbers, Prolog atoms,

etc. The base types can be seen as defined by a set of rules, fixed for a fixed
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signature, with constants in the right hand sides. Moreover, we introduce the

“top” type symbol >, s.t. Type(>) = Term(F , ∅) (i.e. > denotes the set of all

ground terms) and “bottom” type symbol ⊥, s.t. Type(⊥) = ∅.

The regular type domain (e.g., [DZ92]) is equipped with standard operations

that satisfy the corresponding properties:

(inclusion v) T1 v T2 iff Type(T1) ⊆ Type(T2)
∗

(intersection u) Type(T1 u T2) = Type(T1) ∩ Type(T2)

(union t) Type(T1 t T2) ⊇ Type(T1) ∪ Type(T2)

Also, we use equality between type symbols T1 = T2 as a shortcut for Type(T1) =

Type(T2). Note that type union is approximate. This is due to the fact that

we, as many other researchers, use deterministic (or tuple distributive) types, in

which if f(a, b) ∈ Type(T ) and f(c, d) ∈ Type(T ) then also f(a, d) ∈ Type(T ) and

f(c, b) ∈ Type(T ).

We use regular types as abstract domain for the analysis. An abstract substi-

tution is then a mapping from variables to types. Let dom(λ) denote a domain of

an abstract substitution λ, and let λ|X be a projection of λ over variables X. For

an abstract substitution λ = {X1/T1, . . . , Xn/Tn}, a value of the concretization

function γ is given by: γ(λ) = {{X1/t1, . . . , Xn/tn} | ti ∈ Type(Ti), 1 ≤ i ≤ n}.

7.4 Type Analysis with Predefined Types

As mentioned before, our type analysis is a part of the Ciao Preprocessor,

CiaoPP [HPBLG05], and uses one of its analysis engines [HPMS00]. More-

over, as an underlying type inference system, we use the type analysis of [JB92]

and [VB02] with various widenings (see [Mil99] for a comprehensive study on

widenings in type domains). These analyses synthesize new types out of function

symbols and constants present in the program. However, as a first technique in

order to speed up analysis, especially in the context of large programs, we intro-

duce a key new feature: in our analysis, types synthesized during analysis can

∗As pointed out in [Lu01] this operation is incorrectly defined in [DZ92]. Our system uses

the correct version of v, implemented by Pedro López Garćıa, independently from [Lu01].
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be optionally replaced by predefined types which are in the scope of the module

being analyzed. These may have been written by the user in the module being

processed, or imported from other user modules or from a library. The predefined

types chosen as replacements are less precise or equivalent to the inferred ones,

so that a safe (albeit potentially less precise) approximation of the semantics is

still obtained.

Let T0 denote a set of predefined type symbols, including >, ⊥, and some more

symbols. Every iteration of the analysis contains two steps: (1) synthesizing new

types T1, . . . , Tn, as explained elsewhere (e.g., [JB92, VB02]), and (2) replacing

them with dT1e, . . . , dTne where d.e is a replacement operator which for T ′ = dT e

satisfies the following:

• it returns a predefined type, i.e., T ′ ∈ T0,

• it safely approximates T , i.e., T v T ′,

• and it is as precise as possible: 6 ∃T ′′ ∈ T0 s.t. (T ′′
@ T ′ ∧ T v T ′′).

Note that it is not always possible to find a unique best matching predefined

type for a given synthesized type. There may be two or more types that are

incompatible (or equivalent) and at the same time match a given synthesized

type. As a heuristics, in the case of conflicts, we give priority to types which are

defined in user modules (over those in library modules) since they are likely to

look more familiar to the user. Also, types that are closer in the module hierarchy

(i.e., defined in the current module or a closer module) are preferred.

In order to speed up the analysis, the v relation over T0 (let us denote it v0)

is initially precomputed (with library and builtin types) before the analysis starts

and, during the analysis of each module, incrementally complemented with types

specific to that module. Thanks to this, checking the subtyping is efficient. Note

however, that since T0 contains arbitrary types (we make no assumptions about

T0 except that it always contains > and ⊥) (T0,v0,u0,t0) cannot directly serve

as an abstract domain, as the following does not hold ∀T1,T2∈T0
Type(T1 u T2) =

Type(T1) ∩ Type(T2). For example consider T0 = {list, atm,>,⊥}. The g.l.b. of

atm and list induced by v0 would give ⊥, whereas properly computed atmu list

should contain the empty list. A remedy for this is to use the standard u (like

for example type intersection of [DZ92]) and apply d.e to the result, and thus
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to redefine u0 so that ∀T1,T2∈T0
T1 u0 T2 = dT1 u T2e. Clearly, t0 can be directly

computed by traversing the graph corresponding to the v0 relation.

7.5 Using Parametric Rules and Type Asser-

tions

In order to make any analysis which works with modular programs realistic in

practice, there must exist some degree of separate handling of code fragments.

I.e., for scalability reasons, it is not realistic to expect that all modules related to

an application should be available to analysis. A clear example for this are library

modules. For them, we would like to have analysis information readily available,

without the need of analyzing them over and over again for each application which

uses them. To this end, our second technique consists in allowing developers of

libraries (and modules which can be reused) to write, besides the usual regular

type definitions, parametric type rules. It is important to note that regular types

do not include in principle parametric type rules. Therefore, analysis does not

infer this kind of rules and checking them will require some additional mechanism,

as we propose in Section 7.5.4 below.

Let us introduce some notation. Let T V be a set of type variables or param-

eters. Now we admit also non-nullary symbols in T . The notion of type symbol

changes a bit, now it is a ground (parameter-free) term built of symbols from

T (i.e. an element of Term(T , ∅)). Parametric type rules have the form l → r

where l ∈ Term(T , T V), r = f(T1, . . . , Tn) (f/n ∈ F , Ti ∈ Term(T , T V)), and

vars(r) ⊆ vars(l).

Example 7.5.1. Consider the standard definition of a list.

list(α) → [ ]

list(α) → [α | list(α)]

In our framework parametric rules have no denotation unless the parame-

ters are instantiated to regular types by a parameter substitution. Let T =

t(α1, . . . , αn) (t/n ∈ T ) where α1, . . . , αn are parameters. Then, the parame-

ter substitution Ψ is a mapping {α1 7→ T1, . . . , αn 7→ Tn} where T1, . . . , Tn are
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regular type symbols. Applying Ψ to T , written Ψ(T ), means replacing any oc-

currence of αi in rules defining T , by Ti. After that, the l.h.s. of the rules become

a type symbol (likewise all symbols in the r.h.s.), and thus parametric rules be-

comes parameter-free grammar rules, as presented in Section 7.3.1, and can be

added to the type grammar.

Naturally, a parametric rule can be instantiated multiple times with different

types, and resulting in different types, e.g., list(int) and list(atm). Note also

that type list(⊥) denotes an empty list.

The process of replacing synthesized types by predefined ones also takes para-

metric rules into account. During analysis, types constructed by instantiating

parametric rules are added to the set T0 of predefined types. The new instances

are created on the fly, by generating type substitutions Ψ : T 7→ T0, such that

for a synthesized type T and a parametric type symbol Tp, the instance of Tp can

serve as a good approximation of T , i.e., Ψ(Tp) = dT e.

Example 7.5.2. Assume that at some intermediate step of the analysis the fol-

lowing abstract substitution is generated λ = {X/T}, where Type(T ) = {[a]},

i.e. T denotes a one-element list of a’s. Assume also that the definition of list

(see Example 7.5.1) is present in the system. Since the constant a is described

by the built-in type atm the analyzer would generate the parameter substitution

Ψ = {α 7→ atm} and finally would replace T by dT e = Ψ(list(α)).

Obviously, an abstract domain constructed as described above contains an

infinite number of types, e.g., list(num), list(list(num)), list(list(list(num))),

. . . etc. Similarly to [BG92], we restrict the maximum depth of terms in para-

metric type symbols to an arbitrary number. Type symbols that occur below the

maximum depth are simply replaced by >. Our experiments show that depth

value 3 is seldom exceeded in many programs and thus, in practice, no precision

is usually lost in this step.

7.5.1 Type assertions

Information about intended or inferred call and success patterns is given in the

form of assertions [PBH00c]. In this chapter we limit ourselves (without loss of

generality) to just one form of assertion, “pred” assertions, written (in simplified

form) as pred P : Pre⇒ Post. P is a predicate descriptor, i.e., it has a predicate
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symbol as main functor and all arguments are distinct free variables, and Pre and

Post are pre- and post-conditions respectively. For our purposes it is sufficient to

consider that Pre and Post correspond to abstract substitutions (λPre and λPost

resp.) over variables of P . A more detailed description of assertions can be found

in Chapters 4 and 8.

The meaning of pred assertions is twofold. First, the precondition Pre ex-

presses properties which should hold in calls to P. Second, the postcondition

Post expresses properties which should hold on termination of a successful com-

putation of P, provided that Pre holds on call. Types are by default understood

in “instantiation” mode [PBH00c], i.e., => list(L) implies that at procedure

output L is instantiated to a list†, and => list(L,T) implies that at procedure

output L is instantiated to a list whose elements are of type T. Note that type

expressions in assertions differ from type expressions as defined in previous sec-

tions. Their first argument is a variable whose type is described by the expression

(this first argument should not be confused with a type parameter). There can

be more than one pred assertion per predicate, each one describing a different

usage of the predicate, for example:

:- pred length(L,N) : (var(L), int(N)) => list(L).

:- pred length(L,N) : (var(N), list(L)) => int(N).

In this case the union (disjunction) of the Pre parts expresses the properties

which should hold in any call and the Post parts apply for calls matching their

respective Pre part.

Herein we are interested in call and success patterns conveying only type

information. It is possible to write a pred assertion with parametric types like:

:- pred reverse(X,Y) : list(X,A) => list(Y,A).

In this case, arguments are not identified by name but rather by position. We

use * to separate the type of different arguments. This assertion tells us that the

predicate reverse/2 is meant to be invoked with the first argument bound to

a list whose element can be of any type, denoted by the type variable A. Upon

success, the procedure returns in the second argument a list whose elements must

be of type A.

†Alternatively we can consider “compatibility” mode, meaning that either L is already in-

stantiated to a list, or it might be instantiated to a list in the subsequent computations.
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7.5.2 Using parametric type assertions in modular analy-

sis

Assume a scenario where assertions are written in a (library) module and that

for efficiency we do not want to analyze this module if possible. If no as-

sertions are present in the module for exported predicates or if the precondi-

tions in such assertions do not match the calling patterns the module will sim-

ply be entered and analyzed during modular analysis, as described in Section

7.3 (see also [PCH+04, PCPH06]). However, if suitable parametric assertions

are present, assume that both precondition Pre and postcondition Post con-

tain parameters A and B respectively. The assertion takes the following form:

: −pred P : Pre(A) ⇒ Post(B). We require B ⊆ A. Our goal is to find,

for a given call pattern λc, a valuation Ψ of parameters A (and therefore B)

such that λc v λΨ(Pre(A)). Moreover, we are interested in finding a Ψ that gives

Ψ(Pre(A)) that is as precise as possible. In order to achieve this we use the

matching operation of [DMP02]. Matching resembles checking of type inclusion

(see [DZ92, Lu01]). We match a parameterless type T1 against a, possibly para-

metric, type T2, and denote this operation T1

.

v T2. Matching finds a (possibly

small) parameter valuation Ψ so that T1 v Ψ(T2), or fails if such a valuation does

not exist. The whole procedure starts with empty Ψ. Then matching, similarly

to inclusion checking, traverses the type rules and involved terms recursively, and

compares the corresponding structures. If at some point matching is about to

compare a type parameter α and a type symbol, say T , then α 7→ T is added to

Ψ. It might however happen that another binding α 7→ T ′ is already present in

Ψ. In this case, α 7→ T ′ is replaced by α 7→ T ′ t T .

Example 7.5.3. Assume the following assertion describing a use of append/3:

:- pred append(X,Y,Z): (list(X,A), list(Y,A))

=> list(Z,A).

If the analyzer finds a call to append(X1, X2, X3) with an abstract substitu-

tion {X1/list(int), X2/list(int), X3/term} matching will generate the param-

eter valuation {A 7→ int}. If however the call pattern has a substitution

{X1/list(int), X2/list(atm), X3/term} then the valuation computed by matching

would be {A 7→ int t atm}.
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Note that parameter handling is substantially different in typed logic pro-

gramming (e.g., [MO84, HL94b]), where type inference involves type unification

that tries to bind a type parameter to a single type and fails if any subsequent

binding is incompatible with the previous one. Obviously, if T2 has no parameters

in T1

.

v T2, matching reduces to inclusion checking.

Note that without admitting parameters, in order to avoid reanalysis of the

library using our proposed rules, the library developer would have to write a

specific assertion for each possible type of list elements, which obviously is not

feasible. Similarly, standard modular analysis would also save triples for each

type of list elements that occurs every time that analysis enters the library. An-

other remedy is to write the most general assertion:

:- pred reverse(X,Y): list(X,term) => list(Y,term).

but in this case we unnecessarily lose precision.

7.5.3 Parametric type assertions in verification and de-

bugging

As mentioned above, proving an assertion with parameters, like the one of Ex-

ample 7.5.3, cannot be directly done by using the results of analysis. E.g.,

consider the assertion : −pred P : Pre(A) ⇒ Post(B) (1) (where, as be-

fore, we assume that B ⊆ A). Essentially, proving (1) means that we want

to show: ∀Ψ(λc v λΨ(Pre(A)) ⇒ λs v λΨ(Post(B))) (2) where λc and λs are, re-

spectively, the call and success patterns computed by abstract interpretation.

We propose a proving method which resembles the well-known skolemization

technique. For every parameter αi we introduce a dummy type ci, such that

∀T ∈ T : T 6= > ⇒ ci u T = ⊥ and ∀T ∈ T : T 6= ⊥ ⇒ ci t T = >. The

intuition is that Type(ci) is disjoint from any terms in the program and initial

goal. Let Ψc be a parameter valuation {α1 7→ c1, . . . , αk 7→ ck}.

Proposition 7.5.4. Consider assertion (1). If abstract interpretation for a top

goal P with the initial call pattern λΨc(Pre(A)) computes a success pattern λc =

λΨc(Post(B)) then (2) holds.

Proof (outline): Inductively, for every abstract operation we show that if the

operation preserves a dummy type ci, it will preserve an arbitrary type. Consider
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a conjunction of two abstract substitutions λ1 ∧ λ2 = λ. Assume that a dummy

type c occurs in λ1, i.e., for some variable X ∈ dom(λ1) we have λ1|X = {X/c}.

If c propagates to the result of the conjunction, meaning that λ|X = {X/c}, then

either X 6∈ dom(λ2), or λ2|X = {X/c}, or λ2|X = {X/>} (as otherwise we would

have λ|X = {X/⊥}). It is clear that in either case any other type would propagate

the same way as c. A similar reasoning can be performed for disjunction and

projection. 2

The intuition behind Proposition 7.5.4 is that if a dummy type can be passed

through the entire analysis process, meaning that it has not been “touched” by

any abstract operation, we can conclude that any other type would be passed the

same way.

7.6 Example

In this section we illustrate with a simple example our type analysis and its
application to program verification. Our example consists of three modules. We
start by describing the top-level module of the application, called main, whose
code is shown below:

:- module(main,[p/2],[assertions,regtypes,functional]).

:- use_module(qs,[qsort/2]).

:- pred p(X,Y): list(X,num) => dlist(Y). % #1

p(X,Y) :- dlist(X), qsort(X,Y).

:- regtype dlist/1. dlist := [] | [~digit|dlist].

:- regtype digit/1. digit := 0|1|2|3|4|5|6|7|8|9.

In this code, the first line of the program contains the module declaration (in

Ciao [BCC+06]), which defines the module name and the list of exported predi-

cates, as well as declaring that several packages should be used (e.g., for assertion

processing). Next, the use module declaration informs the compiler and analyzer

that this module imports procedure qsort/2 from module qs. The main module

contains two definitions of regular types: dlist and digit. These definitions

are in fact also ordinary Prolog procedures written using Ciao’s functional syn-

tax [CCH06], and therefore besides their use in the post-condition of assertion
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#1 they can also be used as regular (test) procedures, as is actually done in the

clause defining p/2.
We now present the module qs, which implements quicksort, and whose code

is shown below:

:- module(qs, [qsort/2], [assertions]).

