
Transformación y Análisis de Código

de Bytes Orientado a Objetos

TESIS DOCTORAL

Memoria presentada para obtener el grado de doctor en

Ingenieŕıa Informática por

Miguel Gómez-Zamalloa Gil

Dirigida por la profesora

Elvira Albert Albiol

Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid

Madrid, Julio de 2009

Transformation and Analysis of

Object-Oriented Bytecode

PhD THESIS

Miguel Gómez-Zamalloa Gil

Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid

Advisor: Elvira Albert Albiol

July, 2009

Resumen

Predecir el comportamiento de los programas antes de su ejecución es

cada vez más importante, especialmente teniendo en cuenta que éstos son

cada vez más complejos y son utilizados frecuentemente en situaciones cŕıti-

cas, como operaciones médicas, control aéreo u operaciones bancarias. El

análisis estático de programas es el proceso por el cual el comportamiento

de los programas es analizado sin llegar a ejecutar su código. Tradicional-

mente, la mayoŕıa de análisis han sido formulados al nivel del código fuente.

No obstante, puede darse el caso de que el análisis deba tratar con código

compilado, o código de bytes. Esta situación se da en particular cuando

un consumidor de código está interesado en verificar ciertas propiedades de

programas de un tercero, pero no tiene acceso directo al código fuente, co-

mo suele pasar con el software comercial y con el código móvil. Un ejemplo

particularmente interesante es el análisis del consumo de memoria, el cual

puede ser muy útil en contextos en los cuales el consumidor de código quie-

re verificar que el programa recibido puede ejecutarse sin que su consumo

de memoria exceda un ĺımite dado.

Desafortunadamente, razonar sobre programas reales de código de by-

tes (con orientación a objetos) es una tarea complicada y costosa. Además

de las caracteŕısticas propias de la orientación a objetos como la herencia

y las invocaciones virtuales, un analizador de código de bytes tiene que

tratar con ciertas complicaciones propias de los lenguajes de bajo nivel co-

mo la ausencia de estructura de control, el uso de la pila de operandos,

etc. Una práctica habitual consiste en resolver el problema en dos pasos,

de forma que en primer lugar se transforma, o decompila, el programa de

código de bytes a una representación intermedia de más alto nivel, para

poder aśı formular el análisis sobre dicha representación. Esto permite abs-

traer las caracteŕısticas particulares del lenguaje y aśı poder desarrollar las

5

herramientas de análisis sobre representaciones más sencillas. La mayoŕıa

de los enfoques desarrollan decompiladores ad hoc, es decir, decompiladores

exclusivamente diseñados para llevar a cabo una transformación particu-

lar. Existe no obstante una alternativa al desarrollo de decompiladores ad

hoc, llamada decompilación interpretativa por evaluación parcial. Como

veremos, ésta permite decompilar programas evaluando parcialmente un

intérprete respecto a éstos.

Esta tesis contribuye a mejorar el estado del arte en la transformación

y el análisis de lenguajes de código de bytes, en concreto: (1) proponien-

do e implementando un esquema formal para la decompilación automáti-

ca por compilación interpretativa de programas de código de bytes (con

orientación a objetos) a representaciones intermedias de más alto nivel, en

particular utilizando programación lógica; (2) estudiando las aplicaciones

prácticas que se tienen gracias a disponer de dichas representaciones; y

(3) diseñando e implementando un análisis de consumo de memoria para

lenguajes de código de bytes con recolección de basura.

Abstract

Predicting the behavior of programs before their actual execution be-

comes more and more relevant as programs increase in complexity and

become used in critical situations such as medical operations, flight control

or banking cards. Static program analysis is the process of automatically

analyzing the behavior of programs without actually executing the code.

Traditionally, most analyses have been formulated at the source code level.

However, it can be the case that the analysis must consider the compiled

code, or bytecode, instead. This may happen, in particular, when the code

consumer is interested in verifying some properties of 3rd party programs,

but has no direct access to the source code, as usual for commercial soft-

ware and in mobile code. A particularly interesting example is memory

consumption analysis, which can be very useful in contexts where the code

consumer wants to verify that the received program can run within the

actual memory available.

Unfortunately, reasoning about realistic (object-oriented) bytecode pro-

grams is rather complicated and time consuming. In addition to the object-

oriented features such as inheritance and virtual method invocations, a

bytecode analyzer has to deal with several low-level language features li-

ke the unstructured control flow, the usage of the operand stack, etc. A

usual practice is to first transform, or decompile, the bytecode program in-

to a higher-level intermediate representation, and then develop the analysis

over such representation. This allows abstracting away the particular byte-

code language features and developing the analysis tools on much simpler

representations. Most of the approaches develop ad-hoc decompilers, i.e.,

decompilers exclusively designed to carry out the particular transformation.

There is however an alternative to the development of dedicated decompi-

lers which is the so called interpretive decompilation by partial evaluation,

7

which allows decompiling programs by partially evaluating an interpreter

w.r.t. them.

This thesis contributes to improve the state-of-the-art in the transfor-

mation and analysis of bytecode languages by: (1) providing and imple-

menting a formal framework for the automatic decompilation of (object-

oriented) bytecode programs to higher-level intermediate representations,

in particular represented using logic programming, by means of interpretive

decompilation; (2) studying the practical applications that having such re-

presentations can have; and (3) designing and implementing a live memory

consumption analysis for bytecode languages with garbage collection.

Agradecimientos

La realización de esta tesis no habŕıa sido posible sin la ayuda y el

apoyo de mucha gente, y me gustaŕıa aprovechar esta oportunidad para

expresarles mi más profunda gratitud.

En primer lugar, me gustaŕıa dar las gracias a mi directora, Elvira Al-

bert, por introducirme en el mundo de la investigación, y por su ayuda

incalculable con la tesis. Agradezco su paciencia, sentido del humor y todo

el ánimo que he recibido desde el principio. Quiero agradecer también a

Germán Puebla sus valiosos consejos y todas las cosas que me ha enseñado

(algunas voluntariamente y otras simplemente gracias a su manera de tra-

bajar d́ıa a d́ıa). En tercer lugar, quiero dar las gracias a toda la gente del

equipo COSTA, por crear ese magńıfico ambiente de trabajo, especialmen-

te Samir, por estar siempre ah́ı, Puri por ese sentido del humor, Damiano,

etc.

Aprovecho también para dar las gracias a toda la gente del grupo CLIP,

especialmente a Edison y a Claudio, por su ayuda solucionando esos pro-

blemas técnicos que soĺıa tener con Linux, con las instalaciones de Ciao,

etc, etc. Una mención especial es para el director del grupo CLIP, Manuel

Hermenegildo, a quien siempre estaré muy agradecido por habernos tráıdo

y enseñado el verdadero mundo de la investigación.

Una parte importante de mi formación durante estos años (como inves-

tigador y como persona) ha sido posible gracias a las distintas estancias

de investigación y visitas que he podido realizar. Quiero por tanto agra-

decérselo a toda la gente involucrada, desde Paco López, por haberlo hecho

posible, hasta toda la gente que me ha acogido y ayudado en mis diferen-

tes destinos. En particular, John Gallagher por ser siempre tan cercano

(nunca olvidaré aquel partido R. Madrid - Sevilla en su casa), Gourinath

Banda por su ayuda incalculable en Roskilde (la bici, esas pizzas indias, etc,

9

etc), Michael Leuschel por aquellos d́ıas charlando sobre evaluación parcial,

Jorge Pérez por su ayuda en Bolonia, Roberto Bagnara por ese magńıfico

d́ıa en Parma, y Andy King por su impresionante dedicación (aquello fue

investigación pura, ya casi hab́ıa olvidado lo que era).

Quiero también dar las gracias a la gente de mi departamento en la

Universidad Complutense por ayudar a crear ese magńıfico ambiente de

trabajo que tengo la suerte de disfrutar. En particular, a Ana Gil por

guiarme, a Teresa Mart́ınez por toda la ayuda con la burocracia, al despacho

220 (el futuro de nuestro departamento!), etc, etc.

Finalmente, esta tesis no habŕıa sido posible sin el apoyo y ayuda de mi

familia y amigos, especialmente mi mujer, Ali, y mi madre.

Acknowledgments

The making of this thesis would not have been possible without the

help and support of many people and I would like to take this opportunity

to express my gratitude to all of them.

First, I would like to thank my advisor, Elvira Albert, for introducing

me to the world of research, and for her invaluable help with this thesis.

I am deeply grateful for her patience with me, her sense of humor and

all the encouragement I received from the beginning. Secondly, I want to

thank Germán Puebla for his valuable comments, suggestions, and for all

the things he has taught me (some on purpose and some others just because

of the way he works day by day). Thirdly, I also thank the people of the

COSTA team, for creating such an amazing working environment, especia-

lly Samir for being always there, Puri for her sense of humor, Damiano,

etc.

I also would like to thank all the people in the CLIP lab, especially

Edison and Claudio, for their help in sorting out the technical problems I

used to have with Linux, the Ciao installations, etc, etc. A special mention

goes to its director, Manuel Hermenegildo, to whom I will be always very

grateful for bringing the real research world to us.

An important part of my formation during these years (as a researcher

and as a person) has been possible thanks to the several research stays and

visits I have been able to do. I therefore want to thank all the people in-

volved, from Paco López, for making them possible, to the people hosting

and helping me in my different destinations. In particular, I thank John

Gallagher for being always so accessible (I will never forget that R. Madrid

vs. Sevilla match at his place), Gourinath Banda for his invaluable help

(the bike, those indian pizzas, etc, etc), Michael Leuschel for those days of

discussions about PE, Jorge Pérez for his help in Bologna, Roberto Bag-

11

nara for that wonderful day in Parma, and Andy King for his impressive

dedication (that was pure research, I had almost forgot what was that).

I also would like to thank the people in my department at the Com-

plutense University for creating this wonderful working environment, in

particular I thank Ana Gil for guiding me, Teresa Mart́ınez for her help

with all the bureaucracy, the 220 office (the future of the department!), etc,

etc.

Finally, the completion of this thesis would not have been possible wit-

hout the support of my family and friends, especially my wife Ali and my

mom.

Índice general

Índice general 13

I Versión en Castellano (Spanish Version) 17

1. Introducción: Motivación y Contribuciones 19

1.1. Lenguajes de Código de Bytes 19

1.2. Análisis Estático de Programas 23

1.3. Del Bytecode a Representaciones Intermedias 25

1.4. Análisis de Consumo del Heap para Bytecode 27

1.5. Objetivos y Contribuciones 29

1.6. Organización de la Tesis . 33

2. Decompilación Interpretativa de Bytecode a LP 35

2.1. Fundamentos Básicos de la EP de Programas Lógicos 39

2.1.1. Evaluación Parcial “Online” frente a “Offline” 41

2.2. Retos en la Especialización de Intérpretes 42

2.3. Reto I: Tratamiento de Signaturas Infinitas en la EP 47

2.3.1. La Subsunción Homeomórfica 47

2.3.2. Ejemplo Motivador 48

2.3.3. Subsunción Homeomórfica basada en Tipos 51

2.4. Reto II: Decompilación Modular 54

2.4.1. Intérprete con Semántica “Big-step” para habilitar la

Modularidad . 57

2.4.2. El Esquema de Decompilación Modular 58

2.5. Reto III: Un Esquema de Decompilación Óptima 60

2.5.1. Conclusiones de la Decompilación Óptima 64

13

2.6. Implementación y Resultados Experimentales 65

2.7. Trabajo Relacionado . 67

3. Aplicaciones de la Decompilación Interpretativa 71

3.1. Análisis de Bytecode utilizando Herramientas de Análisis LP 71

3.2. Generación de Datos de Prueba por EP en CLP 73

3.2.1. Generando Datos de Prueba para Prolog por EP . . . 77

3.2.2. Trabajo Relacionado en la Generación de Datos de

Prueba . 78

4. Análisis del Consumo del Heap para Bytecode 81

4.1. Análisis del Consumo Total 83

4.2. Análisis de Consumo del Heap Activo para Lenguajes con GC 85

4.3. Trabajo Relacionado . 88

5. Conclusiones y Trabajo Futuro 91

II Versión en Inglés (English Version) 97

6. Introduction: Motivation and Contributions 99

6.1. Bytecode Languages . 99

6.2. Static Program Analysis . 102

6.3. From Bytecode to Intermediate Representations 104

6.4. Heap Space Analysis for Bytecode 106

6.5. Main Goals and Contributions 108

6.6. Organization of this Thesis 111

7. Interpretive Decompilation of Bytecode to LP 113

7.1. Basics of Partial Evaluation of Logic Programs 116

7.1.1. Online vs. Offline Partial Evaluation 118

7.2. Challenges in the Specialization of BC Interpreters 119

7.3. Challenge I: Handling Infinite Signatures 123

7.3.1. The Homemorphic Embedding 123

7.3.2. A Challenging Example 124

7.3.3. Type-based Homeomorphic Embedding 128

7.4. Challenge II: Modular Decompilation 130

7.4.1. Big-step Semantics Interpreter to Enable Modularity 133

7.4.2. The Modular Decompilation Scheme 134

7.5. Challenge III: An Optimal Decompilation Scheme 136

7.5.1. Conclusions of Optimal Decompilation 140

7.6. Implementation and Experimental Results 142

7.7. Related Work on Interpretive Decompilation 143

8. Applications of Interpretive Decompilation 147

8.1. Analysis of Bytecode using LP Analysis Tools 147

8.2. Test Data Generation by CLP PE 149

8.2.1. On the Generation of Test Data for Prolog by EP . . 153

8.2.2. Related work on Test Data Generation 154

9. Heap Space Analysis of Bytecode Programs 155

9.1. Total Heap Space Analysis of Bytecode 157

9.2. Live Heap Space Analysis for Languages with GC 159

9.3. Related Work on Heap Space Analysis 161

10.Conclusions and Future Work 165

Bibliograf́ıa 171

A. Art́ıculos de la Tesis (Papers of the Thesis) 181

Parte I

Versión en Castellano (Spanish

Version)

17

Caṕıtulo 1

Introducción: Motivación y

Contribuciones

1.1. Lenguajes de Código de Bytes

Los lenguajes de programación pueden categorizarse, en general, de

acuerdo al modelo de ejecución en el que sus programas se ejecutan. En

este sentido, se clasifican en una de estas dos categoŕıas: compilados o

interpretados. En los lenguajes compilados, el código fuente es primer lu-

gar traducido, o compilado, a un conjunto de instrucciones espećıficas de

hardware, normalmente conocido como código objeto. El programa es en-

tonces ejecutado corriendo el código objeto en el hardware correspondiente.