:- use_module(library(lists),[append/3]).

:- pred qsort(X,Y) : list(X,A) => list(Y,A).% #2

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L1,R1),

qsort(L2,R2),

append(R1,[X|R2],R).

qsort([],[]).

partition([],_B,[],[]).

partition([E|R],C,[E|Left1],Right):-

E @< C, !,

partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-

E @>= C,

partition(R,C,Left,Right1).

An interesting feature of this implementation of quicksort is that the qsort/2

procedure is not restricted to lists of numbers and can in fact accept lists of any

kind of elements due to the use of @< and @>= in the comparisons. In this case,

the developer of the module has opted to include a pred parametric assertion,

marked in the code as #2. This assertion states that on call, the first argument

of the qsort/2 procedure is meant to be a list of elements of any type A, whereas

upon success, the second argument should be bound to a list of type A. As can

be observed, qs imports the standard append/3 predicate, for list concatenation,

from the lists library. Therefore, the third and final module in our example is

the lists library. For our purposes, there is no need to show its code here.

Assume now that we want to prove assertion #1 by analyzing statically module

main. If we apply the inter-modular static analysis in [PCH+04] using standard

regular types, we can prove such assertion since analysis obtains the type dlist

(or equivalently list(digit)) for the second argument of p/2. However, and as

already argued, this approach is too costly (both time- and memory-wise) since

116



analysis iterates over all modules, including libraries, analyzing for different call

patterns until a global fixed point is reached.
We now show on this example how our proposal preserves the required ac-

curacy in order to perform the verification task at hand, i.e., proving assertion
#1, while simplifying the analysis process. A first step in our approach is, as
described in Section 7.5, to avoid analyzing libraries, which in general is desirable
except in initial phases of library development, verification, and testing. For this,
the following assertion is present in the lists library:

:- checked pred append(X,Y,Z):(list(X,A),list(Y,A))

=> list(Z,A). % #3

Which states that, as expected, the result of concatenating (appending) two lists

of a given type A results in a list of exactly such type A. The checked flag [PBH00c]

in front of the assertion indicates that the assertion has been automatically proved

to hold using the method described in Proposition 7.5.4.

Next, assume that we restrict ourselves to defined types (using the d.e op-

eration) as described in Section 7.4. With this assumption, when we analyze

the procedure qsort/2 for the call pattern induced by the main module, we

get the type list(digit) in its first argument. Since we know that the main

module belongs to the set of modules being analyzed, we consider the types

defined in main as defined types, and therefore no accuracy is lost due to the

use of defined types. Next, analysis will reach the call to append/3. By using

assertion #3, the analyzer can deduce, without reanalyzing append, that upon

success of append(R1,[X|R2],R) in the first clause of qsort/2, R will be bound

to list(digit). This type is propagated through the success of qsort/2 to

the calling module main, consequently allowing the system to prove assertion #1.

Note that if we would like module qs to be reusable in any context without rean-

alyzing qs over and over again for different calling patterns, our approach allows

introducing parametric assertions, such as assertion #2. Then, Proposition 7.5.4

can again be used to prove this parametric assertion once and forall.

7.7 Experimental evaluation

In order to evaluate the practical impact of our proposal, we have performed some

preliminary benchmarking of modular analysis, in the context of inferring regular

types, both with and without our proposed optimizations.
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Bench Mod Cls Orig Opt SU

ann 3 227 9711 7738 1.25

bid 8 69 7399 3392 2.18

boyer 4 145 1789 1905 0.94

manag proj 8 907 289564 30962 9.35

check links 6 576 41862 32392 1.29

grades 4 168 19392 9255 2.09

grade listing 10 1553 86410 17427 4.96

Wgt. Arith. mean 117194 21297 5.50

Wgt. Geom. mean 69387 18178 3.82

Table 7.1: Intermodular analysis from scratch, using an underapproximating suc-

cess policy (SP−) and a top-down scheduling policy.

module touch more general clause recursion removal

Bench Orig Opt SU Orig Opt SU Orig Opt SU

ann 1798 1134 1.59 6026 3204 1.88 3335 1585 2.10

bid 620 206 3.01 2035 574 3.54 1068 297 3.60

boyer 222 559 0.40 331 625 0.53 401 595 0.67

manag proj 15134 15077 1.00 41664 14668 2.84 53383 1419 37.62

check links 7439 6449 1.15 18232 9958 1.83 10353 6964 1.49

grades 3385 734 4.61 5432 1196 4.54 4186 933 4.49

grade listing 4119 4557 0.90 36458 7173 5.08 16707 7353 2.27

W. Arith. mean 6985 6843 1.02 29459 8570 3.44 22475 4757 4.72

W. Geom. mean 5054 4741 1.07 21724 6838 3.18 14364 3406 4.22

Table 7.2: Reanalysis after several kinds of changes, using an underapproximating

success policy (SP−) and a bottom-up scheduling policy (in the case of recursion

removal, SP+ and top-down scheduling have been used.)

The analysis framework implemented in CiaoPP and used for this chapter can

be configured selecting specific values for several parameters of the framework.

The main parameters that can be selected when performing intermodular analysis

are the scheduling policy and the success policy (see [PCH+04] for more infor-

mation on those and other parameters.) The scheduling policy allows the user

to select how the framework decides at each iteration which module must be the

next one selected for analysis during the intermodular fixed point computation.

Two main approaches have been implemented: a top-down policy, traversing the

intermodular dependency graph and selecting first the module requiring analy-
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sis which is higher in the graph (the top-level module is the top of the graph).

The bottom-up policy takes first the deepest module in the intermodular depen-

dency graph which requires analysis. When a program is analyzed from scratch,

the first module analyzed is always the top-level one. The success policy, as al-

ready mentioned, selects how temporary results for calls to imported predicates

are approximated when the exact success pattern is not available in the Global

Answer Table. During the experiments, the parameters for both policies have

been set to the most advantageous setting for the original type analysis, namely

top-down and SP−, respectively, in order to highlight the speedup obtained with

just defined types.

The benchmark programs used are modular programs of medium size, ranging

from three to ten modules, and from 69 to 1553 clauses. The number of modules

and clauses for each program is detailed in Table 7.1. A brief description of

the selected benchmarks follows. ann is the &-Prolog implementation of the

MEL automatic parallelizer (by K. Muthukumar, F. Bueno, M. Garćıa de la

Banda, and M. Hermenegildo) [MH90b]. bid computes an opening bid for a

bridge hand (by J. Conery). The boyer benchmark is a reduced version of the

Boyer/Moore theorem prover (by E. Tick). The program has been separated

in four modules with a cycle between two modules. managing project is a

program developed by the authors for EU project management. check links is

an sample program for the Pillow HTML/XML/HTTP connectivity package (by

D. Cabeza and M. Hermenegildo) that checks that links contained in a given URL

address are reachable. Note that the whole Pillow package is analyzed together

with the sample program. And finally, grades and grade listing are programs

used by the authors for grading students, and are composed of 4 and 10 modules,

respectively. The experiments have been run on a Dell PowerEdge 4600 with

two Pentium processors at 2 Ghz and 4 Gb of memory, and normal workload.

Analysis time in the experiments corresponds to the time spent (in milliseconds)

analyzing code. Tasks related to program loading and unloading, and saving

analysis results to disk are not part of the optimizations described in this chapter

and have been excluded from the tables.

The first experiment involves analyzing from scratch the benchmark programs

using the intermodular analysis algorithm. The results are shown in Table 7.1.

Column Mod contains the number of modules that compose each benchmark,
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while column Cls includes the number of clauses. Column Orig is the time spent

by the original regular type analysis, and column Opt is the time spent by the

analysis with the optimizations described in this chapter. Finally, column SU

(speedup) shows the improvement brought by the optimized version over the tra-

ditional type analysis. In this case the improvement is considerable, supporting

our thesis that the optimizations proposed are specially appropriate for modular

analysis. The last two lines of tables 7.1 and 7.2 show the arithmetic and geo-

metric means of the results obtained for each column, weighted by the number

of clauses in each program. On average, our proposed optimizations speed up

intermodular analysis by a factor of 3.82-5.5.

Table 7.2 shows how the optimizations proposed improve the analysis results

when benchmark programs are reanalyzed in an incremental way, after several

specific modifications are made to the source code. For evaluating this, it is

important to make experiments which are representative of the kind of changes

which occur in real-life. We have followed here the approach used in [CPHB06],

were three different kinds of source code modifications have been studied. For the

three classes of changes, one module is modified each time and then the program is

reanalyzed, in order to incrementally recompute the analysis results visiting only

the modules that require reanalysis: the changed module, plus possibly other

modules transitively affected by this change. The numbers shown in Table 7.2

are the average of the times taken by the reanalysis of the program when each of

the modules in the benchmark programs is modified.

In the first kind of change, a simple modification is made in a single module

in such a way that this modification does not change the results of analysis for

that module (named module touch in that table). This has been implemented

by “touching” the module, i.e., changing the modification time without actually

modifying its contents, in order to force CiaoPP to reanalyze it. It can be observed

that the optimizations introduced do not provide much speedup. The main reason

for this behavior is that only the modified module is visited by the modular

analysis. This means that the reduction in the number of intermodular iterations

and number of types used is not relevant in this case. Also, a single module in

a modular program is typically a rather small piece of code, which may not be

large enough to take advantage of the use of just defined types.

The second kind of modification shown in Table 7.2 is a modification in the
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Bench Orig Optim SU

ann 1291 1605 0.80

bid 1972 731 2.70

boyer 973 935 1.04

manag proj 37177 28849 1.29

check links 10266 7158 1.43

grades 5653 2348 2.41

grade listing 60552 16052 3.77

Table 7.3: Time spent by the monolithic analysis of different benchmark pro-

grams.

source code such that after the change exported predicates produce more general

analysis results (named more general clause in Table 7.2). It is implemented

by adding a most general fact to all exported predicates of a given module. This

kind of change is an extreme situation in which all exported predicates are af-

fected. This modification in general requires that not only the modified module

be reanalyzed, but also some other related modules, since the analysis results

for the modified module are different, and very likely affect the modules which

import the modified one. It is encouraging to observe that the optimizations

introduced by our approach appear to be specially relevant in this case, since due

to them the process of reanalyzing the program is sped up by a factor of more

than three.

The third case corresponds to a source code modification in which exported

predicates produce a more precise answer pattern (named recursion removal

in Table 7.2). In this case all the clauses of the exported predicates of a given

module have been replaced by the first non-recursive clause of the predicate. As

in the previous case, this is an extreme case in which all exported predicates are

affected, except that now a more particular answer is obtained for them instead

of a more general one. Again, the reanalysis of the program after the change

generally requires analyzing other modules besides the modified one. As shown

in the table the modular analysis is very competitive when using our proposed

approach, bringing significant speedup also in this case, by a factor of more than

four.

Finally, the third experiment, shown in Table 7.3, presents the time spent

when analyzing the programs in a non-modular way, i.e., as if all the program code
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were located in a single module (we refer to this as the “monolithic analysis”).

The results suggest that although the optimizations presented in this chapter

aim at improving modular analysis, they are also useful in the case of large non-

modular programs, since the analysis speed improves for most of the benchmarks.

However, as can be seen for ann, there may be cases where the original analysis

is somewhat faster. This can be explained by the fact that though using the d.e

operation results in analyzing fewer call patterns, the replacement operation also

introduces some overhead. The results also show that modular analysis times

remain, as expected, somewhat higher than when analyzing in a monolithic way,

but are reasonable in comparison, and the comparison with the analysis times for

reanalysis after partial changes are quite encouraging, since they often improve

on the monolithic analysis times, notably for some of the programs with larger

execution times. Note also that of course modular analysis is vital when programs

cannot be analyzed monolithically due to, e.g., memory limitations.

7.8 Conclusions

We have proposed a combination of techniques aimed at improving analysis effi-

ciency in type inference and verification for modular Prolog programs. In partic-

ular, we have presented a type analysis which optionally reduces the accuracy of

inferred types during the analysis process by using only the types defined by the

user or present in the libraries. Also, borrowing some ideas from polymorphic

type systems, we have proposed a method that allows using polymorphic type

rules for specifying library module boundaries, and we have proposed a novel

method in order to use such type rules in the context of a regular type-based

analysis system. Finally, we have also implemented our approach and reported

experimental results from the analysis of a number of modular programs.

Our experimental results suggest that the optimizations presented do con-

tribute significantly to increasing analysis efficiency both for the monolithic case

and, even more, for the case of analyzing programs module by module. This holds

both when analyzing programs from scratch as well when doing it incrementally

after changes to a single module. Modular analysis times remain, as expected,

somewhat higher than analyzing them in a monolithic way, but are reasonable,

and the results from reanalysis after partial changes are quite encouraging, im-
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proving sometimes on the monolithic analysis times. Another advantage of the

proposed approach is that the output of analysis is more readable, since it is pre-

sented to the user in terms of known types, rather than in terms of new, inferred

ones, which are typically more detailed and have automatically generated names,

and which can sometimes be difficult to interpret. Furthermore, the precision ob-

tained appears to be sufficient for the purpose of verifying type signatures given

in the form of assertions.

In summary, we argue that our proposal is of practical relevance, since it allows

reducing analysis cost significantly while preserving a useful level of accuracy.
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Part III

Compile-time Assertion Checking

of Modular Programs
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Chapter 8

Context-Sensitive Multivariant

Assertion Checking in Modular

Programs

We propose a modular, assertion-based system for verification and debugging

of large logic programs, together with several interesting models for checking

assertions statically in modular programs, each with different characteristics and

representing different trade-offs. Our proposal is a modular and multivariant

extension of our previously proposed abstract assertion checking model and we

also report on its implementation in the CiaoPP system. In our approach, the

specification of the program, given by a set of assertions, may be partial, instead of

the complete specification required by traditional verification systems. Also, the

system can deal with properties which cannot always be determined at compile-

time. As a result, the proposed system needs to work with safe approximations:

all assertions proved correct are guaranteed to be valid and all errors actual errors.

The use of modular, context-sensitive static analyzers also allows us to introduce

a new distinction between assertions checked in a particular context or checked

in general.
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8.1 Introduction

Splitting program code into modules is widely recognized as a useful technique in

the process of software development. Also in the context of (constraint) logic

programming (CLP) the modular approach to constructing programs has re-

ceived considerable attention (see [BLM94] for an early survey). In addition,

the development of large applications can greatly benefit from advanced analysis,

verification, and debugging tools (see for example [DHM00]). Some of these tools

check programs with respect to a specification provided in the form of assertions

[PBH00b, DNTM89], written optionally by the user. In this chapter we propose

a framework for static (i.e., compile-time) checking of assertions in modular logic

programs, based on information from global analysis.

Within our framework, the programmer is expected to write a (partial) spec-

ification for a module (or a set of modules) being subject to the verification pro-

cess. The specification is written in terms of (Ciao) assertions [BCHP96, BDM97,

DNTM89, M9́5, PBH00b]. From the programmer’s viewpoint, these assertions

resemble the type (and mode) declarations used in strongly typed logic languages

such as Gödel [HL94a] or Mercury [SHC96] and in functional languages. How-

ever, when compared to the latter, note that in logic programming arguments of

procedures behave differently in the sense that arguments might be either input

or output, depending on the specific usage (i.e., the context) of the procedure.

For instance, the classical predicate append/3 can be used for concatenating lists,

for decomposing lists, for checking or finding a prefix of a given list, etc. There-

fore, our assertion language and the checking procedure are designed to allow

various usages of a predicate. Moreover, comparing to the former, herein we are

interested in supporting a general setting in which, on one hand assertions can be

of a quite general nature, including properties which are undecidable, and, on the

other hand, only a small number of assertions may be present in the program,

i.e., the assertions are optional. In particular, we do not wish to limit the pro-

gramming language or the language of assertions unnecessarily in order to make

the assertions decidable.

Consequently, the proposed framework needs to deal throughout with approxi-

mations [BDD+97, CC77a, HPBLG05]. It is imperative that such approximations

be performed in a safe manner, in the sense that if an “error” (more formally, a
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symptom) is flagged, then it is indeed a violation of the specification. However,

while a system can be complete with respect to decidable properties (e.g., certain

type systems), it cannot be complete in general, in the sense that when undecid-

able properties are used in assertions, there may be errors with respect to such

assertions that are not detected at compile-time. This is a trade-off that we ac-

cept in return for a greater flexibility. However, in order to detect as many errors

as possible, the framework combines static (i.e., compile-time) and dynamic (i.e.,

run-time) checking of assertions. In particular, run-time checks are (optionally)

generated for assertions which cannot be statically determined to hold or not. In

this thesis we will concentrate on compile-time checking only.