Por el contrario, en los lenguajes interpretados, el código fuente se ejecu-

ta directamente en un intérprete. Esta distinción aplicada a lenguajes de

programación es algo confusa, pues en principio, cualquier lenguaje podŕıa

ser compilado o interpretado. La categorización, por tanto, refleja habitual-

mente el modelo de ejecución más popular del lenguaje en cuestión y no

sus propiedades. Cada una de las alternativas tiene sus propias ventajas

y desventajas. Por ejemplo, ejecutar un programa objeto en la máquina

correspondiente, tiende a ser mucho más rápido que ejecutar el programa

fuente usando un intérprete del lenguaje en cuestión (aproximadamente en

un ratio de 10:1). Por otro lado, los lenguajes interpretados proporcionan

cierta flexibilidad respecto a los lenguajes compilados, por ejemplo, faci-

lidad de implementación, facilidad de depuración, y lo más importante,

independencia de plataforma.

19

CAPÍTULO 1. INTRODUCCIÓN: MOTIVACIÓN Y CONTRIBUCIONES

void foo(int n,int m){

this.f = n + m;

}

void foo(int,int)

0: aload 0

1: iload 1

2: iload 2

3: iadd

4: putfield f

7: return

Figura 1.1: Programa Java Bytecode de ejemplo

Una combinación de ambos enfoques, conocida como compilación a

código de bytes o interpretación de código de bytes, está siendo amplia-

mente utilizada. Los modelos de ejecución basados en compilación a código

de bytes, traducen primeramente el código fuente a una representación in-

termedia, conocida como código de bytes (en inglés “bytecode”). Por breve-

dad, utilizaremos el término “bytecode” a partir de ahora. El bytecode no

es el código máquina para ninguna máquina en particular, y puede ser por-

table entre diferentes arquitecturas. El bytecode es entonces interpretado,

o ejecutado en una máquina virtual. El término bytecode proviene de los

repertorios de instrucciones en los que éstas incluyen un código de opera-

ción de un byte de longitud seguido de una serie de parámetros opcionales.

Las instrucciones bytecode son habitualmente similares a las instruccio-

nes hardware tradicionales. Aśı por ejemplo, los lenguajes bytecode tienen

un flujo de control desestructurado con varios tipos de saltos (condiciona-

les e incondicionales) y utilizan habitualmente una pila de operandos para

realizar cálculos auxiliares. Sin embargo, el hecho de que las instrucciones

bytecode estén en principio pensadas para ser ejecutadas por software, hace

que éstas tengan en ocasiones cierta complejidad, especialmente en el ca-

so de lenguajes bytecode orientados a objetos y declarativos. Para hacerse

una idea, la Figura 1.1 muestra el código fuente (Java) y el correspondiente

bytecode de un método que toma dos números enteros, los suma, y asigna

el resultado al atributo f del objeto this. Nótese que, en el bytecode de

Java, el objeto this se pasa expĺıcitamente en la variable local 0. Por tanto,

la instrucción aload 0, apila la referencia al objeto this, en la cima de la

pila de operandos.

En cuanto a eficiencia, se puede decir que el modelo de compilación

a bytecode, se encuentra en algún punto entre el modelo puro basado en

20

1.1. LENGUAJES DE CÓDIGO DE BYTES

compilación y el basado en interpretación; mientras que mantiene las ven-

tajas de los modelos basados en interpretación, en particular, la indepen-

dencia de plataforma. Más aún, nada obliga a un lenguaje bytecode a ser

exclusivamente interpretado. De hecho, la compilación just-in-time (JIT)

puede usarse para acelerar la ejecución del bytecode. Los compiladores JIT

convierten el código fuente, o bytecode en este caso, a código nativo gra-

dualmente durante la ejecución del programa, obteniéndose aśı un mejor

rendimiento. La compilación a bytecode junto con la compilación JIT puede

por tanto combinar la mayoŕıa de las ventajas de los modelos de ejecución

basados en compilación y los basados en interpretación. Ésta es la princi-

pal razón del éxito de los entornos de programación de Microsoft .NET y

Java, los cuales son, sin lugar a dudas, los entornos de programación más

utilizados en la actualidad.

Java Bytecode Java Bytecode es el lenguaje que la máquina virtual de

Java (JVM) [66] ejecuta. Fue originalmente diseñado por Sun Microsys-

tems como un lenguaje intermedio en el entorno de desarrollo de Java. Una

instrucción Java Bytecode consiste en un código de operación, el cual espe-

cifica la operación a ser ejecutada, seguido de cero o más operandos con los

valores que se utilizan en la operación en cuestión. La JVM utiliza, entre

otras, las siguientes estructuras de datos, que las instrucciones manipulan

durante su ejecución: el contador de programa, que contiene el ı́ndice de la

instrucción actual, la pila de operandos y el array de variables locales, en

los cuales se almacenan los parámetros, variables y resultados intermedios,

el mont́ıculo o “heap” (utilizaremos el término “heap” a partir de ahora),

en el cual se almacenan los objetos y arrays, y la habitual pila de llamadas

o pila de “frames” para tratar con las llamadas y vueltas de llamada a

métodos. El lenguaje Java Bytecode incluye, por un lado, las instrucciones

habituales de bajo nivel para: transferir valores entre la pila de operandos y

el array de variables locales (y viceversa), realizar operaciones aritméticas,

saltar condicional o incondicionalmente a otras partes del código, llamar

y volver de métodos, etc. Por ejemplo, la instrucción “iload 1” carga la

variable local 1 en la cima de la pila de operandos, y la instrucción “iadd”

suma (y desapila) los dos valores de la cima de la pila, y apila el resultado.

Por otro lado, Java Bytecode, al tener orientación a objetos y concurrencia,

incluye también instrucciones para: crear objetos y arrays, escribir y leer

21

CAPÍTULO 1. INTRODUCCIÓN: MOTIVACIÓN Y CONTRIBUCIONES

atributos y elementos de arrays, realizar invocaciones virtuales, adquirir y

liberar monitores, etc. Por ejemplo, la instrucción “putfield f” escribe el

valor que hay en la cima de la pila, en el atributo f del objeto referenciado

por la dirección de memoria almacenada bajo la cima de la pila.

Aunque Java es el lenguaje más común que se compila a Java Bytecode,

hay sin embargo muchos compiladores de diferentes lenguajes de alto nivel

a Java Bytecode. Algunos de los más conocidos son: jython para programas

Python, jRuby para Ruby and jGNAT para Ada.

El Lenguaje Intermedio Común de .NET El Lenguaje Intermedio

Común (“Common Intermediate Language” o CIL) es el lenguaje bytecode

intermedio utilizado en el entorno .NET. Aśı, los diferentes lenguajes fuen-

te utilizados en .NET, se compilan a CIL. Como Java Bytecode, CIL es un

lenguaje orientado a objetos y basado en pila. Incluye por tanto la mis-

ma clase de instrucciones bytecode. A diferencia de Java Bytecode, CIL no

está pensado para ser interpretado. Fue sin embargo, desde sus comienzos,

pensado para ser compilado a código máquina utilizando compilación JIT.

Incluso, en ocasiones, el bytecode se compila por completo a código máqui-

na antes de ser ejecutado para mejorar el rendimiento. El entorno .NET

es una de las piedras angulares de la tecnoloǵıa moderna de Microsoft, y

se utiliza para el desarrollo de la mayoŕıa de aplicaciones creadas para la

plataforma Windows.

Existen otros muchos lenguajes bytecode bien conocidos y ampliamente

utilizados, tanto imperativos, como el p-code utilizado en algunas imple-

mentaciones de Pascal; como declarativos, como el bytecode WAM, utili-

zado en la mayoŕıa de implementaciones de Prolog, el bytecode de Haskell

Hugs’98, o el bytecode Erlang BEAM, por nombrar algunos.

Esta tesis está principalmente centrada en lenguajes bytecode imperati-

vos y con orientación a objetos. En particular, como veremos, los diferentes

contenidos técnicos de la tesis, aśı como los distintos prototipos implemen-

tados, consideran subconjuntos representativos de Java Bytecode.

22

1.2. ANÁLISIS ESTÁTICO DE PROGRAMAS

1.2. Análisis Estático de Programas

Predecir el comportamiento de los programas antes de su ejecución es

cada vez más relevante, especialmente teniendo en cuenta que éstos son cada

vez más complejos y son frecuentemente utilizados en situaciones cŕıticas,

como operaciones médicas, control aéreo o tarjetas bancarias. Ser capa-

ces de demostrar de forma automática que los programas cumplen con sus

especificaciones funcionales, es un factor básico para su éxito. El análi-

sis estático de programas es el proceso por el cual el comportamiento de

los programas es analizado sin llegar a ejecutar su código. Por el contra-

rio, cuando el análisis se realiza ejecutando el programa, éste se denomina

análisis dinámico. Los análisis estáticos clásicos tratan de inferir propie-

dades de los programas como: ausencia de errores, terminación, coste o

consumo de recursos (tiempo o memoria), vida de variables, forma de pun-

teros, etc. Habitualmente, los análisis estáticos basan su funcionamiento en

métodos formales. Algunos de los más habituales son: la interpretación abs-

tracta, el chequeo de modelos y los sistemas de tipos. Esta tesis está basada

principalmente en el análisis estático basado en interpretación abstracta.

Interpretación Abstracta. La técnica de la interpretación abstracta [30]

proporciona un marco general para computar aproximaciones seguras (es

decir, abstracciones) del comportamiento de los programas. Su principal

aplicación práctica es el análisis estático formal. Los analizadores basados

en interpretación abstracta, infieren información de los programas inter-

pretándolos (“ejecutándolos”), utilizando valores abstractos en lugar de

valores concretos. Estos analizadores son paramétricos respecto al llamado

dominio abstracto, el cual proporciona una representación finita de un con-

junto posiblemente infinito de valores. Dominios diferentes capturan clases

distintas de propiedades, con un nivel distinto de precisión, y a un coste

computacional diferente.

Los analizadores basados en interpretación abstracta se han estudiado

tanto en el contexto de lenguajes declarativos como en el de lenguajes

imperativos. A continuación enumeramos algunos sistemas de análisis:

23

CAPÍTULO 1. INTRODUCCIÓN: MOTIVACIÓN Y CONTRIBUCIONES

El Analizador ASTRÉE. ASTRÉE [31] es un analizador estático de pro-

gramas, desarrollado en la École Normale Supérieure por Cousot et. al.,

que es capaz de demostrar ausencia de errores en tiempo de ejecución en

programas C. ASTRÉE fue capaz por ejemplo de demostrar, de forma total-

mente automática, la ausencia de errores en el software primario de control

aéreo del Airbus A340, un programa de 132.000 ĺıneas.

El Sistema CiaoPP. CiaoPP [49] es el preprocesador basado en inter-

pretación abstracta del sistema de Programación Lógica con Restricciones,

“Constraint Logic Programming” (CLP), Ciao-Prolog [25]. Éste incluye

un buen número de funcionalidades para realizar depuración, análisis y

transformación fuente a fuente de programas Ciao-Prolog. Algunas de las

propiedades que el sistema es capaz de inferir son: tipos, modos y otras

propiedades de instanciación de variables, no fallo, determinismo, cotas en

el coste de recursos, cotas del tamaño de los términos del programa, etc.

CiaoPP es también capaz de realizar varios tipos de transformaciones fuente

a fuente de programas, como especialización de programas, paralelización

de programas (incluyendo control de granularidad), etc.

Otros sistemas de análisis estático bien conocidos (no comerciales y co-

merciales) son: Lint, CCA y BOON para programas C, CodeSonar para

C++, Fluid y jLint para Java, y muchos otros. Otros analizadores estáticos

no han llegado a ser herramientas autointegradas sino que aparecen inte-

grados en diversos compiladores. Un ejemplo de esto es el verificador de la

JVM que integra un analizador del flujo de datos (“data-flow analysis”).

Tradicionalmente, la mayoŕıa de análisis han sido formulados al nivel del

código fuente. No obstante, puede darse el caso de que el análisis deba tratar

con código compilado, o bytecode. Esta situación se da en particular cuando

un consumidor de código está interesado en verificar ciertas propiedades de

programas de un tercero, pero no tiene acceso directo al código fuente,

como suele pasar con el software comercial y con el código móvil. Éste

es el marco general en el que nació la idea del Código con demostración,

“Proof-Carrying Code” [74]: para que un usuario pueda verificar cierto

código, éste debe venir acompañado de una demostración de que se cumplen

ciertas propiedades de seguridad, referidas al código compilado o bytecode

(posiblemente inferida por análisis estático), de forma que el usuario pueda

24

1.3. DEL BYTECODE A REPRESENTACIONES INTERMEDIAS

chequear la corrección de la demostración proporcionada y verificar que

las propiedades efectivamente se cumplen (por ejemplo, que el código no

requiere más de una cierta cantidad de memoria para ser ejecutado, o que

ejecuta en menos de una cierta cantidad de tiempo).

Existe por tanto la necesidad de desarrollar herramientas de análisis y

verificación que trabajen directamente al nivel de programas bytecode. Des-

afortunadamente, razonar sobre programas reales bytecode (con orientación

a objetos) es una tarea complicada y costosa. Además de las caracteŕısti-

cas propias de la orientación a objetos como la herencia y las invocaciones

virtuales, un analizador de bytecode tiene que tratar con ciertas complica-

ciones propias de los lenguajes de bajo nivel como la ausencia de estructura

de control, el uso de la pila de operandos, etc.

1.3. Del Bytecode a Representaciones Inter-

medias

En el contexto del análisis de lenguajes bytecode, una práctica habitual

consiste en resolver el problema en dos pasos: (1) transformar el programa

bytecode a una representación intermedia (RI) de más alto nivel, y (2) for-

mular el análisis sobre dicha RI. Esto permite abstraer las caracteŕısticas

particulares del lenguaje bytecode y aśı poder desarrollar las herramientas

de análisis sobre representaciones más sencillas de tratar. Otra ventaja im-

portante de este enfoque, es que éste permite la posibilidad de reutilizar la

fase de análisis (fase (2)) para poder analizar distintos lenguajes (bytecode

y no bytecode), siempre que éstos puedan ser transformados a la misma RI.

Utilizaremos a partir de ahora el término decompilación para referirnos a

la transformación de bytecode a la RI, pues se traduce un lenguaje de bajo

a alto nivel.

La mayoŕıa de los enfoques desarrollan decompiladores dedicados, o ad

hoc, es decir, decompiladores exclusivamente diseñados para llevar a cabo

una decompilación particular. Existe no obstante una alternativa al desa-

rrollo de decompiladores dedicados, llamada decompilación interpretativa

por evaluación parcial. Como veremos, ésta permite decompilar programas

evaluando parcialmente un intérprete respecto a éstos.

25

CAPÍTULO 1. INTRODUCCIÓN: MOTIVACIÓN Y CONTRIBUCIONES

Evaluación Parcial. La Evaluación Parcial (EP) [56] es una técnica,

basada en semántica, de transformación fuente a fuente de programas, que

permite especializar programas respecto a parte de sus datos de entrada.

Se suele llamar de hecho especialización de programas. Consideremos un

programa P , y sus datos de entrada I divididos en Istatic y Idynamic. Istatic son

los datos estáticos, es decir, los datos conocidos en tiempo de compilación,

y Idynamic son el resto de los datos. Podemos ver la ejecución del programa

P como una función de los datos de entrada a los de salida de la siguiente

forma:

P : Istatic × Idynamic −→ O

Un evaluador parcial trasforma el par 〈P, Istatic〉 en P ′ : Idynamic −→ O,

realizando las computaciones de P que dependen de Istatic en tiempo de

compilación. Se denomina a P ′ el programa residual, el cual debeŕıa ser

más eficiente que el programa original P .

El Enfoque Interpretativo de Compilación. Una aplicación particu-

larmente interesante de la EP, primeramente descrita por Yoshihiko Futa-

mura en los años 70 [41], aparece cuando el programa P a ser evaluado

parcialmente es un intérprete de un lenguaje de programación. Esto se co-

noce como el enfoque interpretativo de compilación o la primera proyección

de Futamura. Asumamos un intérprete, escrito en un lenguaje objetivo o

“target” LT , que interpreta programas escritos en un lenguaje fuente o

“source”, LS. Entonces, si Istatic es un programa fuente, escrito en LS, la

evaluación parcial del intérprete respecto al programa (datos), producirá P ′,

una versión del intérprete que sólo puede ejecutar ese programa fuente, que

está escrita en el lenguaje de implementación del intérprete, LT , y que no

necesita el código fuente para poder interpretarlo. P ′ puede considerarse

como una versión compilada de Istatic al lenguaje objetivo LT . La compi-

lación interpretativa permite por tanto compilar programas escritos en LS

a otro lenguaje LT , evaluando parcialmente un intérprete de LS escrito en

LT respecto a ellos.

En el caso particular de la decompilación de lenguajes bytecode, el en-

foque interpretativo de compilación nos permitiŕıa decompilar un progra-

ma bytecode escrito en un lenguaje bytecode BC, a una representación

26

1.4. ANÁLISIS DE CONSUMO DEL HEAP PARA BYTECODE

de más alto nivel, digamos que al lenguaje HL, evaluando parcialmente

un intérprete de BC escrito en HL. Este enfoque es, en principio, más

genérico, flexible, más seguro y más fácil de mantener que un decompila-

dor dedicado para la misma tarea. Dichas ventajas serán discutidas más

adelante en la Sección 2. El enfoque interpretativo, aunque es en principio

muy atractivo, no ha sido muy utilizado en la práctica, principalmente de-

bido a la dificultad de encontrar estrategias de EP con las cuales se puedan

obtener decompilaciones efectivas, o de calidad, y de forma eficiente.

1.4. Análisis de Consumo del Heap para Byte-

code

La investigación sobre el consumo de recursos de los programas co-

menzó con el trabajo de Wegbreit es 1975 [86], en el cual se propuso un

análisis del rendimiento de un programa basado en la derivación de una

expresión matemática que representaba su comportamiento en tiempo de

ejecución. El enfoque para realizar análisis estático de coste es el siguiente:

dado un programa de entrada, (1) en una primera fase, el análisis de coste

genera un sistema de ecuaciones de coste, “cost equation system” (CES) a

partir del programa, que captura las relaciones entre las diferentes partes

del código. Un CES es un conjunto de ecuaciones de recurrencia que expre-

sa el coste del programa en términos de los tamaños de sus argumentos de

entrada. (2) En la segunda fase, el CES se trata de resolver o aproximar,

t́ıpicamente utilizando técnicas algebraicas, obteniéndose una forma cerra-

da (por ejemplo, sin incluir recurrencias) que representa una cota superior

(o cota inferior) del coste.

Los análisis de coste se han estudiado de forma intensiva en el con-

texto de la programación declarativa, tanto para programación funcio-

nal [79, 80, 44, 15], como para programación lógica [34, 35], y también en el

contexto de lenguajes imperativos de alto nivel (centrándose principalmen-

te en la estimación de tiempos en el caso peor y en el diseño de modelos de

coste [88]). Tradicionalmente, como pasa con la mayoŕıa de análisis estáti-

cos, los análisis de coste han sido formulados al nivel del código fuente.

Sin embargo, como hemos visto, existen situaciones en las que no se tiene

acceso a éste, sino que sólamente se tiene acceso al código compilado o al

27

CAPÍTULO 1. INTRODUCCIÓN: MOTIVACIÓN Y CONTRIBUCIONES

bytecode. Recientemente, en [2] se ha propuesto un esquema genérico para

el análisis de coste de Java Bytecode, el cual constituye la base formal sobre

la que se sustenta el sistema COSTA [5].

El Sistema COSTA. COSTA [5] es un prototipo de investigación que

es capaz de realizar automáticamente Análisis de COSte y Terminación

para Java Bytecode. El sistema recibe como entrada un programa bytecode

y un modelo de coste, elegido a partir de una selección de descripciones de

recursos, y trata de obtener una cota del consumo de recursos del programa

respecto al modelo de coste dado. COSTA sigue el enfoque estándar

para realizar el análisis de coste, es decir, primeramente produce un CES,

el cual es una forma extendida de relaciones de recurrencia, y después

trata de obtener una forma cerrada, que representa una cota superior del

coste del programa, utilizando para ello un resolutor de ecuaciones de

recurrencia propio [9].

Una de las aplicaciones más interesantes del análisis de coste, la cual

presenta importantes retos por resolver, es el análisis de consumo del heap.

Éste trata de inferir cotas del espacio de heap consumido por un programa.

De nuevo, los análisis de heap se han formulado habitualmente al nivel

del código fuente (ver por ejemplo [83, 50, 85, 54] en el contexto de la

programación funcional y [52, 23] para lenguajes imperativos de alto nivel).

En el contexto de lenguajes bytecode, el análisis de consumo de heap puede

tener aplicaciones muy interesantes. Por ejemplo, la certificación de cotas de

recursos, “resource bound certification” [33, 8, 10, 51, 22], propone utilizar

propiedades de seguridad incluyendo requerimientos de coste, es decir, el

código recibido ha de adherirse a unos requerimientos espećıficos respecto a

su consumo de memoria. También, las cotas del consumo del heap pueden

resultar útiles en sistemas empotrados (“embedded systems”), por ejemplo,

en tarjetas inteligentes en las cuales la memoria es limitada y no puede

recuperarse de forma sencilla.

Desafortunadamente, la gestión automática de memoria, también llama-

da recolección de basura (“garbage collection” o GC), la cual es utilizada

cada vez más habitualmente en lenguajes bytecode como en Java Bytecode

y en el .NET CIL, provoca que el problema de predecir la memoria utiliza-

da por un programa sea mucho más dif́ıcil. Una primera aproximación al

28

1.5. OBJETIVOS Y CONTRIBUCIONES

problema es inferir el consumo total de memoria, es decir, la cantidad acu-

mulada de memoria alojada por el programa ignorando el efecto del GC. Si

se dispone de dicha cantidad de memoria, está asegurado que el programa

puede ejecutar, incluso aún cuando no se aplica el GC. Sin embargo, ésta

es una estimación muy pesimista del consumo real del programa. Reciente-

mente, en [83, 18, 24] se han propuesto análisis de consumo del heap activo,

“live heap space analysis”, los cuales tratan de aproximar el tamaño de la

memoria activa en el heap durante la ejecución del programa, resultando en

una aproximación mucho más precisa. Dichos enfoques, están sin embargo

restringidos a cotas polinomiales y a métodos no recursivos [18], o a cotas

lineales, en este caso, capaz de tratar recursión [24].

1.5. Objetivos y Contribuciones

El principal objetivo de esta tesis es mejorar el estado del arte en la

transformación y el análisis de lenguajes bytecode, en concreto: (1) pro-

poniendo e implementando un esquema formal para la decompilación au-

tomática por compilación interpretativa de programas bytecode (con orien-

tación a objetos) a representaciones intermedias de más alto nivel, en parti-

cular utilizando programación lógica (LP); (2) estudiando las aplicaciones

prácticas que se tienen gracias a disponer de dichas RIs basadas en LP; y

(3) diseñando e implementando un análisis de consumo de la memoria acti-

va para lenguajes bytecode con recolección de basura. Más detalladamente,

las contribuciones de esta tesis son las siguientes:

1. Decompilación interpretativa de bytecode a LP: Ha habido

en la literatura varias pruebas de concepto mostrando que el enfoque

interpretativo es factible [63, 48, 76, 64]. Sin embargo, en la prácti-

ca, a la hora de decompilar lenguajes y programas complejos, aún

quedan varias cuestiones por resolver. Éstas incluyen: escalabilidad,

que a su vez depende de la composicionalidad del enfoque, y efectivi-

dad, es decir, obtener programas decompilados de calidad. Esta tesis

presenta, por lo que conocemos, el primer esquema de decompilación

interpretativa que es capaz de decompilar lenguajes bytecode reales

a una representación de alto nivel. En particular, decompilamos Java

Bytecode a Prolog.

29

CAPÍTULO 1. INTRODUCCIÓN: MOTIVACIÓN Y CONTRIBUCIONES

a) Estrategias de control: Una de las principales dificultades de

la decompilación interpretativa, y de la EP en general, es el ser

capaz de tratar adecuadamente con signaturas infinitas. Hemos

propuesto técnicas novedosas que nos han permitido definir re-

glas de control sofisticadas. En particular, hemos introducido la

relación de la subsunción homeomórfica basada en tipos, una ge-

neralización de la relación original de subsunción homeomórfica,

que proporciona resultados más precisos en presencia de signa-

turas infinitas. Hemos mostrado como esta técnica, a parte de

resultar crucial en la especialización de intérpretes, mejora el

estado del arte de las herramientas de especialización “online”.

Este trabajo fue primeramente propuesto en el Art́ıculo 3 (ver

el Apéndice A) y posteriormente extendido y reformulado en el

Art́ıculo 4, el cual ha sido publicado en la revista “Information

Processing Letters”.

b) Controlando la polivarianza de la EP: Incluso una vez

después de haber integrado la subsunción homeomórfica basada

en tipos en la EP, los programas decompilados que se obtienen

tienden a tener demasiadas versiones especializadas (redundan-

tes) para algunos predicados. Este aspecto se ha estudiado en el

Art́ıculo 2, donde se proponen técnicas avanzadas para controlar

la polivarianza del proceso de EP, es decir, evitar tener dichas

versiones especializadas redundantes.

c) Cómo escribir el intérprete de bytecode: Como se ha mos-

trado en trabajos previos de compilación interpretativa, las ca-

racteŕısticas del intérprete en cuestión, resultan cruciales para

poder obtener una especialización exitosa. Hemos identificado

los aspectos necesarios que el intérprete debe tener para poder

obtener un esquema composicional de decompilación.

d) Decompilación óptima: Aseguramos la calidad de la decom-

pilación, tanto en términos de efectividad como de eficiencia,

proponiendo una serie de criterios de optimalidad. Éstos básica-

mente requieren que: (1) la decompilación no genere código más

de una vez para cada punto de programa, y (2) que haya como

máximo una regla residual para cada bloque del programa byte-

30

1.5. OBJETIVOS Y CONTRIBUCIONES

code. Proponemos un esquema de decompilación que es óptimo

respecto a estos criterios de optimalidad. Esto asegura tanto la

escalabilidad del proceso como la calidad de las decompilaciones.