Our approach is strongly motivated by the availability of powerful and ma-

ture static analyzers for (constraint) logic programs (see, e.g., [BCHP96, LV94,

dlBHB+96a, MH92] and their references), generally based on abstract interpreta-

tion [CC77b]. Also, since we deal with modular programs, context-sensitive static

analyses that handle modules (e.g., [CC02a, CDG93] among others) provide us

with suitable background. Especially relevant is our recent work on context sensi-

tive, multivariant modular analysis (see Part II and [PH00, BdlBH+01, PCH+04,

CPHB06]). These analysis systems can statically infer a wide range of proper-

ties (from types to determinacy or termination) accurately and efficiently, for

realistic modular programs. We would like to take advantage of such program

analysis tools, rather than developing new abstract procedures, such as concrete

[DNTM89] or abstract [CLMV99, PBH00d] diagnosers and debuggers, or using

traditional proof-based methods, [AM94, AP93, Der93, Fer87, DM88].

This chapter builds on [PBH00c] where the assertion language that we use

was introduced, and on [PBH00d] where a proposal for the formal treatment of

assertion checking, both at compile-time and at run-time, was presented. We

extend the above-mentioned work in four main directions. Most importantly, the

solution of [PBH00d] is not modular. We show herein how to check assertions in

modular programs in a way that ensures the soundness of the approach. Also,

the formalization is different to that of [PBH00d], the present one being based

on generalized and trees. In addition, in this chapter multivariant information

generated by the analysis is exploited. This essentially means that multiple usages

of a procedure can result in multiple descriptions in the analysis output. In

consequence, this enables us to verify the code in a more accurate way.
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Modular verification has also been studied within OO programming (e.g.,

[LM05]) where the importance of contextual correctness, as in this thesis, has

been recognized. Nevertheless that work differ from this thesis in several respects,

the most important one being that they are based on traditional Hoare-like based

verification techniques and the full specification is required, whereas our frame-

work is based on abstract interpretation and allows for partial specifications.

In the context of Logic Programming [CLV98] shows how to perform abstract

diagnosis of incomplete logic programs. Our approach is similar to theirs, since

the correctness of a modular program is established in terms of the correctness

of its modules. However, in [CLV98] the complete specification is needed and,

more importantly, context-sensitive analysis information is not used, and there-

fore there is no concept of correctness in context. We claim that this is an impor-

tant advantage of our approach, because it allows the validation of a module in a

given program even when it is not possible to validate it in a context-independent

way.

Our basic tool for checking assertions is abstract interpretation [CC77b], as it

has been described in Part I. In order to formally represent results of concrete

execution and abstract interpretation of logic programs, the formalism of general-

ized and trees and abstract and-or trees will be used. In the rest of the chapter

we will use CP and AP to refer to abstract substituions stored in the GAT , and

λ for other abstract substitutions.

8.2 Assertions

We consider two fundamental kinds of (basic) assertions [PBH00c].∗ The first one

is success assertions, which are used to express properties which should hold on

termination of a successful computation of a given predicate (postconditions). At

the time of calling the predicate, the computation should satisfy a certain pre-

condition. success assertions can be expressed in our assertion language using

an expression of the form: success P : Pre ⇒ Post, where P is a predicate

descriptor, and Pre and Post are pre- and post-conditions respectively. With-

out loss of generality, we will consider that Pre and Post correspond to abstract

∗[PBH00c] presents other types of assertions, but they are outside the scope of this work.
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substitutions (λPre and λPost resp.) over vars(P ). This kind of assertion should

be interpreted as “in any invocation of P if Pre holds in the calling state and

the computation succeeds, then Post should also hold in the success state.” The

postcondition stated in a success assertion refers to all the success states (pos-

sibly none). Note that success P : true ⇒ Post can be abbreviated as success

P ⇒ Post.

A second kind of assertions expresses properties which should hold in any

call to a given predicate. These properties are similar in nature to the classi-

cal preconditions used in program verification. These assertions have the form:

calls P : Pre, and should be interpreted as “in all activations of P Pre should

hold in the calling state.” More than one assertion may be written for each pred-

icate. That means that, in any invocation of P , at least one calls assertion for

P should hold.

Finally, we write pred P : Pre⇒ Post, as a shortcut for the two assertions:

calls P : Pre and success P : Pre ⇒ Post. We write pred P ⇒ Post if

Pre = true. We claim that the pred form is a natural way to describe a usage

of the predicate. In what follows, we will use calls (resp. success) assertions

when we want to refer to the calls part (resp. success part) of a pred assertion.

We will assume, for simplicity and with no loss of generality, that all assertions

referring to a predicate P defined in module m are also provided in that module.

We will denote with assertions(m) the set of assertions appearing in module m,

and assertions(P ) refers to the assertions for predicate P .

Example 8.2.1. A possible set of calls assertions for the traditional length/2

predicate that relates a list to its length, might be:

:- calls length(L,N) : (var(L), int(N)). %(1)

:- calls length(L,N) : (list(L), var(N)). %(2)

These assertions describe different modes for calling that predicate: either for (1)

generating a list of length N, or (2) to obtain the length of a list L.

Possible success assertions for that predicate are:

:- success length(L,N) : (var(L), int(N)) => list(L).

:- success length(L,N) : (var(N), list(L)) => int(N).

The following two assertions are equivalent to all the previous assertions for length/2:
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:- pred length(L,N) : (var(L), int(N)) => list(L).

:- pred length(L,N) : (var(N), list(L)) => int(N).

We assign a status to each assertion. The status indicates whether the asser-

tion refers to intended or actual properties, and the relation between the property

and the program semantics. This section builds on [PBH00d], but it has been

adapted to our use of generalized and trees.

We say that a calls assertion A with predicate descriptor P is applicable to

a node N = 〈θc, (A,P
′), θs〉 of the generalized and tree if there is σ ∈ ren (a

renaming substitution) s.t. P ′ = Pσ and N is adorned on the left, i.e., the call

substitution θc of N has been already computed. A success assertion A with

predicate descriptor P is applicable to a node N if P ′ = Pσ (where σ ∈ ren)

and N is adorned on the right, i.e., the success substitution θs of the call at N

has been computed (the procedure exit has been completed). In what follows, we

will denote with ρ a suitable renaming substitution.

If an assertion holds within a fixed set of queries Q then the assertion is said

to be checked with respect to Q. If this is proved, the assertion receives the

corresponding status checked. Formally:

Definition 8.2.2 (Checked assertions). Let R be a program.

• An assertion A = calls P : Pre in R is checked w.r.t. the set of queries

Q iff ∀θc ∈ calling context(P,R,Q), θcρ ∈ γ(λPre).

• An assertion A = success P : Pre ⇒ Post in R is checked w.r.t. a set

of queries Q iff ∀(θc, θs) ∈ success context(P,R,Q), θcρ ∈ γ(λPre)→ θsρ ∈

γ(λPost).

A calls or success assertion can also be false, whenever it is known that there

is at least one call (or success) pattern in the concrete semantics that violates the

property in the assertion. If we can prove this, the assertion is given the status

false. In addition, an error message will be issued by the preprocessor.

Definition 8.2.3 (False assertions). Let R be a program.

• An assertion A = calls P : Pre in R is false w.r.t. the set of queries Q iff

∃θc ∈ calling context(P,R,Q) s.t. θcρ /∈ γ(λPre).
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• An assertion A = success P : Pre ⇒ Post in R is false w.r.t. the calling

context Q iff ∃(θc, θs) ∈ success context(P,R,Q) s.t. θcρ ∈ γ(λPre)∧ θsρ /∈

γ(λPost).

Finally, an assertion which expresses a property which holds for any initial

query is a true assertion. If it can be proven, independently on the calling context,

during compile-time checking, the assertion is rewritten with the status true.

Formally:

Definition 8.2.4 (True success assertion). An assertion A = success P :

Pre ⇒ Post in R is true iff for every set of queries Q, ∀(θc, θs) ∈

success context(P,R,Q), θcρ ∈ γ(λPre)→ θsρ ∈ γ(λPost).

Note that the difference between checked assertions and true ones, is that the

latter hold for any context. Thus, the fact that an assertion is true implies that

it is also checked.

Assertions are subject to compile-time checking. An assertion which is not

determined by compile-time checking to be given any of the above statuses is a

check assertion. This assertion expresses an intended property. It may hold or

not in the current version of the program. This is the default status, i.e., if an

assertion has no explicitly written status, it is assumed that the status is check.

Before performing a compile-time checking procedure all assertions written by

the user have check status.

In our setting, checking assertions must be preceded by analysis, and basi-

cally it boils down to comparing assertions (whenever applicable) with the ab-

stract information obtained by analysis. Below we present sufficient conditions

for compile-time assertion checking in a program not structured in modules. The

following sections will deal with assertion checking of modules and modular pro-

grams. In the case of proving a calls assertion, we would like to ensure that all

concrete calls are included in the description λPre. For disproving calls assertions,

i.e., turning them to false, we want to show that there is some concrete call which

is not covered by λPre.

Definition 8.2.5 (Abstract assertion checking). Let R be a program, and

Qα an abstract description of queries to R.
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• An assertion A = success P : Pre ⇒ Post in R is abstractly true iff

∃P ′:λc 7→ λs ∈ analysis(R, {P : λPre}) s.t. ∃σ ∈ ren, P ′ = Pσ, λc =

λPre ∧ λ
s v λPost.

• An assertion A = success P : Pre ⇒ Post in R is abstractly checked

w.r.t. Qα iff ∀P ′:λc 7→ λs ∈ analysis(R,Qα) s.t. ∃σ ∈ ren, P ′ = Pσ, λc v

λPre → λs v λPost.

• An assertion A = calls P : Pre in R is abstractly checked w.r.t. Qα iff

∀P ′:λc 7→ λs ∈ analysis(R,Qα) s.t. ∃σ ∈ ren, P ′ = Pσ, λc v λPre.

• An assertion A = success P : Pre ⇒ Post in R is abstractly false w.r.t.

Qα iff ∀P ′:λc 7→ λs ∈ analysis(R,Qα) s.t. ∃σ ∈ ren, P ′ = Pσ, λc v

λPre ∧ (λs u λPost = ⊥).

• An assertion A = calls P : Pre in R is abstractly false w.r.t. Qα iff

∀P ′:λc 7→ λs ∈ analysis(R,Qα) s.t. ∃σ ∈ ren, P ′ = Pσ, λc u λPre = ⊥.

In this definition analysis(R,Qα) is a generic analysis computation, and there-

fore the definition is parametric with respect to the analysis actually performed

for checking the assertions, as will be shown below. Now we show that Defini-

tion 8.2.5 can indeed serve as a sufficient condition:

Proposition 8.2.6 (Checking a calls assertion). Let A = check calls P :

Pre be an assertion.

• If A is abstractly checked w.r.t. Qα, then A is checked w.r.t. γ(Qα).

• If A is abstractly false w.r.t. Qα, then A is false w.r.t. γ(Qα).

• otherwise, nothing can be deduced about A considered atomically (and it is

left in check status).

Soundness of the above statements can be derived directly from the correctness

of abstract interpretation. In the case of checked assertions, we make sure that all

call patterns that can appear at run-time belong to γ(λPre). The “false” cases are

a bit more involved. Due to the approximating nature of abstract interpretation,

there is no guarantee that a given abstract call description λc corresponds to any

call pattern that can appear at run-time. Thus, it is possible that the assertion
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is never applicable, but if it is, it will be invalid. What is known is that every

run-time call pattern is described by one or more entries for P in AT . Thus, in

order to ensure that no call pattern will satisfy λPre, all λc’s for P must be taken

into account.

Finally, if a calls assertion is not abstractly checked nor abstractly false, we

cannot deduce anything about A when it is considered atomically. However, we

could still split it, and apply the same process to the parts.

Example 8.2.7. Let us consider the calls assertions shown in Example 8.2.1,

and suppose that after analyzing length/2 we can check that in any call to

length/2 the first argument is a free variable, but there is no information avail-

able regarding the second argument. Then, the following assertion

:- calls length(L,N) : (var(L), int(N)). %(1)

cannot be abstractly checked if it is considered atomically. However, the asser-

tion can be split in two parts, and different statuses can be set to each of the

parts: checked for the part referring to the first argument, and check for the one

corresponding to the second argument.

Proposition 8.2.8 (Checking a success assertion). Let A = check success

P : Pre⇒ Post be an assertion.

• If A is abstractly true, then A is true.

• If A is abstractly checked w.r.t. Qα, then A is checked w.r.t. γ(Qα).

• If A is abstractly false w.r.t. Qα, then A is false w.r.t. γ(Qα).

• otherwise, nothing can be deduced about A considered atomically (and it is

left in check status).

In order to show a success assertion to be true, a separate analysis with

the entry point λPre may run (as detailed in Definition 8.2.5), even though call

patterns from γ(λPre) may not appear in the program concrete execution starting

from calls (satisfying pred assertions) to exported predicates. Consequently, the

assertion is handled independently on the calling context. In this method, it is en-

sured that every success pattern described by λs originates from the call patterns

that are described by the precondition λPre. Thus, in order to prove the assertion
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to be true it suffices to perform the check λs v λPost. The assertion is shown to

be checked if either there is no call in the current calling context that satisfies

the preconditions, or the postcondition holds. The assertion is proved false if it

can be guaranteed that there are call patterns satisfying the preconditions, for

which the postcondition surely does not hold for the corresponding success pat-

terns. In the same way as before, a success assertion remains atomically check

when it is not abstractly checked nor abstractly false. We can however simplify

the assertion when part of the assertion can be proved to hold, like in a calls

assertion. Note that the more precise analysis results are, the more assertions get

status true, checked and false.

8.3 Checking assertions in a single module

The modular analysis framework described in Chapter 5 is independent from the

assertion language. Nevertheless, assertions may contain relevant information for

the analyzer. To this end when analysis(m,E,AT ) is computed for a module m,

the parameters E and AT can also refer to information gathered directly from

assertions, rather than from other analysis steps. This yields additional entry

and success policies with respect to those described in Chapter 5:

• E can be extracted from the call parts of pred assertions for exported pred-

icates in m. In this case, the module is analyzed separately from the actual

code of the importing modules; in fact they need not even be implemented,

they just have to obey the interface requirements, stated by the calls asser-

tions of their exported predicates. Using this option we can reason about

partial correctness of the module, since using the pred assertions as starting

point for analysis ensures that we cover all initial queries that satisfy the

assertions. Such set will be denoted as

CPAsst
m = {P : λPre | P ∈ exported preds(m)

∧ pred P : Pre⇒ Post ∈ assertions(m)}

∪ {P : > | P ∈ exported preds(m) ∧ assertions(P ) = ∅}.

• AT can also be extracted from pred (or success) assertions found in the

imported modules. This allows checking incomplete programs, as the im-

ported predicates do not even have to be implemented. Again, we assume
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the topmost success pattern if no assertions are present. This provides a

possibly inaccurate yet sound approximation. Given a module m, the an-

swer table generated from the assertions for imported modules is denoted

as

AT Asst
m =

⋃

n∈imports(m)

({P : λPre 7→ λPost | P ∈ exported preds(n)

∧ pred P : Pre⇒ Post ∈ assertions(n)}

∪ {P : > 7→ > | P ∈ exported preds(n) ∧ assertions(P ) = ∅}).

Since the information used in this new success policy is not obtained by

the analysis but written by the programmer, the correctness of the analysis

results depends on the correctness of the assertions used. It will be studied

below.

Note that we assume the topmost patterns if no assertions are present. In

what follows, we will refer to the entry policy described in Chapter 5 as CPGAT
m .

When checking assertions of modular programs, a given module can be con-

sidered either in the context of a program unit or separately, taking into account

only the imported predicates. When treated in the context of a program unit,

the calling context of a module m is called the set of initial queries Qm. We say

that the set of initial queries Qm to a module m is valid iff for every imported

predicate p all the calls assertions related to p are checked w.r.t. Qm.

Definition 8.3.1 (Partially correct in context module). A module m is

partially correct in context with respect to a set of initial queries Qm iff (1) every

calls assertion in m is checked w.r.t. Qm, and (2) every success assertion in m is

true, or checked w.r.t. Qm, and (3) every calls assertion for a predicate imported

by m is checked with respect to Qm.