Este trabajo junto con lo descrito en el punto (c) dieron lugar

al Art́ıculo 5.

e) Tratando con la orientación a objetos: Mostramos como

nuestro esquema se puede adaptar fácilmente para tratar las ca-

racteŕısticas de la orientación a objetos. En particular, propone-

mos mecanismos para: tratar con el heap y con sus instrucciones

asociadas, representar clases por medio de módulos Prolog, y re-

presentar invocaciones virtuales por medio de llamadas Prolog

con calificación de módulo.

f) Implementación y evaluación experimental: Todas las

técnicas mencionadas han sido implementadas e integradas en

un decompilador prototipo de Java Bytecode secuencial a Pro-

log, llamado jbc2prolog. Presentamos resultados experimentales

usando dicho prototipo (utilizando, y contrastando con, otros

sistemas). En particular, se han estudiado tanto la escalabilidad

como la eficiencia de nuestro enfoque, utilizando el conjunto de

“benchmarks” JOlden [55]. El trabajo descrito en los puntos (b),

(c), (d), (e) y (f), ha dado lugar al Art́ıculo 6, el cual ha sido re-

cientemente publicado por la revista “Information and Software

Technology”. Este Art́ıculo, por tanto, lleva a cabo el objetivo

(1) (ver más arriba).

2. Aplicaciones de la decompilación interpretativa: Utilizar un

lenguaje declarativo para definir las RIs ofrece ventajas importantes.

En particular, se pueden reutilizar las potentes y avanzadas herra-

mientas de análisis y transformación de programas existentes en el

contexto de la programación declarativa (ya probadas correctas y

efectivas) para el análisis y transformación de programas bytecode.

Este trabajo se corresponde por tanto con el objetivo (2).

a) Reutilizando herramientas de análisis de LP: Utilizando

el sistema CiaoPP sobre nuestros programas decompilados, he-

mos sido capaces de demostrar ciertas propiedades no triviales

de programas Java Bytecode como terminación y ausencia de

31

CAPÍTULO 1. INTRODUCCIÓN: MOTIVACIÓN Y CONTRIBUCIONES

errores, aśı como, para programas sencillos, inferir cotas de su

consumo de recursos. Este trabajo aparece en el Art́ıculo 1.

b) Generación de datos de prueba: Uno de los enfoques

estándar para generar automáticamente datos de prueba con-

siste en hacer ejecución simbólica de los programas [29, 57]. En

ésta, los contenidos de las variables son expresiones en lugar de

valores concretos. El hecho de que nuestros programas decom-

pilados sean programas Prolog ejecutables, nos permite poder

utilizar técnicas inherentes a la CLP (como el backtracking y la

manipulación de restricciones) para realizar la ejecución simbóli-

ca. Hemos desarrollado un esquema novedoso de generación de

casos de prueba utilizando nuestros programas (C)LP decompi-

lados. Mostramos además como la fase de generación de casos de

prueba en CLP, puede verse como otra EP, lo que nos permite

obtener no sólo casos de prueba, sino también generadores de

casos de prueba. Este trabajo ha dado lugar al Art́ıculo 7. Como

contribución tangencial, hemos aplicado la misma idea para ge-

nerar automáticamente casos de prueba para Prolog. Un estudio

preliminar en esta dirección aparece en el Art́ıculo 8.

3. Análisis de consumo del heap:

a) Consumo total del heap: En primer lugar, hemos desarrolla-

do una aplicación novedosa del analizador de coste presentado

en [3], para inferir cotas superiores del consumo del heap de

programas secuenciales Java Bytecode. Para ello, simplemente

hemos propuesto un modelo de coste que define el coste de las

instrucciones que alojan memoria, en términos de las unidades

de heap (memoria) que consumen. Podemos entonces generar

relaciones de coste del consumo del heap que pueden ser utili-

zadas directamente para inferir cotas superiores en el consumo

del heap de programas Java Bytecode.

b) Análisis de consumo del heap activo en lenguajes con

GC: En presencia de recolección automática de basura, el enfo-

que propuesto proporciona estimaciones demasiado pesimistas

del consumo real de los programas. Esta tesis presenta un es-

quema general para inferir el consumo pico del heap durante la

32

1.6. ORGANIZACIÓN DE LA TESIS

ejecución de un programa bytecode, es decir, el máximo uso de

memoria activa durante su ejecución, no estando restringido a

ninguna clase de complejidad (como pasa con enfoques anterio-

res).

c) Implementación y evaluación experimental: Los análisis

han sido implementados e integrados en el sistema COSTA.

Hemos realizado una evaluación experimental con una serie de

aplicaciones Java que hacen un uso intensivo del heap, incluyen-

do los “benchmarks” JOlden [55]. Los resultados demuestran que

nuestro enfoque es capaz de obtener cotas del consumo de heap

activo razonablemente precisas de forma totalmente automáti-

ca. Todo este trabajo sobre el análisis de consumo del heap ha

dado lugar a los Art́ıculos 9 y 10, llevándose a cabo por tanto el

objetivo (3).

1.6. Organización de la Tesis

Esta tesis sigue el formato “tesis por publicaciones” y consiste por tanto

en una introducción describiendo sus principales objetivos, contribuciones y

conclusiones, la cual se presenta en los Caṕıtulos 1, 2, 3, 4 y 5, y, el conjunto

de publicaciones editadas que han dado lugar a la tesis, presentadas en el

formato y longitud en el que aparecen en las correspondientes publicaciones,

como un apéndice.

El resto de la tesis se organiza de la siguiente manera: El Caṕıtulo 2

ofrece una visión general de todo el trabajo correspondiente a la contri-

bución (1). En particular, la Sección 2.1 proporciona resumidamente los

fundamentos básicos de la EP de programas lógicos, después, se presentan

en la Sección 2.2 los retos que aparecen al especializar un intérprete de

bytecode, la Sección 2.3 introduce la relación de subsunción homeomórfica

basada en tipos, las Secciones 2.4 y 2.5 resumen los detalles técnicos de

los esquemas de decompilación modular y óptimo, la Sección 2.6 discute

brevemente algunos detalles de implementación, aśı como la evaluación ex-

perimental llevada a cabo, y finalmente la Sección 2.7 presenta el trabajo

relacionado en decompilación (interpretativa).

El Caṕıtulo 3 proporciona una visión general del trabajo realizado so-

bre las aplicaciones que surgen al utilizar nuestro enfoque de decompila-

33

CAPÍTULO 1. INTRODUCCIÓN: MOTIVACIÓN Y CONTRIBUCIONES

ción interpretativa, bien para analizar programas bytecode (Sección 3.1), o

bien para realizar generación automática de datos de entrada para pruebas

(Sección 3.2). El Caṕıtulo 4 resume nuestro trabajo sobre el análisis de

consumo del heap (Sección 4.1) y su extensión para considerar el efecto de

la recolección de basura (Sección 4.2), y discute finalmente sobre el trabajo

relacionado en el área (Sección 4.3). Finalmente, el Caṕıtulo 5 presenta las

conclusiones de la tesis y discute algunas ĺıneas de trabajo en progreso y

futuro.

Todos los detalles técnicos aparecen en los Art́ıculos que han dado lugar

a la tesis, los cuales aparecen ı́ntegramente en el Apéndice A.

34

Caṕıtulo 2

Decompilación Interpretativa

de Bytecode a LP

Decompilar lenguajes bytecode a representaciones intermedias es hoy

en d́ıa una práctica habitual en el desarrollo de analizadores, verificado-

res, chequeadores de modelos, etc. Por ejemplo, en el contexto de código

móvil, al no tenerse acceso al código fuente, la decompilación puede facili-

tar la reutilización de herramientas de análisis y chequeadores de modelos

existentes. En general, las representaciones intermedias de alto nivel permi-

ten abstraer las caracteŕısticas particulares de cada lenguaje, permitiendo

por tanto que las herramientas puedan trabajar sobre representaciones más

sencillas. Aśı por ejemplo, Java Bytecode ha sido decompilado a una repre-

sentación basada en reglas en [2], a programas basados en cláusulas en [70],

a una representación basada en código de tres direcciones en el sistema

Soot [84] y al lenguaje procedural tipado BoogiePL en [37]. Aśı mismo, en

[87] el análisis de programas Java es formalizado y llevado a cabo utilizando

programas Datalog, y, en [48] programas de código ensamblador PIC son

transformados a programas lógicos para su posterior análisis. Estos traba-

jos han demostrado que, las representaciones basadas en reglas usadas en la

programación declarativa en general—y en LP en particular—proporcionan

un formalismo adecuado a la hora de definir dichas representaciones inter-

medias. Por ejemplo, como puede verse en [2, 70, 48], la pila de operandos

utilizada en los lenguajes bytecode, puede representarse expĺıcitamente por

medio de variables lógicas, y el flujo de control desestructurado puede trans-

formarse en reglas condicionales y recursivas.

35

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

Las representaciones intermedias resultantes simplifican en gran me-

dida el desarrollo de las herramientas arriba mencionadas para lenguajes

modernos y, además, herramientas existentes desarrolladas para lenguajes

declarativos (las cuales han demostrado ser efectivas) pueden ser directa-

mente aplicadas.

La mayoŕıa de los enfoques citados con anterioridad desarrollan de-

compiladores dedicados o ad hoc, para llevar a cabo la decompilación co-

rrespondiente. Como se comentó en la Sección 1.3, una alternativa muy

prometedora al desarrollo de decompiladores dedicados es la decompilación

interpretativa por evaluación parcial. Las ventajas de la (de)compilación

interpretativa respecto los decompiladores dedicados son bien conocidas y

discutidas en la literatura de la EP. Brevemente, éstas incluyen:

1. Flexibilidad : Es muy sencillo modificar el intérprete correspondiente

para afinar la decompilación (por ejemplo, para observar nuevas pro-

piedades de interés). Aśı por ejemplo, en el Art́ıculo 1, un intérprete

de Java Bytecode es instrumentado con un argumento adicional que

almacena la traza de instrucciones bytecode para poder aśı acumular

la historia de la ejecución. Los programas decompilados usando este

intérprete incluyen por tanto en sus reglas un argumento adicional

con la traza de ejecución al nivel de Java Bytecode. Esta traza permi-

te observar distintas propiedades de los programas. Por ejemplo, se

puede demostrar la ausencia de errores en tiempo de ejecución a base

de demostrar que la traza no contiene instrucciones relacionadas con

errores o determinados tipos de excepciones.

2. Seguridad : Es en principio mucho más dif́ıcil demostrar, o confiar en

que un decompilador dedicado preserve la semántica del programa

original. Por ejemplo, a la hora de definir nuestro intérprete de Java

Bytecode, hemos utilizado la especificación formal Bicolano [78], la

cual fue escrita, y verificada, utilizando el asistente de demostraciones

Coq [11].

3. Mantenibilidad : Los cambios introducidos en la semántica del len-

guaje pueden ser fácilmente reflejados en el intérprete. Más adelante,

veremos como efectivamente definir, aśı como hacer evolucionar, un

intérprete de bytecode en Prolog es una tarea bastante sencilla.

36

El reto se encuentra ahora en definir un esquema de decompilación in-

terpretativa práctico y escalable, que sea capaz de obtener programas de-

compilados de calidad. Una vez seamos capaces de definir dicho esquema,

será posible entonces hacer valer las ventajas arriba mencionadas.

En la literatura ha habido varias pruebas de concepto demostrando que

la decompilación interpretativa es efectivamente aplicable (ver por ejem-

plo [48, 63]), sin embargo aún quedan muchas cuestiones por resolver si

queremos aplicarlo a la decompilación de lenguajes y programas reales. A

continuación, la Figura 2.1 enumera dichas cuestiones para facilitar poste-

riores referencias. Esta tesis responde afirmativamente a dichas cuestiones

a) ¿es el enfoque escalable?

b) ¿preservan los programas decompilados la estructura de los progra-

mas originales?

c) ¿es comparable la calidad de los programas decompilados con la de

los programas obtenidos utilizando decompiladores ad hoc?

Figura 2.1: Cuestiones por resolver de la decompilación interpretativa

proponiendo un esquema modular de decompilación, que asegura la ob-

tención de decompilaciones de calidad que preservan la estructura de los

programas originales.

El resto del caṕıtulo está organizado de la siguiente manera:

En primer lugar, la Sección 2.1 presenta informalmente los funda-

mentos de la EP de programas lógicos necesarios para comprender

los detalles presentados en el resto del caṕıtulo. Dichos fundamentos

se presentan formalmente en la Sección 2 del Art́ıculo 6.

La Sección 2.2 introduce las dificultades y retos que surgen al especia-

lizar un intérprete de bytecode utilizando un ejemplo representativo.

La Sección 2.3 presenta informalmente la Subsunción homeomórfi-

ca basada en tipos, una extensión de la relación de subsunción ho-

meomórfica original que, teniendo en cuenta información del progra-

37

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

ma, obtiene resultados más precisos en presencia de signaturas infini-

tas. En los Art́ıculos 4 y 3 se presentan los correspondientes detalles

formales aśı como una evaluación experimental detallada.

Las Secciones 2.4 y 2.5 introducen los ingredientes necesarios para

desarrollar un esquema de decompilación modular y óptimo, capaz de

tratar los puntos a), b) y c) (ver Figura 2.1). Primeramente definimos

la noción de optimalidad por medio de una serie de criterios de op-

timalidad. Después, presentamos las limitaciones de la decompilación

no-modular e identificamos los componentes necesarios para posibi-

litar la definición de un esquema modular. Éstos incluyen, el cómo

escribir el intérprete y el cómo controlar un evaluador parcial “onli-

ne” para poder preservar la estructura del programa original respecto

a las invocaciones a métodos. Finalmente, introducimos un esquema

de decompilación interpretativa capaz de responder a los puntos (a),

(b) y (c), produciendo programas decompilados cuya calidad es equi-

valente a la obtenida utilizando decompiladores ad hoc. Esto requiere

una decompilación a nivel de bloques que evite las duplicaciones y

reevaluaciones de código.

La Sección 2.6 resume los resultados experimentales obtenidos con dos

prototipos de decompilador de Java Bytecode a Prolog que incorpo-

ran las técnicas mencionadas. Dichos resultados demuestran emṕıri-

camente la escalabilidad y eficiencia del enfoque propuesto sobre una

serie de programas reales escritos en Java Bytecode.

Finalmente, la Sección 2.7 presenta el trabajo relacionado en el campo

de la decompilación de lenguajes bytecode.

Para concretar, nuestro enfoque de decompilación ha sido formalizado

en el contexto de la EP de programas lógicos. No obstante, las ideas pro-

puestas que han hecho posible su aplicación práctica son de interés para

la (de)compilación interpretativa de cualquier par de lenguajes origen y

destino.

38

2.1. FUNDAMENTOS BÁSICOS DE LA EP DE PROGRAMAS LÓGICOS

2.1. Fundamentos Básicos de la Evaluación

Parcial de Programas Lógicos

Asumimos que el lector está familiarizado con las nociones básicas de

programación lógica [68]. Ejecutar un programa lógico P para un átomo

A consiste en construir un árbol SLD para P ∪ {A} y extraer de él las

sustituciones computadas para cada rama no fallida del árbol. La evaluación

parcial se basa en dicho enfoque de ejecución, aunque con dos diferencias

fundamentales:

Para garantizar la terminación del proceso de desplegado, o “unfol-

ding”, es en ocasiones necesario no desplegar un objetivo, dejando por

tanto una hoja en el árbol con un objetivo no vaćıo, y posiblemente no

fallido. El árbol SLD resultante se dice que es un árbol parcial. Nóte-

se que incluso si los árboles SLD para todas las posibles consultas, o

“queries”, son finitos, los árboles SLD que se construyen en el proceso

de evaluación parcial pueden ser infinitos. Esto ocurre porque, al no

disponerse en tiempo de EP de los valores concretos correspondientes

a los argumentos dinámicos, el árbol de EP puede tener más ramas,

en particular infinitas, que el árbol SLD de ejecución. Qué átomo se-

leccionar de cada objetivo y cuándo parar el proceso de desplegado

queda determinado por la llamada regla de desplegado.

El evaluador parcial, en general, tiene que construir varios árboles

SLD para garantizar que todos los átomos que aparecen en las hojas

de éstos queden cubiertos por la ráız de algún árbol (esto se conoce

como la condición de recubrimiento de la EP [67]). El llamado ope-

rador de abstracción realiza generalizaciones en los átomos que han

de ser evaluados parcialmente para evitar que se computen árboles

SLD parciales para un número infinito de átomos. Cuando todos los

átomos quedan cubiertos, entonces ya no hay necesidad de construir

más árboles y el proceso termina.

La esencia de la mayoŕıa de algoritmos de evaluación parcial de progra-

mas lógicos (ver por ejemplo [42]), aparece reflejada en el algoritmo de la

Figura 2.2, el cual es paramétrico respecto a la regla de desplegado, unfold,

y al operador de abstracción, abstract. La función EP toma un programa

39

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

1: function EP (P,A, S)

2: S0 := S; i := 0;

3: repeat

4: Lpe := unfold(Si, P,A);

5: Si+1 := abstract(Si, L
pe,A);

6: i := i + 1;

7: until Si = Si−1 % (modulo renaming)

8: return codegen(Lpe, unfold);

Figura 2.2: Algoritmo genérico de EP de programas lógicos

P , un conjunto (posiblemente vaćıo) de anotaciones A, y un conjunto ini-

cial de llamadas S. En cada iteración, el llamado control local es llevado a

cabo por la regla de desplegado unfold (Ĺınea 4), la cual toma el conjunto

actual de átomos Si, el programa y las anotaciones, y construye un árbol

parcial SLD para cada llamada en Si. En el control global, llevado a cabo

por el operador de abstracción abstract, cuando hay llamadas en las hojas

de los árboles que no están aún cubiertas, el operador abstract las añade

al nuevo conjunto de átomos a ser evaluado parcialmente. Para garantizar

la terminación del proceso de control global, es decir, para asegurar que la

condición Si = Si−1 se cumple, estos átomos deben generalizarse de forma

adecuada.

La evaluación parcial de P con respecto a S es entonces extráıda sis-

temáticamente del conjunto resultante de llamadas Lpe de la última ite-

ración, en la llamada fase de generación código, codegen en L8. Se utiliza

entonces la noción de resultante para generar las reglas de programa asocia-

das a cada derivación de la ráız a cada hoja del árbol SLD para el conjunto

final Lpe. Dada una derivación SLD de P ∪ {A}, con A ∈ Lpe terminando

en B y siendo θ la composición de los unificadores más generales posibles

(ver [68]) de los pasos de derivación, la regla “θ(A) :- B” se denomina un

resultante asociado a dicha derivación. Una EP se define como el conjunto

de resultantes (cláusulas) asociados a las derivaciones de los árboles SLD

parciales para P ∪Lpe. El programa resultante se denomina habitualmente

programa especializado o programa residual. La Sección 2 del Art́ıculo 6 pre-

senta más formalmente los fundamentos de evaluación parcial de programas

lógicos.

40

2.1. FUNDAMENTOS BÁSICOS DE LA EP DE PROGRAMAS LÓGICOS

2.1.1. Evaluación Parcial “Online” frente a “Offline”

Es bien sabido que tanto la calidad de los programas especializados co-

mo el tiempo que requiere el proceso de EP, dependen en gran medida de

las estrategias de control utilizadas. Tradicionalmente se han considerado

dos enfoques diferentes de EP, “online” y “offline”. En la EP online, todas

las decisiones de control se toman “al vuelo” durante la fase de especiali-

zación teniendo en cuenta la historia pasada. En el enfoque offline, todas

las decisiones de control son tomadas antes de la propia fase de especia-

lización. Éstas se basan en descripciones abstractas de los datos en lugar

de en los datos concretos. Normalmente, la estrategia de control se repre-

senta por medio de anotaciones en el programa, las cuales constituyen en

realidad el único criterio que controla la EP. Por ejemplo, en el control

local, una anotación podŕıa indicar expĺıcitamente que un átomo no debe

desplegarse. En el control global, las anotaciones normalmente especifican,

para cada llamada, qué argumentos deben generalizarse (en este caso, re-

emplazarse por variables libres). Dichas anotaciones, en algunos casos son

generadas automáticamente por un análisis de “binding-time” [32, 65], y

en otros casos son proporcionadas, parcial o totalmente, por el usuario.

De acuerdo a esta clasificación, el algoritmo de EP que proponemos se

puede considerar como un h́ıbrido pues el conjunto de anotaciones A puede

proporcionar información a los operadores de control, como pasa en la EP

offline, y incluye reglas de control basadas en la historia de especialización,

como pasa en la EP online. La principal ventaja del enfoque offline es

que, una vez son tomadas todas las decisiones de control, la fase de EP

es en principio mucho más simple y eficiente. Por otro lado, la EP online,

aunque es en principio más ineficiente, es estrictamente más potente pues

las decisiones de control pueden basarse en los valores concretos en lugar de

en abstracciones de éstos. Por tanto, aunque los resultados obtenidos por

un evaluador parcial offline pueden siempre replicarse usando uno online,

en muchos casos, los resultados obtenidos usando EP online no pueden

reproducirse usando EP offline.

En este trabajo estamos interesados en investigar hasta donde se puede

llegar usando un enfoque online, interesándonos por tanto primeramente

en obtener resultados precisos sin importarnos la eficiencia. De esta forma

esperamos poder obtener decompilaciones de alta calidad que no podŕıan

obtenerse utilizando EP offline. Más adelante, afrontaremos el reto de la

41

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

eficiencia del proceso tratando de no perder calidad. Como veremos, muchas

de las lecciones aprendidas en ésta tesis son de interés tanto para el campo

de la EP online como offline.

2.2. Retos en la Especialización de Intérpre-

tes de Bytecode

Esta sección ilustra por medio de un ejemplo, los retos a los que hay

que enfrentarse a la hora de especializar un intérprete de bytecode. La Fi-

gura 2.3 muestra un fragmento de un intérprete de bytecode implemen-

tado en Prolog. Se asume que el código de cada método del programa

bytecode viene representado como un conjunto de hechos bytecode/3 tal

que, para cada par pci : bci en el código del método m, se tiene un hecho

bytecode(m,pci,bci). El estado que el intérprete manipula es de la for-

ma st(Fr,FrStack), donde Fr representa el “frame” (o contexto) actual

y FrStack la pila de frames (o pila de llamadas), implementada como una

lista Prolog. Los frames son de la forma fr(M,PC,OStack,LocalV), donde

M representa el método actual, PC el contador de programa, OStack la pila

de operandos y LocalV la lista de variables locales. El predicado main/3,

dado el método a ser interpretado Method y sus argumentos de entrada

InArgs, construye primeramente un estado inicial llamando al predicado

build s0/3, y llama después al predicado execute/2, devolviéndose el re-

sultado en la variable Res, la cual representa la cima de la pila de operandos

al final de la ejecución. A su vez, execute/2 llama al predicado step/3, el

cual produce S’, el estado inmediatamente después de ejecutar el corres-

pondiente bytecode, y llama recursivamente al predicado execute/2 con

S’ hasta que se encuentre una instrucción return con la pila de llamadas

vaćıa en el estado. Por brevedad, sólo mostramos la definición del predicado

step/3 para una selección de instrucciones bytecode, y omitimos el código

de algunos predicados auxiliares. En particular, no mostramos el código de

build s0/3, el cual fue explicado con anterioridad, next/3, que produce el

siguiente contador de programa dado el actual, y split OS/4, que divide

la pila de operandos actual entre la lista de parámetros del método llamado

y el resto.

La figura 2.4 muestra el programa bytecode que utilizaremos como ejem-

42

2.2. RETOS EN LA ESPECIALIZACIÓN DE INTÉRPRETES

main(Method,InArgs,Res) :-

build_s0(Method,InArgs,S0),

execute(S0,Sf),

Sf = st(fr(_,_,[Res|_],_),_)).

execute(S,S) :-

S = st(fr(M,PC,_,_),[]),

bytecode(M,PC,return).

execute(S,Sf) :-

S = st(fr(M,PC,_,_),_),

bytecode(M,PC,Inst),

step(Inst,S,S’),

execute(S’,Sf).

step(goto(PC),S,S’) :-

S = st(fr(M,_,OS,LV),FrS),

S’ = st(fr(M,PC,OS,LV),FrS).

step(push(X),S,S’) :-

S = st(fr(M,PC,OS,L),FrS),

next(M,PC,PC’),

S’ = st(fr(M,PC’,[X|OS],L),FrS).

...

step(invoke(M’),S,S’) :-

S = st(fr(M,PC,OS,LV),FrS),

split_OS(M’,OS,Args,OS’’),

build_s0(M’,Args,

st(fr(M’,PC’,OS’,LV’),_)),

S’ = st(fr(M’,PC’,OS’,LV’),

[fr(M,PC,OS’’,LV)|FrS]).

step(return,S,S’) :-

S = st(fr(_,_,[RV|_],_),

[fr(M,PC,OS,LV)|FrS]),

next(M,PC,PC’),

S’ = st(fr(M,PC’,[RV|OS],LV),FrS).

Figura 2.3: Fragmento de un intérprete de bytecode

plo. Arriba, mostramos el código fuente Java y abajo el bytecode corres-

pondiente. Nótese que el código fuente sólo se muestra para facilitar la

comprensión del programa, pues el decompilador trabaja directamente so-

bre el bytecode. El ejemplo consiste en una serie de métodos que realizan

diferentes cálculos aritméticos. El método gcd calcula el máximo común

divisor, abs el valor absoluto y fact el factorial implementado de forma re-

cursiva. El método count no tiene ningún significado especial, simplemente

incrementa un contador, inicializado a 0, hasta que su valor llega al valor

del argumento de entrada.

Para poder obtener una decompilación efectiva, es necesario disponer

de estrategias de control (es decir, operadores unfold y abstract) lo suficien-

temente potentes como para librarse de la llamada capa de interpretación.

Es por ello, que en nuestros primeros experimentos en el Art́ıculo 1, utiliza-

mos estrategias de control agresivas basadas en la subsunción homeomórfi-

ca [58, 62]. En el control local, entendemos por agresivas a aquellas reglas

de desplegado capaces de expandir las derivaciones lo más posible siempre

que no haya problemas de terminación. En el control global, nos referi-

43

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

int count(int n){

int i = 0;

while (i < n) i++;

return i;}

int gcd(int x,int y){

int res;

while (y != 0){

res = x%y; x = y;

y = res;}

return abs(x);}

int abs(int x){

if (x < 0) return -x;

else return x;

}

int fact(int x){

if (x == 0)

return 1;

else

return x*fact(x-1);

}

Method count

0:push(0)

1:store(1)

2:load(1)

3:load(0)

4:ifge(3)

5:inc(1,1)

6:goto(2)

7:load(1)

8:return

Method gcd

0:load(1)

1:if0eq(11)

2:load(0)

3:load(1)

4:rem

5:store(2)

6:load(1)

7:store(0)

8:load(2)

9:store(1)

10:goto 0

11:load(0)

12:invoke(abs)

13:return

Method abs

0:load(0)

1:if0ge(5)

2:load(0)

3:neg

4:return

5:load(0)

6:return

Method fact

0:load(0)

1:if0ne(4)

2:push(1)

3:return

4:load(0)

5:load(0)

6:push(1)

7:sub

8:invoke(fact)

9:mul

10:return

Figura 2.4: Código fuente y bytecode del programa de ejemplo

mos a operadores de abstracción que generalizan en el menor número de

situaciones posible sin hacer peligrar la terminación.