Definition 8.3.2 (Partially correct module). A module m is partially correct

iff m is partially correct in context w.r.t. any valid set of initial queries.

8.3.1 Single module edit-check cycle

Assertions are checked, as explained above, w.r.t. all analysis information avail-

able for a given (call or success of a) predicate after executing the analysis of
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the code. Such analysis information is multivariant, and covers all the program

points in the analyzed code where a given predicate is called and how it suc-

ceeds. If available, a GAT table can be used to improve the analysis results with

information from previous analyses of imported modules.

In our system, when checking a module, calls assertions for imported predi-

cates are visible, and can therefore also be checked. This enables verifying whether

a particular call pattern to an imported predicate satisfies its assertions. Of

course, a calls assertion cannot be given status true or checked, as in general

not all call patterns for the imported predicate occur in the calling module. Nev-

ertheless, a warning or error is issued whenever the assertion is violated and/or

cannot be shown to hold.

The following proposition allows us to determine a basic partial correctness

result for a module:

Proposition 8.3.3. Let m be a module, and LAT =

analysisSP+(m, CPAsst
m , AT ), where AT is an over-approximating answer

table for (some modules in) imports(m).

The module m is partially correct if all success assertions are abstractly true

w.r.t. LAT and all calls assertions for predicates in m and imported preds(m)

are abstractly checked w.r.t. LAT .

This proposition considers correctness of a single module regardless of the

calling context of the module, since the starting point of the analysis is the set

of preconditions in pred assertions. Note that LAT must be computed using an

over-approximating success policy, in order to obtain correct results (provided

that AT is correct). The answer table AT used for the analysis may be incom-

plete, or even an empty set: this approach allows us to check the assertions of

a given module even when there is no information available from the imported

modules. However, the more accurate AT is, the more assertions get status true

or checked. This proposition is especially useful during the development of a

modular program (i.e., the “edit-check cycle”), when different programmers de-

velop different modules of the program. A programmer can check the assertions

of his/her module as soon as it is syntactically correct. If other programmers

in the team have analyzed their modules already, a shared GAT can be used to

generate the answer table AT for checking the module more accurately.
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Example 8.3.4. The following module computes the cardinality of a list (i.e.,

the number of distinct elements in a list):

:- module(cardinality,[card/2],[assertions]).

:- use_module(lists,[length/2,remove_dups/2]).

:- pred card(L,C) : list(L) => num(C).

card(L,C):- remove_dups(L,L1), length(L1,C).

The first line of the program contains the module declaration in the Ciao

language, that defines the module name and the list of exported predicates, as well

as declaring the usage of the assertions package, which is needed for assertion

processing. The second line declares that length/2 and remove dups/2 defined

in the module lists will be imported.

Predicate card/2 first removes duplicated elements of the list in the first ar-

gument by means of remove_dups/2, and then gets the length of that list using

length/2.

Since length/2 and remove_dups/2 are imported from the module lists,

their code is not accessed by the analyzer when processing cardinality separately.

If there is no information available for those predicates, when analyzing card/2

with an SP+ success policy no useful information will be produced. If however

lists has been analyzed before, the resulting information may be useful for the

analysis of card/2.

Unfortunately, if the modules imported by m are not implemented yet, there

is no possibility to analyze them in order to provide more accurate information to

the analyzer. In order to overcome that, we can use the assertion information for

the exported predicates in imported modules to obtain a more precise LAT . In

this case, correctness of the module cannot be guaranteed, but a weaker notion

of correctness, conditional partial correctness, may be proved. Note that in this

case the analysis relies on possibly unverified assertions written by the user.

Proposition 8.3.5. Let m be a module, and LAT = analysisSP+(m, CPAsst
m ,

AT Asst
m ).

The module m is conditionally partially correct if all success assertions are ab-

stractly true, and all calls assertions for predicates in m and imported preds(m)

are abstractly checked w.r.t. LAT .
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This conditional partial correctness turns into partial correctness when the

program unit is taken as a whole, as we will see in Section 8.4.

Example 8.3.6. Let us assume that in Example 8.3.4 module lists contains

the following assertions:

:- pred length(L,N) : list(L) => num(N).

:- pred remove_dups(L,S) : list(L) => list(S).

In this case, module cardinality can be analyzed using the information in

those assertions, and then that module can be checked conditionally, where the

condition is the correctness of those assertions.

Example 8.3.7. The power of the assertion language and the assertion checking

system can be illustrated with the functor/3 library predicate. The ISO standard

for Prolog [PRO94] states that functor/3 can only be invoked using two possible

calling modes, and any other mode will raise a run-time error. The first mode

allows obtaining the functor name and arity of a structure, while the second calling

mode builds up a structure given its functor name and arity.

Our assertion checking system is able to statically detect such calling patterns

because several assertions are allowed for a given predicate, and the underlying

analyzer captures context-sensitive, multivariant abstract information. They can

be expressed by means of the following assertions:

:- pred functor(+T,Name,Arity) => (atomic(Name),nat(Arity)).

:- pred functor(T,+Name,+Arity) : (atomic(Name),nat(Arity)) => nonvar(T).

In these assertions, the plus sign before an argument has the usual meaning of a

Prolog mode, i.e., that the argument cannot be a free variable on calls. The calls

parts of these assertions will be used when analyzing and checking any module

that uses this library predicate, in order to check the calling modes to it.

8.4 Checking assertions in a program unit

Checking assertions in a program unit consisting of several modules differs from

checking assertions in a single module in some ways. First of all, the most accurate

initial queries to a given module m are provided by the calls to m made by other
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modules in the program unit (except the top-level one). Secondly, the success

patterns of imported predicates may also be more accurate if we consider a given

program unit. This leads us to the notion of correctness for program units. Note

that the following definition concerns the concrete semantics.

Definition 8.4.1 (Partially correct program unit). Let mtop be a module

defining a program unit U = program unit(mtop). U is partially correct iff mtop is

partially correct and ∀m ∈ depends(mtop), m is partially correct in context w.r.t.

the sets of initial queries induced by the initial queries to mtop.

8.4.1 Verifying a program unit with intermodular analysis

information

In this section we describe the basic, näıve algorithm for checking assertions in a

completely implemented program unit. This procedure fully exploits the modu-

larity of the program, and it is depicted in Algorithm 1. We assume that before

checking assertions, an intermodular analysis fixed point is computed. This step

aims at obtaining correct and precise analysis information for the exported pred-

icates of every module in the program, and it is, to some extent, a source of inef-

ficiency that we will deal with in next sections. In the second step, the algorithm

selects every module one by one, and checks both local assertions and assertions

for predicates imported from other modules. Observe that before the checking,

an analysis must be performed for each individual module, in order to find call

patterns† and success patterns for non-exported predicates, as this information is

not captured in the GAT .‡ We use the notation check assertions(m,LAT ) to de-

note activation of checking assertions in module m, w.r.t. the analysis information

contained in a local answer table LAT .

The algorithm verifies whether each module in the input program unit is

correct in context. Therefore, Algorithm 1 checks if a program unit is correct.

†Notice that predicates exported by a module m may be called from inside m as well as

from modules importing m.

‡Local analysis results could be stored on disk as well as the GAT for efficiency purposes.

However, it is conceptually like performing the local analysis of each module again in the

checking step.
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Algorithm 1 Checking assertions with intermodular analysis information

Input: top module mtop

Input: a global answer table GAT = modular analysis(mtop)

Output: Warning/Error messages, new status in the assertions in program unit

(mtop)

for all m ∈ program unit(mtop) do

LATm := analysis(m, CPGAT
m , GAT )

check assertions(m,LATm)

end for

Correctness of checking is guaranteed for any success policy used during the

intermodular analysis. We can state the following results:

Proposition 8.4.2. Let mtop be a module defining a program unit

U = program unit(mtop). Let A be an assertion in U . If Algorithm 1 decides

that A is abstractly true (resp. checked or false) then A is true (resp. checked or

false).

Thus, in consequence, Algorithm 1 can be viewed as a sufficient condition for

partial correctness of a program unit. Finally, we can also state a result concerning

the accuracy of Algorithm 1, as compared with the flattening approach to modular

analysis, since the results produced by modular analysisSP−(m) are as precise

as those obtained by the analysis of flatten(m) [PCH+04].

Proposition 8.4.3. Let LAT = analysis(flatten(mtop), CPAsst
mtop

, ∅). The output

of (1) Algorithm 1 run with input mtop and GAT = modular analysisSP−(mtop)

is the same as the output of (2) check assertions(flatten(mtop), LAT ) with the

exception that some assertions which are marked as checked by (2) may be marked

as true by (1).

Note that the use of SP− policy is only required when there are cycles in

the intermodule dependency graph (in order to reach the least fixed point, see

Chapter 5).
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Algorithm 2 Checking assertions without modular analysis

Input: top-level module mtop

Output: Warning/Error messages, new status in the assertions in program unit

(mtop)

for all m ∈ program unit(mtop) do

LATm := analysisSP+(m, CPAsst
m ,AT Asst

m )

check assertions(m,LATm)

end for

8.4.2 Verifying a program unit with no intermodular anal-

ysis information

As explained in the previous section, every assertionA of the form check calls P :

λPre ∈ assertions(m) where P ∈ exported preds(m) is verified in every module

that imports P from m. If such calls assertions are abstractly true in all im-

porting modules (i.e., for every call pattern CP found in a module importing P

we have that CP v λPre), then that means that λPre approximates all possible

calling patterns to P from outside m. Therefore, the calls assertions can be

used as starting points for analyzing every module in the program unit for check-

ing the assertions. This leads us to a scenario for checking assertions, shown in

Algorithm 2, where no prior intermodular analysis is required, and which aims at

proving every module to be conditionally correct rather than correct in context.

Observe that Algorithm 2 does not use the modular analysis results as input.

Instead, pred assertions of exported predicates are taken as input to the single-

module analysis phase, CPAsst
m . A similar policy is applied when collecting success

patterns of imported predicates.

This scenario can be viewed as proving conditional correctness of each mod-

ule m ∈ program unit(mtop), where the conditions are the corresponding pred

assertions from imported modules, as stated in Proposition 8.3.5. On the other

hand, since we check all the modules in the program unit, and the program unit

is self-contained, the pred assertions from imported modules are also the subject

of checking. Assume that after checking all the modules in program unit(mtop)

all the pred assertions get status checked or true.§ This means that for ev-

§In this case the calls part originated from the pred assertion receives status checked, and
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ery exported/imported predicate P , the analysis information P : CP 7→ AP

generated when analyzing individual modules satisfies the checking conditions of

Propositions 8.2.6 and 8.2.8. Thus, the following result holds:

Proposition 8.4.4. Let mtop be a module defining a program unit U =

program unit(mtop). If each module m ∈ U is conditionally partially correct,

and mtop is partially correct, then U is partially correct.

If the assertions get true or checked using Algorithm 2, it is easy to see that

they would also get true or checked if the (full) modular analysis were used, as

modular analysis computes the least fixed point, i.e., it returns the most accu-

rate analysis information. Consequently, if the calls assertions receive status

checked and the success assertions receive status true when checking with Al-

gorithm 2, there is no need to run a costly modular analysis.

8.4.3 Interleaving analysis and checking

Algorithm 2 may not be able to determine that a program unit is partially correct

if the user has provided either too few assertions for exported predicates or they

are not accurate enough. In this case we have to replace information from the

missing assertions and to incorporate a certain degree of automatic propagation

of call/success patterns among modules during the checking process. The basic

idea is to interleave analysis and compile-time checking during modular analysis.

The main advantage of this approach is that errors will be detected as soon

as possible, without computing an expensive intermodular fixpoint, yet having

call and success patterns being propagated among modules. The whole process

terminates as soon as an error is detected or when the modular analysis fixed

point has been reached, as shown in Algorithm 3. Concrete procedures in steps

1 and 2 depend on a specific intermodular analysis algorithm, success and entry

policies, etc. Note that in Algorithm 3 every module is analyzed for CPGAT
m , the

set of all call patterns for a module m in the GAT .¶

the success part status true.

¶CPGAT

m is used for simplicity of the presentation. In the actual implementation the modules

are analyzed just for the marked entries, and only the assertions related to those entries are

checked.
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Algorithm 3 Interleaving analysis and checking

Input: top module mtop

Output: GAT , Warning/Error messages, new status in the assertions in

program unit (mtop)

Set initial GAT with marked entries for call patterns from CPAsst
mtop

while there are modules with marked entries in GAT do

1 select module m

LATm := analysisSP (m, CPGAT
m , GAT )

check assertions(m,LATm)

if an error is detected in m then

STOP

end if

2 update GAT with LATm

end while

If an SP+ success policy is used in Algorithm 3, then LAT 1
m º LAT 2

m º · · · º

LAT n
m (see Chapter 3), where LAT n

m coincides with the analysis results of module

m when the intermodular fixed point has been reached, and each of the LAT i
m

corresponds to the status of the analysis answer table for m at every iteration of

the algorithm that schedules m for analysis.

Proposition 8.4.5. Let LATm be an answer table for module m. If an assertion

is abstractly checked (resp. abstractly true or abstractly false) w.r.t. LATm it will

also be abstractly checked (resp. abstractly true or abstractly false) w.r.t. any

answer table LAT ′
m s.t. LAT ′

m ¹ LATm.

Thus, the conclusions drawn about the assertions are sound in the following

sense: if an assertion is detected to be checked or false in an intermediate step, it

will surely remain checked or false at the end of the process. If the assertion is not

yet proved not disproved, its status might change in the subsequent steps as the

analysis information might be more accurate in future iterations. This observation

allows us to define an alternative termination condition of Algorithm 3. The

algorithm terminates with no error messages as soon as all the assertions in the

program unit obtain status checked or true.

Algorithm 3 can be adapted to apply the SP− success policy. The sequence

of answer tables generated during the analysis using that policy is now LAT 1
m ¹
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LAT 2
m ¹ · · · ¹ LAT n

m, where only LAT n
m, i.e. the one corresponding with the

global fixpoint, is guaranteed to safely approximate the module’s semantics. The

following proposition holds.

Proposition 8.4.6. Let LATm be an answer table for module m. If an assertion

A is not abstractly checked w.r.t. LATm, then ∀LAT ′
m s.t. LATm ¹ LAT ′

m, A

will not be abstractly checked w.r.t. LAT ′
m.

Therefore, in this case the following conclusions can be made about the final

status of assertions: if at any intermediate step the status of an assertion remains

as check or becomes false, it will at most be check at the end of the whole

process. Therefore, Algorithm 3 must stop and issue an error as soon as false

or check assertions are detected (instead of stopping only when there are false

assertions, as above).

Sufficient condition for partial correctness follows:

Proposition 8.4.7. Let mtop be a module defining a program unit U =

program unit(mtop). If Algorithm 3 terminates without issuing error messages,

then (1) if SP+ is used and Algorithm 3 decides that an assertion A is abstractly

true (resp. checked), then A is true (resp. checked); and (2) if SP− is used then

all assertions in U are checked.

8.4.4 An example

Let us illustrate the process of checking assertions in a program unit. Consider

the following main module bdays that identifies boring days as days when boring

things have to be done.

:- module(bdays,[boring_day/1],[assertions]).

:- use_module(classify_days).

:- check pred boring_day(D) => tworkingday(D). % (1)

boring_day(Day) :- is_boring(ToDo), what_to_do(Day,ToDo).

is_boring(teaching).

is_boring(faculty_meeting).
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The above module imports from the classify days module predicate

what to to/2 and the regular type tworkingday, used in assertion (1).

:- module(classify_days,

[what_to_do/2,tweekday/1,tactivity/1,tworkingday/1],

[assertions, regtypes]).

:- regtype tweekday/1.

tweekday(mon). tweekday(tue). tweekday(wed).

tweekday(thu). tweekday(fri). tweekday(sat).

tweekday(sun).

:- regtype tworkingday/1.

tworkingday(mon). tworkingday(tue). tworkingday(wed).

tworkingday(thu). tworkingday(fri).

:- regtype tactivity/1.

tactivity(hacking). tactivity(teaching). tactivity(research).

tactivity(pub). tactivity(nap). tactivity(faculty_meeting).