La Figura 2.5 muestra el programa decompilado obtenido utilizando el

evaluador parcial disponible en el sistema CiaoPP [49]. Para estos experi-

mentos preliminares, usamos la subsunción homeomórfica para controlar

tanto el nivel local como el global. Mirando al código obtenido, podemos

observar lo siguiente:

1. El evaluador parcial no ha sido capaz de decompilar satisfactoriamen-

44

2.2. RETOS EN LA ESPECIALIZACIÓN DE INTÉRPRETES

main(count,[N],A) :-

% out of memory error

main(gcd,[A,0],A) :- A>=0.

main(gcd,[B,0],A) :-

B<0, A is -B.

main(gcd,[B,C],A) :-

C\=0, D is B rem C,

execute_1(C,D,A).

execute_1(A,0,A) :- A>=0.

execute_1(A,0,C) :- A<0, C is -A.

execute_1(A,B,G) :-

B\=0, I is A rem B,

execute_1(B,I,G).

main(abs,[A],A) :- A>=0.

main(abs,[B],A) :- B<0, A is -B.

main(fact,[N],A) :- ...% Full interpreter

Figura 2.5: Código decompilado para el ejemplo. Primer intento.

te el método count. Realmente se queda sin memoria por problemas

de terminación, en este caso, tanto en el control local como en el

global. El problema es que la subsunción homeomórfica no garantiza

la terminación de la EP en programas que pueden generar poten-

cialmente un número infinito de valores, como es el caso de nuestro

intérprete de bytecode (en particular, por el uso del predicado is/3).

2. La composicionalidad respecto a métodos del programa original se ha

perdido en el programa decompilado. Esto puede verse observando el

código correspondiente al método gcd. Nótese que en la versión de-

compilada no aparece la llamada a abs, sino que el código correspon-

diente a éste aparece como “inline”. Aunque esto puede considerarse

como una caracteŕıstica positiva desde el punto de vista de la espe-

cialización, las consecuencias pueden degradar considerablemente la

eficiencia y la calidad del proceso, y de hecho hace imposible el po-

der escalar al considerar programas reales que incluyan por ejemplo

llamadas a libreŕıas.

3. El código decompilado correspondiente al método fact contiene bási-

camente al intérprete completo y no aparece en la figura por moti-

vos de espacio. Este problema fue primeramente detectado en [43] y

aparece al tratar de decompilar por EP un método recursivo. Como

veremos, este problema, aśı como la solución que propondremos más

adelante, está muy relacionado con el problema de la composiciona-

lidad explicado en el punto anterior.

45

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

4. Si miramos el código de los predicados main(gcd,...) y execute/3,

podemos observar que hay duplicaciones de código. Y lo que es peor,

el evaluador parcial produce estas duplicaciones porque parte del pro-

grama bytecode se reevalúa en el proceso de EP. En nuestra evalua-

ción experimental demostraremos que el tener o no tener estas dupli-

caciones (reevaluaciones), hace la diferencia entre que el decompilador

sea o no capaz de escalar en la práctica.

Las soluciones a estos problemas se resumen en los siguientes tres retos:

Reto I. Tratamiento de signaturas infinitas en la EP: Estu-

diaremos en primer lugar las soluciones existentes identificando sus

debilidades, y propondremos entonces la subsunción homeomórfica

basada en tipos. Este asunto será discutido en la Sección 2.3 y elabo-

rado con más detalle en los Art́ıculos 3 y 4.

Reto II: Un esquema de decompilación modular. Incluso des-

pués de solucionar el Reto I, veremos que es necesario diseñar un

esquema de decompilación modular que preserve la composicionali-

dad respecto a métodos del programa original, y que además resuelva

el problema de los programas recursivos. Dicho esquema de decom-

pilación se introduce en la Sección 2.4 y se estudia con más nivel de

detalle en el Art́ıculo 6.

Reto III: Decompilación óptima. En nuestros primeros expe-

rimentos utilizando el esquema de decompilación modular con pro-

gramas reales, observaremos que aún no es posible escalar con éxito.

Introduciremos entonces un esquema óptimo de decompilación que

asegura que los tiempos de decompilación y los tamaños de los pro-

gramas decompilados, crecen linealmente respecto al tamaño de los

programas bytecode de entrada. Esto se consigue principalmente evi-

tando las duplicaciones y reevaluaciones de código. Éste asunto se

introduce en la Sección 2.5 y se estudia con más detalle en el Art́ıcu-

lo 6.

46

2.3. RETO I: TRATAMIENTO DE SIGNATURAS INFINITAS EN LA EP

2.3. Reto I: Tratamiento de Signaturas Infi-

nitas en la EP

2.3.1. La Subsunción Homeomórfica

La relación de subsunción homeomórfica, “homeomorphic embedding”

(HEm) [58, 61, 62], se ha convertido en una técnica muy popular para super-

visar la terminación de métodos online de transformación y especialización,

resultando esencial para obtener optimizaciones potentes, por ejemplo en

el contexto de la EP online. Intuitivamente, el HEm es un orden estructu-

ral bajo el cual una expresión t1 subsume a una expresión t2, escrito como

t2E t1, si t2 puede obtenerse a partir de t1 borrando algunos operadores.

Por ejemplo, s(s(U + W)×(U+s(V))) subsume a s(U× (U + V)).

La relación HEm puede usarse para garantizar terminación gracias a la

siguiente propiedad: si asumimos que el conjunto de constantes y functo-

res es finito, toda secuencia infinita de expresiones t1, t2, . . . , contiene al

menos un par de elementos ti y tj con i < j tal que tiE tj. Por tanto, al

computar iterativamente una secuencia t1, t2, . . . , tn, podemos garantizar su

finitud utilizando el HEm como un “silbato”. Cuando una expresión tn+1 va

a añadirse a la secuencia, primero se chequea que se cumple ti 6E tn+1 para

todo i tal que 1 ≤ i ≤ n. Intuitivamente, la computación puede progresar

mientras la nueva expresión obtenida no sea mayor que (no subsuma a)

ninguna de las expresiones previamente computadas, pues esto podŕıa sig-

nificar que estamos ante una secuencia infinita. El éxito del HEm se debe a

que las secuencias pueden crecer considerablemente antes de que el silbato

se active, en general más que con otras técnicas para garantizar termina-

ción, lo cual suele significar una mayor efectividad de las transformaciones.

Aunque se ha demostrado que el HEm es una técnica potente para

computaciones simbólicas, éste aún puede presentar algunas dificultades,

en particular en presencia de signaturas infinitas. En el caso de programas

lógicos, éstas pueden aparecer al utilizar algunos “builtins” de Prolog como

is/2, functor/3 y name/2. Se han definido variantes del HEm para tratar

con signaturas infinitas (ver por ejemplo [61, 6]), sin embargo éstas tienden

a ser demasiado conservadoras en la práctica.

47

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

2.3.2. Ejemplo Motivador

Consideremos el método count que aparece en la parte izquierda de la

Figura 2.4. El método recibe un número entero, inicializa un contador a

“0” (ver bytecodes 0 y 1) y ejecuta un bucle que incrementa el contador

en uno en cada iteración (bytecode 5), hasta que el valor llega al valor

del argumento de entrada (la condición se chequea en los bytecodes 2, 3 y

4). El método devuelve el valor del contador en los bytecodes 7 y 8. Para

decompilar el método count, evaluamos parcialmente el intérprete de la

Figura 2.3 respecto al bytecode del método count empezando por el átomo

main(count,[N],I), donde N representa el argumento de entrada y I el

valor de retorno (es decir, la cima de la pila al final de la computación).

En la Figura 2.6 se muestra (una versión reducida de) uno de los árboles

SLD que da lugar a una decompilación efectiva del método count, y al que

nos referiremos posteriormente. Para simplificar la comprensión, aparte del

átomo de entrada main/3, solo mostramos los átomos correspondientes al

predicado execute/2, pues es el único predicado recursivo del programa.

Aśı, cada flecha en el árbol se corresponde realmente con varios pasos de

derivación. Nótese que, algunas de las operaciones dentro del cuerpo de

cada regla del predicado step, pueden quedar residuales al necesitar da-

tos no conocidos en tiempo de EP. La regla de computación utilizada por

el operador de desplegado es capaz de residualizar llamadas que no estén

suficientemente instanciadas, y seleccionar aśı átomos del objetivo que no

sean necesariamente los de más a la izquierda de forma segura [7], en par-

ticular, se seleccionarán llamadas a átomos execute/2. Representaremos

estas llamadas residuales como etiquetas asociadas a las ramas del árbol.

Utilizando el HEm original

Consideremos primero un evaluador parcial que utiliza el HEm para

controlar la terminación tanto en el control local como en el global. Co-

mo puede verse en la figura, el valor del PC “2” se corresponde con la

entrada del bucle. Aplicando el HEm, la evaluación contiene una subse-

cuencia de átomos de esta forma: execute(st(fr(count, 2, [], [N, 0]), []), Sf),

execute(st(fr(count, 2, [], [N, 1]), []), Sf), execute(st(fr(count, 2, [], [N, 2]), []),

Sf), . . ., la cual aparece marcada en la figura con rectángulos de ĺınea dis-

continua. Dicha secuencia se corresponde con las sucesivas iteraciones con-

48

2.3. RETO I: TRATAMIENTO DE SIGNATURAS INFINITAS EN LA EP

main(N, I)

��

execute(st(fr(count, 0, [], [N, 0]), []), Sf)

��

execute(st(fr(count, 1, [0], [N, 0]), []), Sf)

��_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

execute(st(fr(count,2, [], [N,0]), []),Sf)(1)

��

execute(st(fr(count, 4, [N, 0], [N, 0]), []), Sf)
{0≥N}

ssggggggg {0<N}
++WWWWWWW

execute(st(fr(count, 8, [0], [N, 0]), []), Sf)
{I/0}

��

execute(st(fr(count, 6, [], [N, 1]), []), Sf)

��

true
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

execute(st(fr(count,2, [], [N,1]), []),Sf)(2)

(1) ET (2), (1) 6E∗

S
(2)��

∞ (with E)

main(count,[N],0) :- 0>=N.

main(count,[N],I) :- 0<N,

execute(N,1,I).

execute(N,I,I) :- I>=N.

execute(N,A,I) :- A<N, A’ is A+1,

execute(N,A’,I).

Figura 2.6: Árbol SLD de desplegado y código decompilado del ejemplo

secutivas del bucle, en las cuales el control vuelve a la cabeza de éste (ver

el valor 2 en el valor del PC del estado), y el valor del contador (variable de

la segunda posición de la lista) se va incrementando de uno en uno. Esta

secuencia puede crecer de forma infinita, pues el HEm no la detecta como

potencialmente peligrosa (ver “∞ (with E)” en la figura). Esto ocurre de-

bido al uso que hace el intérprete del operador de Prolog is/2, rompiéndose

aśı la propiedad de finitud de signatura que se cumple en los programas

lógicos puros.

Para obtener una decompilación de calidad, es necesario que el valor del

contador (variable local 1) sea filtrado, pero no aśı el del PC. Como vemos

en la figura, esto requiere parar la derivación cuando aparezca el átomo

execute(st(fr(count, 2, [], [N, 1]), []), Sf) (marcado como (1) ET (2)), y gene-

ralizarlo con respecto al átomo anterior encerrado en el rectángulo con ĺınea

discontinua, resultando aśı el átomo execute(st(fr(count, 2, [], [N, X]), []), Sf).

49

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

Recuperando la terminación: Subsunción con filtrado de números

En programas que contienen predicados aritméticos de Prolog pero

que no generan infinitos functores v́ıa functor/3, =../2, etc., una so-

lución inmediata para recuperar la terminación es utilizar la relación

Enum. Ésta, es una adaptación del HEm que simplemente filtra los va-

lores numéricos, es decir, cualquier número subsume a otro número. En

el ejemplo, el átomo execute(st(fr(count, 2, [], [N, 1]), []), Sf) subsume a

execute(st(fr(count, 2, [], [N, 0]), []), Sf) bajo Enum, evitándose aśı la no ter-

minación. Desafortunadamente, esta modificación del HEm, es demasiado

simplista, y da lugar a una perdida excesiva de precisión. Por ejemplo, al

especializar main(count, [N], I), los primeros dos átomos de execute/2 son

execute(st(fr(count, 0, [], [N, 0]), []), Sf) y execute(st(fr(count, 1, [0], [N, 0]),

[]), Sf). Usando Enum, el silbato se activa en este punto y el desplegado

tiene que parar. Esto provoca que este último átomo sea generalizado en

el control global produciéndose execute(st(fr(count, X, Y, [N, 0]), []), Sf). Es-

to no es aceptable en el caso de la especialización de nuestro intérprete,

pues se pierde la pista de la siguiente instrucción a ser ejecutada—lo que

provoca que no se pueda eliminar la capa de interpretación—y de hecho,

en la mayoŕıa de casos provoca que el programa residual obtenido contenga

prácticamente el intérprete por completo.

Incrementando la Precisión: Śımbolos Estáticos del Programa

Una manera sintáctica de mejorar la precisión asegurando al mismo

tiempo terminación, propuesta en [61], consiste en considerar dos conjun-

tos de śımbolos: uno con aquellos que aparecen expĺıcitamente en el pro-

grama y el objetivo, y otro con el conjunto infinito de śımbolos que el

programa puede generar potencialmente. Denotaremos esta relación co-

mo E∗
S. Al comparar dos términos, nos quedamos con los śımbolos que

pertenezcan al conjunto finito y filtramos el resto. Bajo esta relación,

el átomo execute(st(fr(count, 1, [0], [N, 0]), []), Sf) no subsume al átomo

execute(st(fr(count, 0, [], [N, 0]), []), Sf), pues los números 0 y 1 son śımbo-

los estáticos diferentes del programa. Por tanto, en este caso, el evaluador

parcial no se ve obligado a generalizarlos preservándose aśı el valor del PC.

Desafortunadamente, la relación E∗
S resulta no comportarse tampoco de

forma óptima en nuestro caso, pues execute(st(fr(count, 2, [], [N, 1]), []), Sf)

50

2.3. RETO I: TRATAMIENTO DE SIGNATURAS INFINITAS EN LA EP

no subsume a execute(st(fr(count, 2, [], [N, 0]), []), Sf). Esto significa que el

proceso de desplegado continua con una segunda iteración del bucle. Aun-

que está garantizado que el proceso termina, se desplegarán tantas iteracio-

nes del bucle como distintas constantes numéricas consecutivas aparezcan

en el programa, en este caso 8. No será posible por tanto obtener la de-

compilación óptima que aparece en la parte de abajo de la Figura 2.6.

Para obtener dicha decompilación, es necesario que el evaluador parcial

generalice el contador del bucle lo antes posible, es decir, que el átomo

execute(st(fr(count, 2, [], [N, 1]), []), Sf) subsuma a execute(st(fr(count, 2,

[], [N, 0]), []), Sf).

Intuitivamente, la razón por la que esta relación no se comporta de

forma óptima es porque ésta no es capaz de distinguir entre los distintos

argumentos y los trata todos por igual. En resumen, este ejemplo sugiere

que es necesario tener una relación de subsunción que sea capaz de tener

información de contexto en cuenta: en particular, dicha relación dependien-

te del contexto, debeŕıa tratar de forma diferente el valor del PC y el valor

de la variable del contador.

2.3.3. Subsunción Homeomórfica basada en Tipos

En presencia de signaturas infinitas, existe un método general para de-

finir relaciones de subsunción homeomórfica; en [61] se define la subsunción

homeomórfica extendida basada en resultados previos de Kruskal [58] y

Dershowitz [38]. Esta solución define una familia de relaciones de subsun-

ción, donde una relación subsidiaria de orden, definida sobre los śımbolos

de función del programa, juega un papel esencial. No obstante, veremos

que ésta no resuelve realmente el problema en la práctica, pues no propone

ningún mecanismo automático para encontrar la relación “correcta” entre

los śımbolos de función.

Esta tesis propone la subsunción homeomórfica basada en tipos, “type-

based homeomorphic embedding” (TbHEm), una relación que mejora el

HEm original haciendo uso de información adicional proporcionada en for-

ma de tipos. Veremos como este enfoque puede verse como una forma de

generar instancias concretas de la relación de HEm extendida como defi-

nió Leuschel, incluyendo la posibilidad de tener en cuenta la semántica del

programa. Los tipos requeridos para guiar al TbHEm pueden darse manual-

51

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

mente o, lo que es más interesante, pueden inferirse automáticamente por

análisis de programas, como discutimos en el Art́ıculo 3.

La observación principal en al que se basa el TbHEm es que, incluso

aunque una expresión este definida sobre una signatura infinita, es posible

que sólo tome un conjunto finito de valores sobre el dominio correspondien-

te para cada computación. Para realizar dicha distinción, nuestra relación

se define sobre tipos, los cuales se estructuran en una partición finita (po-

siblemente vaćıa) y una partición infinita (también posiblemente vaćıa).

Intuitivamente, el TbHEm permite expandir secuencias mientras, al com-

parar subtérminos de un tipo infinito, los valores concretos que aparecen en

la expresión se mantengan en la partición finita del tipo correspondiente.

Utilizando el TbHEm para controlar la EP del intérprete de byte-

code

En el caso de nuestro intérprete de bytecode, el argumento del PC se

puede definir por un tipo estructurado de forma que el intervalo acotado

en el cual éste se mueve constituye su partición finita, y el resto de los

números enteros forma su parte de infinita. De esta manera, el TbHEm

no generalizará el PC mientras su valor permanezca dentro del intervalo

acotado.

Para inferir este tipo, utilizaremos técnicas de análisis existentes, en

particular, usaremos el análisis de tipos buenos (“well-typings”) descrito por

Bruynooghe et al. [20]1. Éste infiere el siguiente tipo τPC para el contador

de programa del intérprete de la Figura 2.3, teniendo en cuenta el programa

bytecode de la Figura 2.4:

τPC --> -4; 0; 1; 2; 3; 4; 5; 6; 7; 8; num

Se puede interpretar que el tipo τPC consiste en una partición fini-

ta (las constantes numéricas) y una partición infinita (el resto de los

números distintos de las constantes). Es decir, el tipo se puede inter-

pretar como τPC → F ; I donde la partición F es {−4, 0, 1, 2, . . . , 8}

y I = num \ F . Usando esta regla de tipo, el TbHEm asegura que

el contador de programa nunca será abstráıdo durante la EP, mien-

tras su valor se mantenga en el rango esperado (las constantes numéri-

cas). El átomo execute(st(fr(count, 1, [0], [N, 0]), []), Sf) no subsume a

1Disponible on-line en http://saft.ruc.dk/Tattoo/

52

2.3. RETO I: TRATAMIENTO DE SIGNATURAS INFINITAS EN LA EP

execute(st(fr(count, 0, [], [N, 0]), []), Sf) usando esta definición de tipo, por

tanto, la derivación puede avanzar. Esto evita la necesidad de generalizar

el PC lo que provocaŕıa que no pudiésemos obtener una especialización efec-

tiva. La derivación bien terminará, o bien el valor del PC se repetirá por

algún salto hacia atrás en el código (bucle). En este caso, el TbHEm, tam-

bién escrito ET , detectará el átomo correspondiente como peligroso, por

ejemplo, execute(st(fr(count, 2, [], [N, 0]), []), Sf) ET execute(st(fr(count, 2,

[], [N, 1]), []), Sf), como vemos en la Figura 2.6.

El programa decompilado que obtenemos usando los tipos inferidos en

combinación con el TbHEm se muestra en la parte baja de la Figura 2.6.

Se puede observar que esta decompilación es óptima2 en el sentido de que

la capa de interpretación se ha eliminado totalmente o no aparece código

residual superfluo.

Aparte de la inferencia de “well-typings” que hemos visto, en el Art́ıcu-

lo 3 se bosqueja como utilizar un análisis de cotas numéricas para inferir

información que puede ser útil para el TbHEm. Este tipo de análisis calcula

sobreaproximaciones del conjunto de valores que los argumentos del progra-

ma pueden tomar. Intuitivamente, si podemos probar que dicho conjunto

está acotado, entonces sabemos que la partición infinita del tipo es vaćıa, y

por tanto podemos aplicar se forma segura el HEm tradicional (mejorando

aśı la efectividad de la EP).

Nótese que, determinar el conjunto exacto de śımbolos que pueden apa-

recer en tiempo de ejecución en un punto espećıfico del programa, y en par-

ticular determinar si ese conjunto es finito, está estrechamente relacionado

con el problema de la terminación, y es por tanto indecidible. Sin embar-

go, cuanto mejores sean los tipos, más agresiva será la EP sin sacrificar en

ningún caso su terminación. Si los tipos derivados tienen particiones finitas

demasiado pequeñas, entonces probablemente se producirán demasiadas ge-

neralizaciones resultando en una especialización muy pobre; mientras que

si éstos son demasiado grandes, entonces la especialización tenderá a ser

demasiado agresiva, produciendo posiblemente versiones innecesarias.

2Veremos después que ésta puede mejorarse

53

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

main(count,[N],0) :- 0>=N.

main(count,[N],I) :-

0<N, execute_2(N,1,I).

execute_2(N,I,I) :- I>=N.

execute_2(N,A,I) :-

A<N, A’ is A+1,

execute_2(N,A’,I).

main(abs,[A],A) :- A>=0.

main(abs,[B],A) :- B<0, A is -B.

main(fact,[N],A) :- ...% full int.

main(gcd,[A,0],A) :- A>=0.

main(gcd,[B,0],A) :-

B<0, A is -B.

main(gcd,[B,C],A) :-

C\=0, D is B rem C,

execute_1(C,D,A).

execute_1(A,0,A) :- A>=0.

execute_1(A,0,C) :- A<0, C is -A.

execute_1(A,B,G) :-

B\=0, I is A rem B,

execute_1(B,I,G).

Figura 2.7: Código decompilado para el ejemplo después de superar el Reto 1

2.4. Reto II: Decompilación Modular

Una vez se ha superado el problema de las signaturas infinitas, la clase

de programas bytecode que podemos decompilar con éxito es considerable-

mente más amplia. Otro aspecto importante, que no hemos discutido en

esta introducción, es que utilizando el operador clásico de abstracción basa-

do simplemente en el HEm original, o incluso mejorándolo con el TbHEm,

los programas decompilados que obtenemos tienden a tener demasiadas

versiones especializadas (redundantes) para algunos predicados. Este pro-

blema se estudia con detalle en el Art́ıculo 2 donde se propone un operador

de abstracción avanzado el cual es capaz de controlar la polivarianza del

proceso de EP, es decir, es capaz de evitar tener dichas versiones especia-

lizadas redundantes. Como mostramos en el Art́ıculo 2, esto nos permite

obtener mejores decompilaciones, de forma más eficiente, lo que amplia aún

más la clase de programas que podemos decompilar con éxito. No obstan-

te, incluso mejorando nuestro evaluador parcial para que incluya tanto el

TbHEm como este operador de abstracción mejorado, el esquema de de-

compilación resultante resulta aún insatisfactorio a la hora de decompilar

programas reales, pues entre otras cosas, y como veremos, la composicio-

nalidad del programa original respecto a las llamadas a métodos se pierde

en la decompilación.

54

2.4. RETO II: DECOMPILACIÓN MODULAR

Consideremos de nuevo nuestro ejemplo de la Figura 2.4. El código de-

compilado que obtenemos usando el evaluador parcial mejorado se muestra

en la Figura 2.7. Se puede observar que éste es básicamente el mismo de

la Figura 2.5 excepto para el método count, para el que se obtiene ahora

el código que mostramos en la parte baja de la Figura 2.6. Es importante

hacer notar que este ejemplo no es suficientemente complejo como para

poner en evidencia el problema de la polivarianza que el nuevo operador de

abstracción del Art́ıculo 2 resuelve. El lector interesado puede consultar el

Art́ıculo 2 donde se presenta un ejemplo representativo en este sentido.

A la vista del ejemplo, identificamos las siguientes cuatro limitaciones

del esquema actual de decompilación (a partir de ahora llamado decom-

pilación no-modular) denotadas como (L1). . . (L4). Nótese que dichas li-

mitaciones, aśı como la forma de resolverlas que explicamos más adelante,

son también relevantes para el caso de la decompilación por medio de EP

puramente offline.

(L1) Los métodos aparecen “inlined” en los diferentes contextos en los

que son llamados, lo que hace que se pierda la estructura original del código.

Por ejemplo, la invocación a abs desde gcd (ĺınea 12 de gcd) no aparece

en el código decompilado. Como resultado, el código decompilado para gcd

tiene dos casos base en los que aparecen “inlined” los correspondientes

“builtins” de abs, es decir, A>=0, B<0 y A is -B. Esto ocurre porque las

llamadas a métodos se tratan de forma “small-step” en el intérprete, es

decir, el código de los métodos invocados se despliega como se estuviese

incluido dentro el método que lo invoca.

(L2) Como consecuencia, el proceso de decompilación es muy ineficien-

te cuando aparecen muchas llamadas a métodos. Por ejemplo, si se tienen

n llamadas a un mismo método, éste será decompilado n veces. Incluso aún

peor, si aparece una invocación a método dentro de un bucle, el código

será decompilado en el caso mejor 2 veces, al tenerse que realizar la corres-

pondiente generalización en el control global antes de llegar al punto fijo

en la EP. Esto podŕıa incluso ser peor en el caso de bucles anidados.

(L3) El esquema no-modular no trabaja de forma incremental, en el

sentido de que no permite la decompilación separada de métodos sino que

redecompila todas las llamadas. Por tanto, decompilar un lenguaje real

es totalmente inviable, pues han de considerarse las libreŕıas, cuyo códi-

go podŕıa incluso no estar disponible. La limitación L2 junto con la L3

55

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

responden negativamente al punto (a) de la Figura 2.1.

(L4) El programa decompilado contendrá básicamente el intérprete

completo cuando aparezcan métodos recursivos. Esta es la razón por la

que en el programa decompilado de la Figura 2.7 no aparece el códi-

go correspondiente al método recursivo fact. El problema con la recur-

sión es el siguiente. Asumamos que queremos decompilar el método re-

cursivo m1 cuyo código es de la siguiente forma 〈pc0 : bc0, . . . , pcj :

invoke(m1), . . . , pcn : return〉. Hay una primera decompilación para

Ak = execute(st(fr(m1, pcj, os, lv), []), Sf) en la que la pila de llama-

das es vaćıa. Al decompilarla, aparece una llamada de la forma Al =

execute(st(fr(m1, pcj, os
′, lv′), [fr(m1, pcj, os, lv)]), Sf), con la pila de

llamadas conteniendo la anterior llamada, al llegar a la llamada re-

cursiva. En este punto, la derivación debe pararse pues AkET Al. Pa-

ra asegurar terminación, el control global generaliza estas llamadas a

execute(st(fr(m1, pcj, ,),), Sf), donde denota una variable libre, sien-

do por tanto la pila de llamadas desconocida. Como consecuencia, al evaluar

la instrucción return, la continuación obtenida de la pila de llamadas es

desconocida produciéndose la llamada execute(st(fr(, , ,),), Sf), que

habrá de decompilada. El hecho de que el método y el contador de pro-

grama sean desconocidos provoca que sea imposible eliminar la capa de

interpretación, y de hecho, el código decompilado contendrá potencialmen-

te el intérprete al completo. Esta situación se da al decompilar el método

fact. Las limitaciones L1 y L4 responden negativamente al punto (b) (ver

Figura 2.1).

A continuación identificamos los ingredientes necesarios para definir un

esquema de decompilación modular. Entendemos por decompilación modu-

lar, una decompilación en la que la unidad de procesamiento es el méto-

do, es decir, se decompila un método cada vez. Mostraremos como dicho

esquema resuelve las cuatro limitaciones descritas de la decompilación no-

modular y responde afirmativamente a los puntos (a) y (b) de la Figu-

ra 2.1. Básicamente necesitaremos: (i) Dar un tratamiento composicional

a las invocaciones a método. Veremos que esto se puede conseguir consi-

derando un intérprete implementado utilizando una semántica “big-step”.