:- check pred what_to_do(A,B) => (tweekday(A), tactivity(B)). % (2)

what_to_do(mon,hacking).

what_to_do(tue,teaching).

what_to_do(wed,teaching).

what_to_do(thu,faculty_meeting).

what_to_do(fri,research).

what_to_do(sat,pub).

what_to_do(sun,nap).

Assume that we would like to check assertions in the above program unit.

We will do it first without intermodular analysis, i.e. following Algorithm 2. The

modules are analyzed, with type analysis, one by one, and the only information

being propagated between the modules is related to assertions for exported pred-

icates. During the analysis the variable Day in the clause defining boring day/1

obtains an abstract value (a type) tweekday, as this value has been propagated

from the imported assertion (2) for what to do/2. Nothing more precise can be
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inferred in this scenario. Consequently assertion (1) in the main module remains

check‖. Assertion (2) obtains always status checked.

In order to validate assertion (1) in the module day, more accurate success

patterns of what to do/2 must be computed, which essentially means that Algo-

rithm 1 or 3 has to be applied. In this case those success patterns of what to do/2

found by the intermodular analyzer are used rather than information extracted

from the assertion. Thus the variable Day takes an abstract value rt10, where

rt10 is a regular type newly generated by the analyzer:

:- regtype rt10/1.

rt10(thu).

rt10(tue).

rt10(wed).

Since rt10 is a subtype of tworkingday assertion (2) obtains status checked.

Note that this reasoning cannot be easily performed without intermodular anal-

ysis, even if we use more expressive type language in the assertions.

8.5 Implementation issues

This assertion checking schema has been implemented on CiaoPP, the Ciao Sys-

tem preprocessor [HPBLG05]. The different scenarios for compile-time assertion

checking that have been detailed in previous sections determine the final imple-

mentation of the assertion system. In the following sections, the most relevant

factors are revised, and the implementation with the interface is discussed.

8.5.1 Modules checked

The first question to be answered by the user concerns which modules should be

subject to assertion checking. As we have already seen in Section 8.3.1, the pro-

grammer that develops a single module might be interested in checking assertions

only in that module, possibly because other modules are not completely imple-

mented yet, or because assertions in those modules have been already verified.

The purpose of checking the assertions of a module in isolation is in general to

‖A warning message is issued to the user.

148



check all the assertions in that module and the calls to imported predicates (as

in propositions 8.3.3 and 8.3.5).

On the other hand, modifying a module may affect other modules which

import the changed module. That might happen if call patterns for imported

predicates or success patterns for exported predicates rise errors which are prop-

agated to the related modules and prevent corresponding assertions from being

true or checked. Of course, the user can also select an arbitrary subset of modules

to be verified, or the whole program unit.

System libraries are excluded by default from the checking process. Nev-

ertheless, the assertions regarding exported library predicates will be exported

along with the predicates, in order to verify whether those predicates are used

as expected. Checking assertions for the exported predicates of library modules

has been found very useful, since even user programs with no assertions can be

checked with respect to the assertions written in the system libraries.

Example 8.5.1. The following module computes the average of a list of numbers:

:- module(average,[avg/2],[assertions]).

:- use_module(lists,[length/2]).

:- use_module(numlists,[sum/2]).

:- pred avg(L,A) : list(L,num) => num(A).

avg(L,A):-

length(L,N), sum(L,S), A is S / N.

Since length/2 and sum/2 are imported from lists and numlists, respec-

tively, their code is not accessed by the analyzer when analyzing average sepa-

rately. If there is no information available for those predicates, when analyzing

avg/2 with an SP+ success policy no useful information should be produced.

However, since is/2 is also a predicate imported by default from the

arithmetic system library, the assertions related to it are taken into account.

In such library there exists the following assertion:

:- pred is(X,+Y) : arithexpression(Y) => num(X).

After checking average, the system issues the following warning message:
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WARNING (ctchecks_messages): (lns 6-10)

at literal 3 not verified calls assertion:

:- calls arithmetic:is(X,Y)

: [[arithmetic:arithexpression(Y)]]

because on call arithmetic:is(term,^ (term/term))

containing both expected properties extracted from the assertion and the analysis

information at the call to is/2. Observe that there is no specific information

available for variables S and N∗∗ when the goal A is S / N is analyzed and there-

fore it cannot be guaranteed that S / N is actually an arithmetic expression. But

the assertion for is/2 still allows checking the assertion in average, since the as-

sertion for is/2 states that is/2 will always return a number in its first argument

upon success.

8.5.2 Modules analyzed

The analysis of the code that must be performed prior to checking the assertions

is another factor that can yield different implementations. As we have already

explained, when a single module is to be checked, the analysis phase can pro-

duce improved results if an intermodular analysis of the whole program unit is

performed. As is pointed out in Proposition 8.3.3, more accurate analysis results

may produce more assertions to become checked. This can happen not only when

an intermodular fixed point has been reached. An interesting intermediate sce-

nario is depicted for analysis in [PCH+04], in which the modules are analyzed

when their programmers request it, reusing the results from previous analyses of

related modules in a shared GAT . This global table can be safely used (using an

SP+ success policy) at any time for checking a module.

If the rest of the modules in the program are not finished yet, or the user

is confident that the inter-modular analysis does not contribute with any new

information (for example because the assertions already set in other modules are

very accurate), the modular analysis phase might be dropped completely. The

inter-modular analysis may not be necessary even when all modules are to be

checked: if the pred assertions are precise enough, the program can be verified

by checking its modules one by one, as shown in Section 8.4.2.

∗∗In the abstract domain used for this example, > is represented by term.
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8.5.3 The interface

An interface to the CiaoPP system has been implemented as a part of Emacs Ciao

mode. Figure 8.1 shows the interface in the state when the user is supposed to

decide values of system parameters that determine the working mode and specific

tasks performed by CiaoPP.

Figure 8.1: An Interface.

We show the questions typically posted in the so-called expert mode. An

alternative option is the naive mode in which CiaoPP takes default parameters

values appropriate for a given task decided by the user in the Action Group

option. It is set to check_assertions, as CiaoPP, besides checking assertions,

can be used for other purposes like analyzing or specializing programs. The

manual value in Perform Compile-Time Checks option indicates that the

user can customize analysis options. Otherwise (auto value), the system, based on

assertions found in the program, will determine automatically abstract domains

needed for the checking process.

The next interesting option is Modules to Check. This one directly corre-
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Figure 8.2: A warning message.

sponds to our discussion in Section 8.5.1 and can be set to values all or curr mod

(current module - a module in the current Emacs buffer). The next option Iter-

ate Over Modules determines whether the checking algorithm should perform

intermodular fixpoint analysis or not. The option Related Modules Info deter-

mines if the call (resp. success) patterns of exported (resp. imported) predicates

are extracted from the assertions or from the GAT (the registry). If the answer

to Iterate Over Modules is off then single traversal of all the modules in

the program unit is performed. It results in Algorithm 1, if Related Modules

Info is set to registry and intermodular fixpoint has been computed before, or

it results in Algorithm 2 if Related Modules Info is set to assertions. If

Iterate Over Modules is set to on then the interface displays another option

Interleave Analysis and Checking which allows to accomplish Algorithm 3

of performing checking and intermodular analysis at the same time.

The remaining options displayed in Figure 8.1 control less importatant aspects

of checking process or are simply irrelevant for our purpose.

Figure 8.2 demonstrates a warning message displayed by the interface. In the
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bottom Emacs buffer we can see the message itself, containing information about

the assertion that could not be proved nor disproved, and the analysis information

obtained for call of bsort/2 for the two different abstract domains terms and

shfr. Note that the message also contains a line saying which of the assertion

properies have not been proved yet. The top buffer displays the corresponding

file with the assertion highlighted.

8.6 Conclusions

Algorithms 1 and 2 have different levels of accuracy, computing cost, and ver-

ification power. The advantages of Algorithm 2 are that it is potentially more

accurate and it does not impose any burden on the user, since no assertions

are compulsory. On the other hand, Algorithm 1 has low computing cost, since

modules only need to be analyzed once and it can be applied to incomplete pro-

grams. All this at the price of a development policy where module interfaces are

accurately described using assertions.

Comparing this chapter with related work, the scenario described in Sec-

tion 8.4.2 can be seen as an instance of the analysis with user-provided interface

of [CC02a]. Our goal is however different than theirs: instead of computing the

most precise analysis information we try to prove or disprove assertions, which

makes this method more related in fact to the one of [CLV98], focused on program

verification. Nevertheless, unlike [CLV98] we do not require the user to provide

a complete specification, specially in Algorithm 2 –the missing parts are either

described by topmost values or infered by the interleaved analysis algorithm.
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Part IV

Applications
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This final part of the thesis consists of two applications of program analysis

to the transformation and specialization of real-life programs, respectively.

In the first case, an application of modular program analysis of special interest

is the possibility of using this technique in programs with interfaces with external

systems from which the source code is not available. There are several reasons for

not having the code available to the analyzer, and among them, it is particularly

important the use of interfaces to other languages. It is of special relevance the

case of accessing to persistent information, and specifically the access to relational

database systems through relational languages: its own structure, from the point

of view of the analysis, brings a great deal of information (types of the arguments,

termination, determinism, modes and instantiation level of arguments, etc.). The

next chapter describes a specific implementation developed in the Ciao system

to provide persistent storage capabilities, transparent to the underlying storage

method. From the point of view of the Ciao language, the basic constructs for

accessing and modifying data in the persistent storage are seen as simple proce-

dure calls. That means that they can be considered just like calls to imported

procedures, and therefore modular analysis and assertion checking algorithms can

work seamlessly in that scenario. Persistent predicates are declared by means of

the assertion language already described in Part III. The aim for using the asser-

tion language is in this case twofold: on one hand, it declares which procedures

are to reside in a persistent location; on the other hand, it facilitates the use of

global preprocessing tools like analyzers and compile-time checkers for programs

with persistent information and incomplete code, and provides additional type

information about the data stored in persistent procedures. As a first approach,

a simple implementation based on plain files is introduced, and then an imple-

mentation based on external relational databases is presented and global analysis

results used for optimizing programs using that implementation.

In the second case, a preliminary modular specialization algorithm is devel-

oped in order to reduce the size of code in libraries for a given program. This

algorithm is based in the non-modular multiple specialization algorihm of [PH03],

and extends it by propagating specialized versions of predicates across the modu-

lar graph. In this case, it has been applied to strip-down the code of the libraries

used by a program, in order to reduce the total size of the object code and make

them fit in a small device. Program specialization has been successfully applied
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to user programs, but it has not been directly used for system libraries yet. This

approach is specially relevant for pervasive systems, as it allows the use of generic

libraries for developing applications on virtual machine runtime-based systems.

It presents important differences with respect to current runtime systems for per-

vasive devices (like Java Micro Edition series of runtime environments), as they

have a prefixed set of runtime libraries specific for such systems.

Some results have been obtained, showing that an important reduction in

runtime library size has been achieved using a simple abstract domain. It is

expected that the application of more complex abstract domains will provide

even better results. This work is described in the second chapter of this part.
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Chapter 9

Optimization of Interfaces to

Persistent Information

This chapter describes a model of persistence in (C)LP languages and two differ-

ent and practically very useful ways to implement this model in current systems.

The fundamental idea is that persistence is a characteristic of certain dynamic

predicates (i.e., those which encapsulate state). The main effect of declaring a

predicate persistent is that the dynamic changes made to such predicates persist

from one execution to the next one. After proposing a syntax for declaring

persistent predicates, a simple, file-based implementation of the concept is

presented and some examples shown. An additional implementation is presented

which stores persistent predicates in an external database. The abstraction of

the concept of persistence from its implementation allows developing applications

which can store their persistent predicates alternatively in files or databases with

only a few simple changes to a declaration stating the location and modality

used for persistent storage. This chapter presents the model, the implementation

approach in both the cases of using files and relational databases, a number

of optimizations of the process (using information obtained from static global

analysis and goal clustering), and performance results from an implementation

of these ideas.
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9.1 Introduction

State is traditionally implemented in Prolog and other (C)LP systems through

the built-in ability to modify predicate definitions dynamically at runtime.∗ Gen-

erally, fact-only dynamic predicates are used to store information in a way that

provides global visibility (within a module) and preserves information through

backtracking. This internal rule database, albeit a non-declarative component

of Prolog, has practical applications from the point of view of the needs of a

programming language.†

However, Prolog internal rule database implementations associate the lifetime

of the internal state with that of the process, i.e., they deal only with what

happens when a given program is running and changes its private rule database.

Indeed, the Prolog rule database lacks an important feature: data persistence. By

data persistence we refer to rule database modifications surviving across program

executions (and, as a later evolution, maybe being accessible to other programs

–even concurrently). This feature, if needed, must be explicitly implemented by

the programmer in traditional systems.

In this chapter we present a conceptual model of persistence by proposing

the concept of persistent predicates, and a number of implementations thereof. A

persistent predicate is a special kind of dynamic, data predicate that “resides”

in some persistent medium (such as a set of files, a database, etc.) and which

is typically external to the program using such predicates. The main effect is

that any changes made to a persistent predicate from a program “survive” across

executions , i.e., if the program is halted and restarted the predicate that the

new process sees is in precisely the same state as it was when the old process

was halted (provided no change was made in the meantime to the storage by

other processes or the user). Notably, persistent predicates appear to a program

as ordinary dynamic predicates: calls to these predicates can appear in clause

bodies in the usual way without any need to wrap or mark them as “external”

or “database” calls and updates to persistent predicates can be made calling the

∗In the ISO standard these predicates have to be marked explicitly as dynamic.

†Examples of recent proposals to extend its applicability include using it to model reasoning

in a changing world [Kow96], and as the basis for communication of concurrent processes [CH99]

and objects [PB02].
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standard asserta/1, assertz/1, retract/1, etc. predicates used for ordinary

dynamic predicates, but suitably modified. Updates to persistent predicates are

guaranteed to be atomic and transactional, in the sense that if an update ter-

minates, then the external storage has definitely been modified. This model

provides a high degree of conceptual compatibility with previously existing pro-

grams which access only the local rule database,‡ while bringing at the same time

several practical advantages:

• The state of dynamic predicates is, at all times, reflected in the state of the

external storage device. This provides security against possible data loss

due to, for example, a system crash.

• Since accesses to persistent predicates are viewed as regular accesses to the

Prolog rule database, analyzers (and related tools) for full Prolog can deal

with them in the same way as with the standard dynamic predicates, result-

ing in a series of optimizations, some of which will be shown. Using explicit

accesses to files or external databases through low-level library predicates

would make this task much more difficult.

Finally, perhaps the most interesting advantage of the notion of persistent

predicates is that it abstracts away how the predicate is actually stored. Thus,

a program can use persistent predicates stored in files or in external relational

databases interchangeably, and the type of storage used for a given predicate

can be changed without having to modify the program except for replacing a

single declaration in the whole program. The program always contains standard

internal database access and aggregation predicates, independently of whether

the storage medium is the internal Prolog rule database, file-based, or database-

based. It also minimizes impact on the host language, as the semantics of the

access to the rule database is compatible with that of Prolog.

Our approach builds heavily on the well known and close relationship between

(Constraint) Logic Programming and relational databases [Ull90]: for example,

operations in the relational algebra can be easily modeled using Horn clauses

(plus negation for some operations), where database tables are seen as fact-only

‡The “logical view” of updates [LO87] is not enforced in the case of using a relational

database as storage, in the same way as with concurrent data predicates [CH99].
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predicates, and every record is seen as a fact. On the other hand, the embedding

into Prolog allows combining full Prolog code (beyond DATALOG) with the

accesses to the persistent predicates.

A number of current Prolog systems offer external database interfaces, but of-

ten with ad-hoc access builtins. In those cases in which some kind of transparency

is provided (e.g. Quintus ProDBI, SICStus and LPA Prodata, ECLiPSe), the sys-

tem just allows performing queries on tables as if they were Prolog predicates,

but does not allow updating tables using the same transparent approach. We

argue that none of these cases achieve the same level of flexibility and seamless

integration with Prolog achieved in our proposal.

Implementations of this model have been used in real-world applications such

as the Amos tool (see http://www.amosproject.org), part of a large, ongoing

international project aimed at facilitating the reuse of Open Source code by means

of a powerful, ontology-based search engine working on a large database of code

information.

9.2 Persistent Predicates in Prolog

We will now define a syntax for the declaration of persistent predicates. We will

also present briefly two different implementations of persistent predicates which

differ on the storage medium (files of Prolog terms in one case, and an external

relational database in the other). Both implementations aim at providing a se-

mantics compatible with that of the Prolog internal rule database, but enhanced

with persistence over program executions.

9.2.1 Declaring Persistent Predicates

The syntax that we propose for defining persistent predicates is based on the

assertion language of Ciao Prolog [PBH00c, HPBLG03b], which allows express-

ing in a compact, uniform way, types, modes, and, in general, different (even

arbitrary) properties of predicates.

In order to specify that a predicate is persistent we have to flag it as such,

and also to define where the persistent data is to be stored. Thus, a minimum

declaration is:
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:- include(library(persdb)).

:- pred employee/3 + persistent(payroll).

:- pred category/2 + persistent(payroll).

:- persistent_db(payroll, file(’/home/clip/accounting’)).

The first declaration states that the persistent database library is to be used to

process the source code file: the included code loads the persdb library support

predicate definitions, and defines the local operators and syntactic transforma-

tions that implement the persdb package. The second and third line state that

predicates employee/3 and salary/2 are persistent and that they live in the

storage medium to be referred to as payroll, while the fourth one defines which

type of storage medium the payroll identifier refers to.§ It is the code in the

persdb package that processes the persistent/1 and persistent db/2 decla-

rations, and which provides the code to access the external storage and keeps

the information necessary to deal with it. In this particular case, the storage

medium is a disk file in the directory specified in the directive. The predicates

in Figure 9.2 use these declarations to compute the salary of some employee, and

to increment the number of days worked:

salary(Emp,Salary):-

employee(Emp,Cat,Days),

category(Cat,PerDay),

Salary is Days * PerDay.

one_more_day(Emp):-

retract(employee(Emp,Cat,Days)),

Days1 is Days + 1,

assert(employee(Emp,Cat,Days1)).

Figure 9.1: Accessing and updating a persistent predicate

If the external storage is to be kept in an SQL database, argument type

information is required in order to create the table (if the database is empty) and

also to check that the calls are made with compatible types. It is also necessary

to establish a mapping (views) between the predicate functor and arguments

§The persistent db/2 information can also be included in the argument of persistent,

but using persistent db/2 declarations allows factoring out information shared by several

predicates.
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and table name and columns. In this example, suitable declarations are:

:- include(library(persdb)).

:- pred employee/3 :: string * string * int +

persistent(employee(ident, category, time), payroll).

:- pred category/2 :: string * int +

persistent(category(category, money), payroll).

:- persistent_db(payroll, db(paydb, admin, ’Pwd’, ’db.comp.org’)).

The db/4 structure indicates database name (paydb), database server

(db.comp.org), database user (admin) and password (Pwd). This information

is processed by the persdb package, and a number of additional formats can

be used. For example, the port for the database server can be specified (as in

’db.comp.org’:2020), the precise database brand can be noted (as, for example

odbc/4 or oracle/4 instead of the generic db/4), etc. This instructs the persdb

package to use different connection types or to generate queries specialized for

particular SQL dialects. In addition, values for the relevant fields can also be filled

in at run time, which is useful for example to avoid storing sensitive information,

such as password and user names, in program code. This can be done using hook

facts or predicates, which can be included in the source code, or asserted by it,

perhaps after consulting the user. These facts or predicates are then called when

needed to provide values for the arguments whose value is not specified in the

declaration. For example, a declaration such as:

:- persistent_db(payroll, db(paydb, puser/1, ppwd/1, ’db.comp.org’)).

would call the hook predicates puser/1 and ppwd/1, which are expected to be

defined as puser(User):- ... and ppwd(Password):- ....

Note also that, as mentioned before, the declarations corresponding to

employee/3 and category/2 specify the name of the table in the database (which

can be different from that of the predicate) and the name of each of its columns.

It may also have a type signature. If a table is already created in the database,

then this declaration of types is not strictly needed, since the system will retrieve

the schema from the database. However, it may still be useful so that (compile-

time or run-time) checking of calls to persistent predicates can be performed.

Furthermore, types and modes can be read and inferred by a global analysis tool,
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such as, e.g., CiaoPP [HPBLG03b, HBPLG99], and used to optimize the gener-

ation of SQL expressions and to remove superfluous runtime checks at compile

time (see Section 9.2.3).

A dynamic version of the persistent declaration exists, which allows defin-

ing new persistent predicates on the fly, under program control. Also, in order to

provide greater flexibility, lower-level operations (of the kind available in tradi-

tional Prolog-SQL interfaces) are also available, which allow establishing database

connections manually. These are the lower-level library operations the above ex-

amples are compiled into. Finally, a persistent predicate can also be made to

correspond to a complex view of several database tables. For further illustration,

Figure 9.2 shows an example queue elements are kept as persistent data facts so

that the program state can be recovered in subsequent executions.

9.2.2 File-Based Implementation

The file-based implementation of persistent predicates provides a light-weight,

simple, and at the same time powerful form of persistence. It has the advantage

of being standalone in the sense that it does not require any external support

other than the file management capabilities provided by the operating system:

these persistent predicates are stored in files under direct control of the persistent

library. This implementation is especially useful when building small to medium-

sized standalone (C)LP applications which require persistent storage and which

may have to run in an environment where the existence of an external database

manager is not ensured. Also, it is very useful even while developing applica-

tions which will connect to databases, because it allows working with persistent

predicates maintained in files when developing or modifying the code and then

switching to using the external database for testing or “production” by simply

changing a declaration.

The implementation pursues at the same time efficiency and security. Each

predicate uses three files: the data file, which stores a base state for the predicate;

the operations file, which stores the differential between the base state and the

predicate state in the program (i.e., operations pending to be integrated into the

data file); and the backup file, which stores a security copy of the data file. Such

files, in plain ASCII format, can be edited by hand using any text editor, or even

easily read and written by other applications.
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Program Execution

:- module(queue, [main/0]).

:- include(library(persdb)).

:- pred queue/1 +

persistent(file(’/tmp/queue’)).

main:-

write(’Action:’),

read(A),

handle_action(A),

main.

handle_action(halt) :-

halt.

handle_action(in(Term)) :-

assertz(queue(Term)).

handle_action(out) :-

( retract(queue(Term))

-> write(’Out ’), write(Term)

; write(’EMPTY!’) ), nl.

handle_action(list) :-

findall(T,queue(T),Contents),

write(’Contents: ’),

write(Contents),nl.

$ ./queue

Action: in(first).

Action: in(second).

Action: list.

Contents: [first, second]

Action: halt.

$ ./queue

Action: out.

Out first

Action: list.

Contents: [second]

Action: out.

Out second

Action: out.

EMPTY!

Action: halt.

Figure 9.2: Queue example and execution trace

When no program is accessing the persistent predicate (because, e.g., no pro-

gram updating that particular predicate is running), the data file reflects exactly

the facts in the Prolog internal rule database. When any insertion or deletion is

performed, the corresponding change is made in the Prolog internal rule database,

and a record of the operation is appended to the operations file. In this moment

the data file does not reflect the state of the internal Prolog rule database, but it
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can be reconstructed by applying the changes in the operations file to the state

in the data file. This strategy incurs only in a relatively small, constant overhead

per update operation (the alternative of keeping the data file always up to date

would lead to an overhead linear in the number of records in it).

When a program using a file-based persistent predicate starts up, the data file

is first copied to a backup file (preventing data loss in case of system crash during

this operation), and all the pending operations are performed on the data file by

loading it into memory, re-executing the updates recorded in the operations file,

and saving a new data file. The order in which the operations are performed and

the concrete O.S. facilities (e.g., file locks) used ensure that even if the process

aborts at any point in its execution, the data saved up to that point can be

completely recovered upon a successful restart. The data file can also be explicitly

brought up to date on demand at any point in the execution of the program.

9.2.3 External Database Implementation

We present another implementation of persistent predicates which keeps the stor-

age in a relational database. This is clearly useful, for example, when the data

already resides in such a database, the amount of data is very large, etc. A more

extensive description of this interface can be found in [CCG+98, CHGT98].

One of the most attractive features of our approach is that this view of external

relations as just another storage medium for persistent predicates provides a very

natural and transparent way to perform simple accesses to relational databases

from (C)LP programs. This implementation allows reflecting selected columns

of a relational table as a persistent predicate. The implementation also provides

facilities for reflecting complex views of the database relations as individual per-

sistent predicates. Such views can be constructed as conjunctions, disjunctions

or projections of database relations.

The architecture of the database interface (Figure 9.3), has been designed with

two goals in mind: simplifying the communication between the Prolog side and

the relational database server, and providing platform independence, allowing

inter-operation when using different databases.

The interface is built on the Prolog side by stacking several abstraction lev-

els over the socket and native code interfaces (Figure 9.3). Typically, database

servers allow connections using TCP/IP sockets and a particular protocol, while
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Figure 9.3: Architecture of the access to an external database

in other cases, linking directly a shared object or a DLL may be needed. For

the cases where remote connections are not provided (e.g., certain versions of

ODBC), a special-purpose mediator which acts as a bridge between a socket and

a native interface has been developed [CCG+98, CHGT98]. Thus, the low level

layer is highly specific for each database implementation (e.g. MySQL, Postgres,

ORACLE, etc.). The mid-level interface (which is similar in level of abstraction

to that present in most current Prolog systems) abstracts away these details.

The higher-level layer implements the concept of persistent predicates so that

calls and database updates to persistent predicates actually act upon relations

stored in the database by means of automatically generated mid-level code. In

the base implementation, at compile-time, a “stub” definition is included in the

program containing one clause whose head has the same predicate name and arity

as the persistent predicates and whose body contains the appropriate mid-level

code, which basically implies activating a connection to the database (logging on)

if the connection is not active, compiling on the fly and sending the appropriate

SQL code, retrieving the solutions (or the first solution and the DB handle for

asking for more solutions, and then retrieving additional solutions on backtrack-

ing or eventually failing), and closing the connection (logging off the database),

therefore freeing the programmer from having to pay attention to low-level de-

tails.

The SQL code in particular is generated using a Prolog to SQL translator
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based on the excellent work of Draxler [Dra91]. Modifications were made to

the code of [Dra91] so that the compiler can deal with the different idioms used

by different databases, the different types supported, etc. as well as blending

with the high-level way of declaring persistence, types, modes, etc. that we have

proposed (and which is in line with the program assertions used throughout in

the Ciao system). Conversions of data types are automatically handled by the

interface, using the type declarations provided by the user or inferred by the

global analyzers.

In principle the SQL code corresponding to a given persistent predicate, lit-

eral, or group of literals needs to be generated dynamically at run-time for every

call to a persistent predicate since the mode of use of the predicate affects the

code to be generated and can change with each run-time call. Clearly, a number

of optimizations are possible. In general, a way to improve performance is by

reducing overhead in the run-time part of the Prolog interface by avoiding any

task that can be accomplished at compile-time, or which can be done more effi-

ciently by the SQL server itself. We study two different optimization techniques

based on these ideas: the use of static analysis information to pre-compute the

SQL expressions at compile time (which is related to adornment-based query

optimization in deductive databases [RU93]), and the automatic generation of

complex SQL queries based on Prolog query clustering.

Using static analysis information to pre-compute SQL expressions.

As pointed out, the computation of SQL queries can be certainly sped up by

creating skeletons of SQL sentences at compile-time, and fully instantiating them

at run-time. In order to create the corresponding SQL sentence for a given call

to a persistent predicate at compile-time, information regarding the instantiation

status of the variables that appear in the goal is needed. This mode informa-

tion can be provided by the user by means of the Ciao assertion language. More

interestingly, this information can typically be obtained automatically by using

program analysis, which in the Ciao system is accomplished by CiaoPP, a power-

ful program development tool which includes a static analyzer, based on Abstract

Interpretation [HPBLG03b, HBPLG99]. If the program is fed to CiaoPP, select-

ing the appropriate options, the output will contain, at every program point, the

abstract substitution resulting from the analysis using a given domain. The es-
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sential information here is argument groundness (i.e., modes, which are computed

using the sharing+freeness domain): we need to know which database columns

must appear in the WHERE part of the SQL expression.

For example, assume that we have an database-based persistent predicate as

in Section 9.2:

:- pred employee/3 :: string * string * int +

persistent(employee(ident, category, time), payroll).

and consider also the program shown in the left side of Figure 9.2. The literal

employee/3 will be translated by the persistence library to a mid-level call which

will at run-time call the pl2sql compiler to compute an SQL expression cor-

responding to employee(Empl,Categ,Days) based on the groundness state of

Empl, Categ and Days. These expressions can be precomputed for a number of

combinations of the groundness state of the arguments, with still some run-time

overhead to select among these combinations. For example, if the static analyzer

can infer that Empl is ground when calling employee(Empl,Categ,Days), we will

be able to build at compile-time the SQL query for this goal as:

SELECT ident, category, time FROM employee WHERE ident = ’$Empl$’;

The only task that remains to be performed at run-time, before actually

querying the database, is to replace $Empl$ with the actual value that Empl

is instantiated to and send the expression to the database server.

A side effect of (SQL-)persistent predicates is that they provide useful in-

formation which can improve the analysis results for the rest of the program:

the assertion that declares a predicate (SQL-)persistent also implies that on suc-

cess all the arguments will be ground. This additional groundness information

can be propagated to the rest of the program. For instance, in the definition of

salary/2 in Figure 9.2, category/2 happens to be a persistent predicate living

in an SQL database. Hence, we will surely be provided with groundness informa-

tion for category/2 so that the corresponding SQL expression will be generated

at compile-time as well.

Query clustering.

The second possible optimization on database queries is query clustering. A sim-

ple implementation approach would deal separately with each literal calling a

persistent predicate, generating an individual SQL query for every such literal.

170



Under some circumstances, mainly in the presence of intensive backtracking, the

flow of tuples through the database connection generated by the Prolog back-

tracking mechanism will produce limited performance.

In the case of complex goals formed by consecutive calls to persistent predi-

cates, it is possible to take advantage of the fact that database systems include

a great number of well-developed techniques to improve the evaluation of com-

plex SQL queries. The Prolog to SQL compiler is in fact able to translate such

complex conjunctions of goals into efficient SQL code. The compile-time opti-

mization that we propose requires identifying literals in clause bodies which call

SQL-persistent predicates and are contiguous (or can be safely reordered to be

contiguous) so that they can be clustered and, using mode information, the SQL

expression corresponding to the entire complex goal compiled as a single unit.

This is a very simple but powerful optimization, as will be shown.

For example, in predicate salary/2 of Figure 9.2, assuming that we have

analysis information which ensures that salary/2 is always called with a ground

term in its first argument, a single SQL query will be generated at compile-time

for both calls to persistent predicates, such as:

SELECT ident, category, time, rel2.money

FROM employee, category rel2

WHERE ident = ’$Empl$’ AND rel2.category = category;

9.2.4 Concurrency and transactional behaviour

There are two main issues to address in these implementations of persistence re-

lated to transactional processing and concurrency. The first one is consistency :

when there are several processes changing the same persistent predicate con-

currently, the final state must be consistent w.r.t. the changes made by every

process. The other issue is visibility : every process using a persistent predicate

must be aware of the changes made by other processes which use that predicate.

A further, related issue is what means exist in the source language to express that

a certain persistent predicate may be accessed by several threads or processes,

and how several accesses and modifications to a set of persistent predicates are

grouped so that they are implemented as a single transaction.

Regarding the source language issue, the Ciao language already includes a

way to mark dynamic data predicates as concurrent [CH99], stating that such
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predicates could be modified by several threads or processes. Also, a means has

been recently developed for marking that a group of accesses and modifications

to a set of dynamic predicates constitute a single atomic transaction [Pat04].

Space limitations do not allow describing locking and transactional behaviour in

the implementation of persistent predicates proposed. The current solutions are

outlined in [CGC+04b, Pat04] and these issues are the subject of future work.

9.3 Empirical results

We now study from a performance point of view the alternative implementations

of persistence presented in previous sections. To this end, both implementations

(file-based and SQL-based) of persistent predicates, as well as the compile-time

optimizations previously described, have been integrated and tested in the Ciao

Prolog development system [BCC+02].

9.3.1 Performance without Compile-time Optimizations

The objective in this case is to check the relative performance of the various

persistence mechanisms and contrast them with the internal Prolog rule database.

The queries issued involve searching on the database (using both indexed and

non-indexed queries) as well as updating it.

The results of a number of different tests using these benchmarks can be

found in Table 9.1, where a four-column, 25,000 record database table is used to

check the basic capabilities and to measure access speed. Each one of the four

columns has a different measurement-related purpose: two of them check indexed

accesses —using int and string basic data types—, and the other two check non-

indexed accesses. The time spent by queries for the different combinations are

given in the rows non-indexed numeric query, non-indexed string query, indexed

numeric query, and indexed string query (time spent in 1,000 consecutive queries

randomly selected). Row assertz gives the time for creating the 25,000 record

table by adding the tuples one by one. Rows non-indexed numeric retract, non-

indexed string retract, indexed numeric retract, and indexed string retract provide

the timings for the deletion of 1,000 randomly selected records by deleting the

tuples one by one.

The timings were taken on a medium-loaded Pentium IV Xeon 2.0Ghz with
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two processors, 1Gb of RAM memory, running Red Hat Linux 8.0, and averaging

several runs and eliminating the best and worst values. Ciao version 1.9.78 and

MySQL version 3.23.54 were used.

The meaning of the columns is as follows:

prologdb (data) Is the time spent when accessing directly the internal (as-

sert/retract) state of Prolog.

prologdb (concurrent) In this case tables are marked as concurrent. This

toggles the variant of the assert/retract database which allows concurrent

access to the Prolog rule database. Atomicity in the updates is ensured

and several threads can access concurrently the same table and synchronize

through facts in the tables (see [CH99]). This measurement has been made

in order to provide a fairer comparison with a database implementation,

which has the added overhead of having to take into account concurrent

searches/updates, user permissions, etc.¶

persdb This is the implementation presented in Section 9.2.2, i.e., the file-based

persistent version. The code is the same as above, but marking the predi-

cates as persistent. Thus, in addition to keeping incore images of the rule

database, changes are automatically flushed out to an external, file-based

transaction record. This record provides persistence, but also introduces

the additional cost of having to save updates. The implementation ensures

atomicity and also basic transactional behavior.

persdb/sql This is the implementation presented in Section 9.2.3, i.e., where all

the persistent predicates-related operations are made directly on an external

SQL database. The code is the same as above, but marking the predicates

¶Note, however, that this is still quite different from a database, apart, obviously, from the

lack of persistence. On one hand databases typically do not support structured data, and it is

not possible for threads to synchronize on access to the database, as is done with concurrent

dynamic predicates. On the other hand, in concurrent dynamic predicates different processes

cannot access the same data structures, which is possible in SQL databases. However, SQL

databases usually use a server process to handle requests from several clients, and thus there

are no low-level concurrent accesses to actual database files from different processes, but rather

from several threads of a single server process.
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as SQL-persistent. No information is kept incore, so that every database

access imposes an overhead on the execution.‖

sql Finally, this is a native implementation in SQL of the benchmark code, i.e.,

what a programmer would have written directly in SQL, with no host lan-

guage overhead. To perform these tests the database client included in

MySQL has been used. The SQL sentences have been obtained from the

Ciao Prolog interface and executed using the MySQL client in batch mode.

prologdb prologdb persdb persdb sql

(data) (concur.) /sql

assertz (25000 records) 590.5 605.5 5,326.4 16,718.3 3,935.0

non-indexed numeric query 7,807.6 13,584.8 7,883.5 17,721.0 17,832.5

non-indexed string query 8,045.5 12,613.3 9,457.9 24,188.0 23,052.5

indexed numeric query 1.1 3.0 1.1 1,082.4 181.3

indexed string query 1.1 3.0 1.5 1,107.9 198.8

non-indexed numeric retract 7,948.3 13,254.5 8,565.0 19,128.5 18,470.0

non-indexed string retract 7,648.0 13,097.6 11,265.0 24,764.5 23,808.8

indexed numeric retract 2.0 3.3 978.8 2,157.4 466.3

indexed string retract 2.0 3.1 1,738.1 2,191.9 472.5

Table 9.1: Speed in milliseconds of accessing and updating

Several conclusions can be drawn from Table 9.1:

Sensitivity to the amount of data to be transferred Some tests made to

show the effect of the size of the data transferred on the access speed (which

can be consulted in [CGC+04b]) indicate that the methods which access to

external processes (persdb/sql and sql) are specially sensitive to the data

size, more than the file-based persistent database, whilst the internal Prolog

rule database is affected to some extent only.

Incidence of indexing The impact of indexing is readily noticeable in the ta-

bles, especially for the internal Prolog rule database but also for the file-

based persistent database. The MySQL-based tests do present also an

‖Clearly, it would be interesting to perform caching of read data, but note that this is

not trivial since an invalidation protocol must be implemented, given there can be concurrent

updates to the database. This is left as future work.
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important speedup, but not as relevant as that in the Prolog-only tests.

This behavior is probably caused by the overhead imposed by the SQL

database requirements (communication with MySQL daemon, concurrency

and transaction availability, much more complex index management, in-

tegrity constraint handling, etc). In addition to this, Prolog systems are

usually highly optimized to take advantage of certain types of indexing,

while database systems offer a wider class of indexing possibilities which

might not be as efficient as possible in some determinate cases, due to their

generality.

Impact of concurrency support Comparing the Prolog tests, it is worth not-

ing that concurrent predicates bring in a non-insignificant load in rule

database management (up to 50% slower than simple data predicates in

some cases), in exchange for the locking and synchronization features they

provide. In fact, this slow-down makes the concurrent Prolog internal rule

database show a somewhat lower performance than using the file-based

persistent database, which has its own file locking mechanism to provide

inter-process concurrent accesses (but not from different threads of the same

process: in that case both concurrency and persistence of predicates needs

to be used).

Incidence of the Prolog interface in SQL characteristics Comparing di-

rect SQL queries (i.e., typed directly at the database top-level interface)

with using persistent predicates, we can see that only in the case of non-

indexed queries times are similar, whereas indexed queries and database

modifications show a significant difference. This is due to the fact that in

the experiments the setting was used in which a different connection to the

database server was open for every query requested, and closed when the

query had finished (useful in practice to limit the number of open connec-

tions to the database, on which there is a limitation). We plan to perform

additional tests turning on the more advanced setting in which the database

connection is kept open.
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9.3.2 Performance with Compile-time Optimizations

We have also implemented the two optimizations described in Section 9.2.3 (using

static analysis information and query clustering) and measured the improvements

brought about by these optimizations. The tests have been performed on two

SQL-persistent predicates (p/2 and q/2) with 1,000 facts each and indexed on

the first column. There are no duplicate tuples nor duplicate values in any column

(simply to avoid overloading due to unexpected backtracking). Both p/2 and q/2

contain exactly the same tuples.

Table 9.2 presents the time (in milliseconds) spent performing 1,000 repeated

queries in a failure-driven loop. In order to get more stable measures average

times were calculated for 10 consecutive tests, removing the highest and lowest

values. The system used to run the tests was the same as in section 9.3.1.

The single queries part of the table corresponds to a simple call to p(X,Z).

The first row represents the time spent in recovering on backtracking all the 1,000

solutions to this goal. The second and third rows present the time taken when

performing 1,000 queries to p(X,Z) (with no backtracking, i.e., taking only the

first solution), with, respectively, the indexing and non-indexing argument being

instantiated. The two columns correspond to the non-optimized case in which

the translation to SQL is performed on the fly, and to the optimized case in which

the SQL expressions are pre-computed at compile-time, using information from

static analysis.

The ’complex queries :p(X,Z),q(Z,Y)’ part of the table corresponds to calling

this conjunction with the rows having the same meaning as before. Information

about variable groundness (on the first argument of the first predicate in the

second row and on the second argument of the first predicate in the third row)

obtained from global analysis is used in both of these rows. The two columns

allow comparing the cases where the queries for p(X,Z) and q(Z,Y) are pro-

cessed separately (and the join is performed in Prolog via backtracking) and the

case where the compiler performs the clustering optimization and pre-compiles

p(X,Z),q(Z,Y) into a single SQL query.

Finally, the ’complex queries :p(X,Z),r(Z,Y)’ part of the table illustrates the

special case in which the second goal calls a predicate which only has a few tuples

(but matching the variable bindings of the first goal). More concretely, r/2 is

a persistent predicate with 100 tuples (10% of the 1,000 tuples of p/2). All the
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tuples in r/2 have in the first column a value which appears in the second column

of p/2. Thus, in the non-optimized test, the Prolog execution mechanism will

backtrack over the 90% of the solutions produced by p/2 that will not succeed.

Single queries: p(X,Y)

on-the-fly pre-computed

SQL generation SQL expressions

Traverse solutions 36.6 28.5

Indexed ground query 1,010.0 834.9

Non-indexed ground query 2,376.1 2,118.1

Complex queries: p(X,Z),q(Z,Y)

non-clustered clustered

Traverse solutions 1,039.6 51.6

Indexed ground query 2,111.4 885.8

Non-indexed ground query 3,550.1 2,273.8

Complex queries: p(X,Z),r(Z,Y)

non-clustered clustered

Asymmetric query 1146.1 25.1

Table 9.2: Comparison of optimization techniques

Single queries: p(X,Y)

on-the-fly pre-computed

SQL generation SQL expressions

Indexed ground query 197.5 27.6

Non-indexed ground query 195.4 27.3

Complex queries: p(X,Z),q(Z,Y)

non-clustered pre-computed

on-the-fly clustered queries

Indexed ground query 406.8 33.3

Non-indexed ground query 395.0 42.6

Table 9.3: Comparison of optimization techniques (Prolog time only)

The results in Table 9.2 for single queries show that the improvement due to

compile-time SQL expression generation is between 10 and 20 percent. These

times include the complete process of a) translating (dynamically or statically)

the literals into SQL and preparing the query (with our without optimizations),
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and b) sending the resulting SQL expression to the database and processing the

query in the database. Since the optimization only affects the time involved in a),

we measured also the effect of the optimizations when considering only a), i.e.,

only the time spent in Prolog. The results are shown in Table 9.3. In this case

the run-time speed-up obtained when comparing dynamic generation of SQL at

run time and static generation at compile time (i.e., being able to pre-compute

the SQL expressions thanks to static analysis information) is quite significant.

The difference is even greater if complex queries are clustered and translated as a

single SQL expression: the time spent in generating the final SQL expression when

clustering is pre-computed is only a bit greater than in the atomic goal case, while

the non-clustered, on-the-fly SQL generation of two atomic goals needs twice the

time of computing a single atomic goal. In summary, the optimization results

in an important speedup on the Prolog side, but the overall weight of b) in the

selected implementation (due to opening and closing DB connections) is more

significant. We believe this overhead can be reduced considerably and this is the

subject of ongoing work.

Returning to the results in Table 9.2, but looking now at the complex goals

case, we observe that the speed-up obtained due to the clustering optimization is

much more significant. Traversing solutions using non-optimized database queries

has the drawback that the second goal is traversed twice for each solution of the

first goal: first to provide a solution (as is explained above, p/2 and q/2 have

exactly the same facts, and no failure happens in the second goal when the first

goal provides a solution), and secondly to fail on backtracking. Both call and

redo imply accessing the database. In contrast, if the clustering optimization is

applied, this part of the job is performed inside the database, so there is only

one database access for each solution (plus the last access when there are no

more solutions). In the second and third rows, the combined effect of compile-

time SQL expression generation and clustering optimization causes a speed-up of

around 50% to 135%, depending on the cost of retrieving data from the database

tables: as the cost of data retrieval increases (e.g., access based on a non-indexed

column), the speed-up in grouping queries decreases.

Finally, the asymmetric complex query (in which the second goal succeeds

for only a fraction of the solutions provided by the first goal) the elimination of

useless backtracking yields the most important speed-up, as expected.
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Chapter 10

Generation of Stripped-down

Runtime Systems using Abstract

Interpretation and Program

Specialization

10.1 Introduction and Motivation

Libraries and modules are a fundamental tool for developing large applications, as

they allow sharing common code between different programs and they provide a

clean interface to widely used routines. Many development environments based on

bytecode virtual machine emulators often provide a full-featured library with large

amounts of code (as for example the Java run-time environment). Such systems

are composed of two different environments: on one hand, a software development

kit for program development, comprising a compiler and set of libraries, and on

the other hand a runtime system, which contains a virtual machine interpreter

(and/or a just-in-time compiler) and a bytecode version of the libraries. Such

systems present a lot of advantages for the programmer: interoperability (to some

extent in pervasive devices), a generic and independent programming interface,

etc. However, these runtime systems tend to use an excessive amount of space

in both memory and permanent storage, as their libraries are programmed for a

very general usage, covering lots of possible cases. In addition, programmers tend
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to develop libraries that are more general purpose than is actually needed for a

specific application, in order to make the library as reusable as possible. This

approach, useful for program development, results however in applications which

include significant amounts of useless code fragments.

In a pervasive system scenario, the space needed by a program is of vital

importance in this kind of devices, and the use of general development tools

and libraries is usually very restricted. In the case of Java, the alternative for

developing software for small devices is to use a different development kit and

runtime system, the Java Micro Edition.∗ It contains several runtime systems and

development kits depending on how powerful the target device is, and several pre-

packaged sets or libraries for different functionalities (Java TV, Java Phone, etc.)

This approach avoids the excessive use of resources done in the general approach,

but at the same time constraints the range of runtime system libraries available

to programmers. If a specific functionality not existing in the reduced runtime

system is needed by the programmer, then it must be added to the program by

hand in case it is possible, therefore losing the advantages of having a general

programming library available in the extended runtime system. Moreover, it may

be the case that the runtime system with additional libraries does not fit into the

device’s memory, but it would fit if the procedures in the library which are not

used by the specific application being installed on it were removed.

In contrast, the approach presented in this chapter is to allow the program-

mer to use any part of a general runtime system library, and to apply abstract

interpretation-based analysis and specialization techniques in order to remove all

unnecessary code during execution. This dead code can be removed from both

user programs or runtime system libraries, generating a specialized version of the

runtime system for a given application.

Moreover, our approach can be easily extended to the specialization of runtime

system libraries for a set of programs, instead of specializing them for only one

program. Then, a specialized version for the runtime libraries can be generated

to be installed in a pervasive device, including exactly the functionalities needed

by the set of programs that will execute in such pervasive system.

This work will only take into consideration the specialization of user and

runtime system libraries. It will not deal with the specialization of the bytecode

∗http://java.sun.com/products
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emulator itself, which is in general not written in the same source language as

the libraries.

10.2 Execution Model Based on Abstract Ma-

chines

A basic execution model is generally composed of three different parts, depicted

in Figure 10.1 and detailed as follows:

• The bytecode which corresponds to user programs.

• The bytecode which implements the runtime system libraries. This code is

usually shared among all the user programs installed on the system.†

• The abstract machine emulator (or a platform-dependent just-in-time com-

piler), which interprets (or compiles) the bytecode.

When a runtime system is to be installed on a small device (like pervasive

devices) the traditional approach is to define the version of the runtime system

which best fits in the resources available in the device.

The main drawback of this approach is that the set of features provided by

each runtime version is fixed. If a functionality is not included in the standard

runtime system, it must be added manually by the programmer, even if there are

pervasive devices powerful enough to host runtime libraries richer than the ones

included in the runtime version designed for them.

10.3 Runtime library specialization

A different approach, taken in this work, is to allow the programmer to use the

complete full-featured set of libraries of the most general version of the system.

During compilation, both the program modules and the runtime libraries are

stripped-down for the specific use of that program, using abstract interpretation-

based techniques. The advantages are twofold: on one hand, the programmer

†Although in some cases a compiled user program may comprise the set of libraries needed.
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Figure 10.1: Generic runtime system

can use general libraries previously developed for other applications; on the other

hand, the runtime libraries are included in the final runtime system only if they

are to be used by the program. Moreover, the level of granularity when adding

libraries to the runtime system is even finer than traditional compilers (that decide

whether a library must be included or not if there are procedures invoked from

the program, but they cannot decide if an individual procedure can be excluded

from the library if it is not invoked from any part of the program), as abstract

interpretation-based specialization detects and performs dead-code elimination,

even when using very simple abstract domains.

This approach provides an additional advantage. When there are several

applications that are to be executed in a given pervasive device, the runtime

system is usually shared between them. The procedure depicted above can be

easily adapted to perform the specialization of the runtime libraries for all the

applications in the system. Therefore, the generated runtime system will include

all the features needed by those applications and specialized for them, but it will

not include other libraries or procedures inside libraries not used by the given set

of programs.
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10.4 A Practical application using CiaoPP and

Ciao

10.4.1 The Ciao Runtime System Structure

The Ciao runtime system has the same general structure than other runtime sys-

tems like Java. As detailed before, it is composed of a bytecode emulator written

in C and a wide set of engine and system libraries. As discussed throughout

this thesis, the Ciao language includes a strict module system [CH00]. System

libraries are encapsulated in Ciao modules, although some internal libraries are

written in C for several technical reasons (some libraries are needed by the vir-

tual machine, others have strict efficiency requirements, or they need to access

low-level operating system resources).

Ciao libraries look like a user Ciao module, although they present slight dif-

ferences: they are precompiled, and can be used from a user program using a

use_module(library(...)) construct, instead of including the complete path

to the library module file. Even built-in procedures (not written in Prolog but

embedded in the runtime engine) are listed in Ciao library modules, denoting

with impl_defined declarations that they are not defined inside the module.

The compiler then links the built-in predicate declaration with the actual frag-

ment of runtime engine code. This approach to built-ins and libraries allows a

very high degree of library specialization.

Ciao libraries are classified into two categories: engine libraries, those which

are mandatory for the execution of any Ciao program, and the remaining libraries,

which are necessary only if the user program needs their functionality. Figure 10.2

shows the structure of the Ciao runtime system.

By considering libraries as regular user files, the Ciao compiler is able to

determine which libraries are needed for the user program: the compiled program

will have the minimal set of libraries, instead of all runtime libraries as traditional

runtime systems. This means that the compiler strips-down the runtime system at

a module level, but if a library module is included, all procedures in the module

will be included, even if they are not used by the program. In the following

sections a finer-grained runtime system reduction is proposed.
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Figure 10.2: Ciao runtime system

10.4.2 Analysis and Specialization of modular Ciao pro-

grams

The analysis and specialization is performed using CiaoPP, the Ciao preprocessor,

based on abstract interpretation already presented in Chapter 4. Only programs

written in the Ciao language and its extensions can be processed, and library

code implemented in C in the runtime engine cannot be processed nor specialized.

Therefore, procedures declared as impl_defined are conservatively handled by

the preprocessor.

The analysis of a modular program in CiaoPP is implemented following the

framework described in Chapter 5. In summary, modules in the program are

analyzed in turn, marking the call patterns for imported predicates as pending

for analysis. When the imported module is analyzed, all pending patterns are

processed. If the analysis results are more precise than those obtained in previous

analyses of that module, the modules which import it are marked for reanalysis.

This process terminates when there are no marked modules in the program with
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pending call patterns.

For this work a very simple abstract domain has been used. It only contains

two abstract values, > and ⊥, representing if a given predicate is used or not.

More complex domains would bring more precise results on code reachability.

The results of this inter-modular analysis framework are the starting point of

the specialization of modular programs. The specializer takes the list of calling

patterns generated for every module, and removes the code that is unreachable

from these calling patterns.

10.4.3 General algorithm for Runtime Generation

Given the analyzer and specializer for modular programs included in CiaoPP, the

procedure for generating runtime libraries for a given program is as follows:

1. Determine the inter-modular graph of the program, including all needed

libraries

2. Copy all these files to a separate place.

3. Perform the analysis of the copy of the user program and the copied li-

braries.

4. Perform the analysis of special startup code (in order not to lose code to

be executed before the main predicate of the user program, as explained

below).

5. Specialize the modular program, generating transformed source files for all

the modules of the program and libraries.

10.4.4 Empirical results

In a first approach, user programs and non-engine libraries were considered for

specialization. Engine libraries were excluded, as they were thought as not spe-

cializable. However, the results were not as good as one would expect: around a

10% of code reduction in a minimal program. Some engine libraries needed other

libraries defined in Ciao, losing opportunities for specialization (e.g., the sorting
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Not specialized Specialized

program default libs. manual

minimal 2,260,293 816,835 501,081

qsort 2,277,134 822,275 504,374

queens 2,263,025 833,441 503,140

Table 10.1: Comparison of the size of compiled libraries (in bytes).

library is needed by aggregation predicates for implementing setof/3, needed in

turn by the debugger, used by the engine).

The second approach is to generate a specialized version of all runtime system

libraries, including engine libraries. All libraries are analyzed and specialized,

leaving procedures implemented in C unchanged, but specializing all Ciao code.

In this approach, some specific engine modules require special treatment. Dur-

ing analysis and specialization, predicates are marked as needed by the program

along the list of modules starting from the startup predicate (defined in the user

program as main/0 or main/1). Nevertheless, as mentioned before there is some

startup code written in Ciao which is executed before the user program starts,

and which therefore needs to be preserved in the final, specialized code. As this

code is not called from any point of the user program nor the libraries, it will be

removed by the specializer. Therefore, additional calling patterns for such code

must be provided to CiaoPP together with the user program calling patterns.

The second approach brings much better results (even if they are still prelim-

inary since the system can be improved significantly), and they are detailed in

Table 10.1 for some simple examples.

In this table, Numbers correspond to a static compilation of the examples,

which includes the libraries needed by the program, but does not include the

virtual machine emulator itself. The first example is the smallest Ciao program,

while qsort and queens are simple benchmarks which include some additional

libraries: qsort uses append/3 from the lists handling library and write/1 for

printing out the results, and queens uses the Ciao statistics library to get the

time spent in the benchmark and format/2 for formatted output.

the second and third columns correspond to the traditional compilation of the

programs, including the default set of Ciao libraries in the first case, or just the
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minimal set of libraries, in the second case. The fourth column is the result of

specializing the code of programs and libraries, removing dead code.

10.5 Conclusions and Future Work

Despite the preliminary nature of this work, We have already obtained an impor-

tant reduction on the size of libraries by removing library procedures which are

not used by a given program. Furthermore, a significant improvement is expected

using richer domains, as other abstract domains can detect additional fragments

of unused code (for example, using modes domains in programs with tests on

the instantiation of variables). Another source of improvement is the detection

of dead-code for built-ins written in C. Currently, procedures written in C are

not removed from the system engine even if they are not called from anywhere in

the program. A procedure can be implemented to get the annotations produced

by CiaoPP analyzer to generate C code only for the library procedures which are

used in the program.
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Part V

Conclusions and Future Work
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This thesis has focused in studying different aspects of analysis and verifica-

tion of modular programs in the scope of context-sensitive, multivariant, abstract

interpretation-based analysis of logic programs. Research and implementation

have been centered in preserving as much as possible the accuracy of the existing

well known techniques for non-modular programs, as well as enabling these tech-

nologies for the common case of incremental processing of programs after source

code modifications.

Among the most relevant conclusions that can be drawn from this thesis we

can mention:

• We have designed and implemented the first analysis framework for logic

programs based on abstract interpretation that is capable of performing

context-sensitive, multivariant analysis without losing precision in non-

compositional domains. It allows incrementally reanalyzing a program in

which some of its modules changed since the last time it was analyzed.

We have performed several experiments that show the practicality of this

approach, especially in the case of incremental reanalysis. The main advan-

tages offered by our approach are:

It is a module-centered approach. The basic unit of our approach is

the module. That means that our framework has to deal with mod-

ules which are incomplete, in the sense that they may call procedures

which are not locally defined but rather imported from other modules;

and furthermore, it must properly handle the interactions between

modules, and be able to make the analysis results converge to a fixed

point.

It is domain-independent. The analysis framework works with both

compositional and non-compositional domains. Several abstract do-

mains have been tested in this thesis, including Def , Sharing −

freeness, and type domains, as well as other simpler domains like

the one used for the case study showed in Chapter 10. The special

case of type domains has been specifically addressed, due to the par-

ticular characteristics and issues they pose for modular analysis. New

domains can be easily plugged into the framework.
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It is based on a parametric framework. Since the purpose of Part II

of this thesis is to study how to analyze a modular program, different

parameters have been identified and evaluated. As a result, the devel-

oped framework can be configured with respect to those parameters,

producing different scenarios.

It allows different usages. The analysis framework can be used either

for analyzing a modular program from scratch, or for analyzing mod-

ules while the program is being developed, or for reanalyzing the pro-

gram after changes in the source code.

It is usable from early phases of program development. This ap-

proach does not need that the whole program is completely imple-

mented to start analyzing it. The manual scheduling policy allows

programmers to decide which module needs to be analyzed and when

it can be analyzed. The framework keeps the information obtained

from the analysis of other modules in the program in order to take

advantage of it and to produce the most accurate results.

It allows the analysis of incomplete programs. In addition to ana-

lyzing modules with incomplete code located in imported modules,

the analysis framework can also analyze programs that use third party

code or compiled code, or that interface to other languages or systems,

as illustrated in Chapter 9 when dealing with the interface to relational

database systems.

New techniques for types domains have been developed. In addi-

tion to the domain-independence mentioned above, the use of type

domains has been specifically studied, since they have characteristics

that make them special. Two new techniques for handling type do-

mains have been developed for improving their efficiency and make

them amenable for modular analysis.

The incremental analysis if efficient in terms of time and memory.

Experimental results show that the reanalysis of a program after

changes in a module within this framework is more efficient than

monolithically analyzing it from scratch, even in the extreme case of

changing all exported procedures in the module.
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It is integrated into CiaoPP. This framework has been successfully inte-

grated into the CiaoPP system. That means that it is integrated in the

CiaoPP user interface, and that, furthermore, it can take advantage of

the rest of tools and technologies developed in that system, includ-

ing any of the abstract interpretation-based domains implemented in

CiaoPP.

• A compile-time assertion checking framework has also been designed and

implemented. It is the first assertion checking framework for logic programs

that is capable of checking modular programs with partial user specifica-

tions, and that uses context-sensitive, multivariant analysis results based

on abstract interpretation. The most remarkable advantages that can be

drawn are:

It builds on top of modular analysis framework. Instead of devel-

oping an ad-hoc system for extracting information for compile-time

assertion checking, it is based on the results obtained by the modular

analysis framework. This allows the assertion checker to rely on well

established technology for obtaining accurate program information,

and provides the basics for innovative modular assertion checking al-

gorithms.

It allows a partial specification of the program. Since the assertion

checking framework relies on the analysis results, the specification of

the program may be incomplete. The analysis results replace user

specifications. Even in the case in which the user specification is non-

existent, the user program can still be checked with respect of the

specification of library procedures called from the program.

The notion of conditional correctness is introduced. In order to

make use of the modular nature of programs being checked, the con-

cept of conditional partial correctness has been introduced, and some

important results on overall program correctness obtained.

Several algorithms have been developed and implemented. An

initial naive algorithm has been implemented, in which the assertions

are checked after analyzing the program. A second scenario has been
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described for programs which contain a rather complete specification

and in which there is no need of reaching an inter-modular analysis

fixed-point. Instead, the new concept of conditional partial correctness

of modules is proved, and using it as a starting point, program partial

correctness obtained under some conditions. And finally, an algorithm

has been designed and implemented for interleaving inter-modular

analysis and assertion checking. It makes use of the internal structure

of the analysis framework to stop analysis processing as soon as an

error is detected in the program, instead of requiring the analysis

reach an intermodular fixed point to start checking its assertions.

Issues regarding program verification with type domains have

been addresed. When using type domains for compile time check-

ing, several issues regarding the analysis of modular programs with

those domains must be addressed, as explained above. Specifically,

the expressivity of assertions based on types has been enhanced by

the use of type variables in the assertions, and at the same time

remain in descriptive types (types which describe approximations of

the untyped semantics).

It is integrated into CiaoPP. Also the assertion checking framework has

been successfully integrated into the CiaoPP system, taking advantage

of the CiaoPP user interface and the rest of tools and technologies

developed in that system.

• Two real-life applications have been evaluated. On one hand, it has been

tested and evaluated the application of modular program analysis to in-

complete programs for the specific case of programs interfacing relational

databases. The analysis of the program helps in detecting whether there

is room for program optimization, generating SQL queries at compile time,

and improving their efficiency by collapsing several queries in one complex

SQL query that joins several database tables. The second application deals

with analyzing the Ciao system libraries in order to save space in a per-

vasive device. In this case, a preliminar modular specialization framework

algorithm has been developed.

As can be easily seen, this thesis is a first step in several research lines that
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may be of practical and theoretical interest. Among them, it is important to

highlight the following future work:

• It would be interesting to study in depth the scheduling policy for modu-

lar analysis. The policies used in this thesis are simple approaches, that

demonstrated the usefulness of the approach, but a thorough study should

be carried out.

• In parallel with the previous line, there is also an important line of research

in the improvement of the analysis of modular programs in other ways:

for instance, distributing the analysis of different modules in a network of

analysis servers.

• The use of infinite abstract domains and the application of widenings in the

modular analysis framework poses interesting issues that should be carefully

studied. The way a widening could be defined to overcome module bound-

aries limitation is of special interest.

• Another important issue is to establish a complete set of assertions for

libraries.

• The frameworks designed in this thesis have been applied to (constraint)

logic programming languages like the one in the Ciao system. Nevertheless,

it can be extended to other programming paradigms.

• The assertion checking scenarios described in this thesis can be trivially

extended to allow incremental assertion checking. This approach would

allow verifying that a program is correct after changes in some modules at

a much lower cost than checking it again from scratch.
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Press.

[BG92] R. Barbuti and R. Giacobazzi. A bottom-up polymorphic type in-

ference in logic programming. Science of Computer Programming,

19(3):281–313, 1992.

[BGLM94] A. Bossi, M. Gabbrieli, G. Levi, and M.C. Meo. A composi-

tional semantics for logic programs. Theoretical Computer Science,

122(1,2):3–47, 1994.

[BJ03] F. Besson and T. Jensen. Modular class analysis with datalog.

In 10th International Symposium on Static Analysis, SAS 2003,

number 2694 in LNCS. Springer, 2003.
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[dlBHB+96b] M. Garćıa de la Banda, M. Hermenegildo, M. Bruynooghe, V. Du-

mortier, G. Janssens, and W. Simoens. Global Analysis of Con-

straint Logic Programs. ACM Trans. on Programming Languages

and Systems, 18(5):564–615, 1996.
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[PdlBMS97] G. Puebla, M. Garćıa de la Banda, K. Marriott, and P. Stuckey.

Optimization of Logic Programs with Dynamic Scheduling. In

1997 International Conference on Logic Programming, pages 93–

107, Cambridge, MA, June 1997. MIT Press.

[Pfe92] F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.

[PH96] G. Puebla and M. Hermenegildo. Optimized Algorithms for

the Incremental Analysis of Logic Programs. In International

Static Analysis Symposium, number 1145 in LNCS, pages 270–284.

Springer-Verlag, September 1996.

212



[PH97] G. Puebla and M. Hermenegildo. Abstract Specialization and

its Application to Program Parallelization. In J. Gallagher, edi-

tor, Logic Program Synthesis and Transformation, number 1207 in

LNCS, pages 169–186. Springer-Verlag, 1997.

[PH99] G. Puebla and M. Hermenegildo. Abstract Multiple Specialization

and its Application to Program Parallelization. J. of Logic Pro-

gramming. Special Issue on Synthesis, Transformation and Analy-

sis of Logic Programs, 41(2&3):279–316, November 1999.

[PH00] G. Puebla and M. Hermenegildo. Some Issues in Analysis and

Specialization of Modular Ciao-Prolog Programs. In Special Issue

on Optimization and Implementation of Declarative Programming

Languages, volume 30 of Electronic Notes in Theoretical Computer

Science. Elsevier - North Holland, March 2000.

[PH03] G. Puebla and M. Hermenegildo. Abstract Specialization and its

Applications. In ACM Partial Evaluation and Semantics based

Program Manipulation (PEPM’03), pages 29–43. ACM Press, June

2003. Invited talk.

[PHG99] G. Puebla, M. Hermenegildo, and J. Gallagher. An Integra-

tion of Partial Evaluation in a Generic Abstract Interpretation

Framework. In O Danvy, editor, ACM SIGPLAN Workshop on

Partial Evaluation and Semantics-Based Program Manipulation

(PEPM’99), number NS-99-1 in BRISC Series, pages 75–85. Uni-

versity of Aarhus, Denmark, January 1999.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT

Press, February 2002.

[PRO94] International Organization for Standardization, National Physical

Laboratory, Teddington, Middlesex, England. PROLOG. ISO/IEC

DIS 13211 — Part 1: General Core, 1994.

[PRO00] International Organization for Standardization, 1, rue de Varembé,
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