(ii) Proporcionar un mecanismo para residualizar las llamadas del progra-

ma decompilado (es decir, no desplegarlas y añadirlas sin modificaciones

al código residual). Generaremos automáticamente anotaciones en la EP

56

2.4. RETO II: DECOMPILACIÓN MODULAR

para este propósito. (iii) Estudiaremos las condiciones que aseguran que la

decompilación separada de métodos es correcta.

2.4.1. Intérprete con Semántica “Big-step” para ha-

bilitar la Modularidad

Tradicionalmente, se han considerado dos enfoques distintos a la hora

de definir la semántica de un lenguaje, la semántica “big-step” (o natural)

y la “small-step” (o operacional-estructural), ver por ejemplo [59]). Bási-

camente, en una semántica “big-step” las transiciones relacionan los estas

inicial y final para cada instrucción, mientras que en una “small-step” las

transiciones definen el siguiente paso de ejecución para cada sentencia. En

el contexto de los intérpretes de bytecode, ocurre que la mayoŕıa de las

instrucciones se ejecutan en un solo paso, haciendo que ambos enfoques

sean prácticamente equivalentes. Este es el caso de nuestro intérprete de

bytecode de la Figura 2.3 para todas las instrucciones excepto para invoke.

La transición para invoke en la semántica “small-step” define el siguien-

te paso de la computación, es decir, el “frame” actual se apila en la pila

de llamadas y se inicializa un nuevo “frame” para la ejecución del méto-

do invocado. Nótese que después de dar este paso, no es posible distinguir

ya entre el código del método anterior y el llamado. Esto provoca que no

podamos obtener modularidad en la decompilación.

En el contexto de la decompilación interpretativa de lenguajes impera-

tivos, tradicionalmente se han utilizado intérpretes con semántica “small-

step” (ver por ejemplo [77, 48]). En esta tesis sostenemos que el uso de

intérprete con una semántica “big-step” es necesario para poder definir

un esquema modular y poder aśı escalar al considerar lenguajes y progra-

mas reales. En la Figura 2.8, mostramos la parte relevante de la versión

“big-step” del intérprete de bytecode de la Figura 2.3. Podemos observar

que ahora, la instrucción invoke, una vez extráıdos los parámetros de lla-

mada de la pila de operandos, llama recursivamente al predicado main/3

para ejecutar el método llamado. Al terminar la ejecución del método, el

valor de retorno se apila de vuelta en la pila de operandos del nuevo esta-

do y la ejecución procede normalmente. Por otro lado ya no es necesario

llevar en el estado expĺıcitamente la pila de llamadas, sino sólo la infor-

mación de la ejecución actual, es decir, los estado son ahora de la forma

57

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

execute(S,S) :-

S = st(M,PC,[_Top|_],_),

bytecode(M,PC,return).

execute(S,Sf) :-

S = st(M,PC,_,_),

bytecode(M,PC,Inst),

step(Inst,S,S’),

execute(S’,Sf).

step(invoke(M’),S,S’) :-

S = st(M,PC,OS,LV),

next(M,PC,PC’),

split_OS(M’,OS,Args,OSRs),

main(M’,Args,RV),

S’ = st(M,PC’,[RV|OSRs],LV).

Figura 2.8: Fragmento del intérprete de bytecode “big-step”

st(M,PC,OStack,LocalV). La pila de llamadas la mantendŕıa ahora el pro-

pio Prolog por medio de las llamadas recursivas al predicado main/3.

El tratamiento composicional en cuanto a las llamadas a métodos no

sólo es esencial para permitir la decompilación modular (solucionando

aśı L1, L2 y L3) sino que también resuelve el problema con la recur-

sión de una manera simple y elegante. De hecho, la decompilación usan-

do el intérprete “big-step” ya no presenta la limitación L4. Por ejemplo,

la decompilación de un método recursivo m1 empezaŕıa por la llamada

main(m1, ,) y llegaŕıa entonces a main(m1, args,) donde args represen-

taŕıa a los argumentos de la llamada recursiva. Esta llamada seŕıa detectada

como peligrosa por el control local y por tanto se paraŕıa la derivación. A

diferencia de lo que pasaba anteriormente, no es necesario una segunda

evaluación pues la segunda llamada es necesariamente una instancia de la

primera, y por tanto, no habrá ninguna perdida de información asociada

con la generalización de la pila de llamadas.

Nótese que la idea de utilizar una semántica “big-step” para definir el

intérprete y aśı conseguir una especialización modular es igual de necesario

en el caso de la especialización de intérpretes por medio de EP offline. Más

aún, esta idea es, por lo que sabemos, nueva y no hab́ıa sido propuesta antes

en ningún contexto, ni en la especialización online ni offline de intérpretes.

2.4.2. El Esquema de Decompilación Modular

Además de usar un intérprete “big-step”, para poder diseñar un esque-

ma de decompilación modular, es necesario: (1) proporcionar un mecanismo

58

2.4. RETO II: DECOMPILACIÓN MODULAR

main(count,[N],0) :- 0>=N.

main(count,[N],I) :-

0<N, execute_2(N,1,I).

execute_2(N,I,I) :- I>=N.

execute_2(N,A,I) :-

A<N, A’ is A+1,

execute_2(N,A’,I).

main(gcd,[B,0],A) :-

main(abs,[B],A).

main(gcd,[B,C],A) :-

C\=0, D is B rem C,

execute_1(C,D,A).

execute_1(A,0,C) :- main(abs,[A],C).

execute_1(A,B,F) :- B\=0,

H is A rem B,

execute_1(B,H,F).

main(abs,[A],A) :- A>=0.

main(abs,[B],A) :- B<0, A is -B.

main(fact,[B],A) :- B\=0,

C is B-1,

main(fact,[C],D),

A is B*D.

main(fact,[0],1).

Figura 2.9: Código decompilado usando la decompilación modular

para residualizar llamadas en el programa decompilado (es decir, no des-

plegarlas y añadirlas sin cambios al código residual), y (2) definir la noción

de decompilación separada y estudiar las condiciones que aseguran su co-

rrección.

El Art́ıculo 6 estudia con detalle estos aspectos y define un esquema de

decompilación modular demostrando formalmente su corrección y comple-

titud. También se demuestra que el esquema propuesto satisface el criterio

de la método-optimalidad, que asegura que cada método es decompilado

una sola vez.

La decompilación modular funciona básicamente de la siguiente mane-

ra: cuando se va a decompilar una invocación a método, aparece la llama-

da step(invoke(m’), ,) durante el proceso de desplegado. Utilizando el

intérprete “big-step” de la Figura 2.8, se generará una llamada de la forma

main(m’, ,). En este punto, habrá una anotación que indica al evaluador

parcial que no debe desplegar la llamada y que debe sin embargo dejarla

en el código residual sin modificaciones. Si m’ es interno (es decir, está de-

finido en el programa de entrada) se realizará (o ya se habrá realizado) su

correspondiente decompilación, pues el esquema de decompilación asegura

que la EP se efectúa para todos los métodos del programa.

La Figura 2.9 muestra el programa decompilado que se obtiene utilizan-

59

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

do el esquema de decompilación modular sobre nuestro ejemplo motivador.

Se puede observar que la estructura del programa original respecto a las

llamadas a métodos si se preserva ahora. Por ejemplo, puede verse como

en la definición de gcd hay una llamada a abs como ocurre en el programa

bytecode original. Mas aún, ahora si obtenemos una decompilación efectiva

para el método recursivo fact donde la capa de interpretación se ha eli-

minado por completo. Concluimos aśı que todas las limitaciones expuestas

anteriormente en esta sección se han resuelto satisfactoriamente.

2.5. Reto III: Un Esquema de Decompila-

ción Óptima

Como mencionamos en la Sección 2.2, y como podemos ver mirando

el código de la Figura 2.9, los programas decompilados obtenidos usando

el esquema modular no son aún totalmente óptimos pues contienen du-

plicaciones de código. Ver por ejemplo el código de la parte derecha de

las reglas que definen main(gcd,...) y execute 1/3. Estas duplicacio-

nes normalmente se producen debido a que parte del código se reevalúa

durante la fase de EP. Desafortunadamente, como veremos después estas

duplicaciones y reevaluaciones crecen exponencialmente con el número de

puntos de divergencia y convergencia respectivamente, y como veremos en

la evaluación experimental, degradan mucho la eficiencia del proceso y la

calidad del código decompilado. Un aspecto fundamental de esta tesis es

estudiar si se puede obtener, por medio de la decompilación interpretati-

va, programas decompilados cuya calidad sea equivalente a la calidad de

los programas obtenidos utilizando decompiladores dedicados (punto (c) de

la Figura 2.1). Para poder obtener resultados comparables, tiene sentido

que se usen heuŕısticas similares. El hecho de que los decompiladores habi-

tualmente construyan siempre un grafo del flujo de control, “control-flow-

graph” (CFG), hace pensar que aplicar una noción similar para controlar

la EP de nuestro intérprete pueda resultar útil.

A continuación explicamos el problema a través de un ejemplo. Consi-

deremos el método mbl de la Figura 2.10. El código fuente a la izquierda,

el bytecode relevante en el centro y su CFG a la derecha. Como es habi-

tual, el CFG [1] consiste en bloques básicos que contienen una secuencia de

60

2.5. RETO III: UN ESQUEMA DE DECOMPILACIÓN ÓPTIMA

int mbl(...){

· · ·

A

· · ·

if (cond){ B }

else{ C }

. . .

D

. . .

}

Method mbl

pc0 : bc0
...

pci : if ⋄ (pcj)

pci+1 : bci+1

...

pcj−1 : goto(pck)

pcj : bcj
...

pck−1 : bck−1

pck : bck
pcn : return

pcj−1:goto(pck)

. . .

pci+1:bci+1 pcj:bcj

pck−1:bck−1

. . .

pc0:bc0

. . .

pci:if⋄(pcj)

pck:bck

. . .

pcn:return

condi

Block A

Block B

Block D

Block Ccondi

Figura 2.10: Código fuente, bytecode y CFG del método mbl

instrucciones bytecode (sin bifurcaciones), los cuales están conectados por

aristas las cuales describen los posibles flujos originados por las distintas

instrucciones de bifurcación (como los saltos condicionales, las excepciones,

las invocaciones virtuales, etc). En los programas que mostramos, éstas

se corresponden simplemente con los saltos condicionales (es decir if⋄ y

if0⋄). Un punto de divergencia (punto D) es un punto de programa (́ındi-

ce bytecode) del cual parten más de una rama; de forma similar, un punto

de convergencia (punto C) es un punto de programa en el cual convergen

dos o más ramas. En el CFG de mbl, el único punto de divergencia (resp.

convergencia) es pci (resp. pck).

Utilizando el esquema de decompilación actual se obtendŕıa el árbol

SLD de desplegado que aparece en la Figura 2.11, en el que todas las

llamadas se han desplegado por completo al no haber ningún riesgo de ter-

minación. El código decompilado correspondiente se muestra en la propia

figura bajo el árbol. Usamos {resX} para referirnos al código emitido pa-

ra el bloque BlockX y condi para referirnos a la condición asociada a la

instrucción de bifurcación en el ı́ndice pci (condi denota su negación). La

calidad del código decompilado no es óptima debido a lo siguiente:

D. El código decompilado {resA} para BlockA aparece duplicado en am-

bas reglas. Durante la EP, este código se ha evaluado sólo una vez

pero, debido a la forma en la que se definen los resultantes (ver Sec-

ción 2.1), cada regla contiene el código decompilado asociado a la

61

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

main(mbl, ,)
��

execute(st(mbl, 0, os0, lv0),)
{resA} ��

execute(st(mbl, pci, osi, lvi),)
condi

sshhhhhh condi
++VVVVVV

execute(st(mbl, pci+1, osi+1, lvi+1),)
{resB}��

execute(st(mbl, pcj, osj, lvj),)
{resC}��

execute(st(mbl, pck, osk, lvk),)
{resD}��

execute(st(mbl, pck, osk, lvk),)
{res

′

D}��

execute(st(mbl, pcn, osn, lvn),)

��

execute(st(mbl, pcn, osn, lvn),)

��

true true

main(mbl,Args,Out) :- {resA}, condi, {resB}, {resD}.

main(mbl,Args,Out) :- {resA}, condi, {resC}, {res
′

D}.

Figura 2.11: Árbol SLD de desplegado y código decompilado para mbl

rama completa correspondiente del árbol. Este tipo de duplicación

de código tiene dos consecuencias importantes: aumenta considera-

blemente el tamaño de los programas decompilados y provoca que

su ejecución sea más lenta. Por ejemplo, cuando condi se cumple,

la ejecución habŕıa de pasar necesariamente a través de {resA} de

la primera regla, fallaŕıa al evaluar condi, y probaŕıa después con la

segunda regla.

C. El código decompilado para BlockD se emite de nuevo más de una vez.

Cada regla del programa contiene ahora una versión (posiblemente

diferente), {resD} y {res
′

D}, para el código obtenido al evaluar el

bloque BlockD. Ahora, en tiempo de EP, el código de BlockD se evalúa

en el contexto de {condi, {resB}} y se vuelve a evaluar después en

el contexto de {condi, {resC}}. Por tanto, debido a los puntos de

convergencia, tanto la eficiencia del proceso como la calidad de la

decompilación se ven seriamente perjudicados.

La cantidad de código residual repetido crece exponencialmente con el

número de puntos C y D y la cantidad de código reevaluado crece exponen-

62

2.5. RETO III: UN ESQUEMA DE DECOMPILACIÓN ÓPTIMA

cialmente con el número de puntos C. Tratamos a continuación de definir

un esquema de decompilación óptimo, y a nivel de bloques, que resuelva

los problemas D y C. Intuitivamente, una decompilación a nivel de blo-

ques debe producir código residual para cada bloque del CFG. Esto puede

conseguirse básicamente haciendo que los árboles SLD de desplegado se

correspondan con cada bloque, no expandiéndolos más después de un fi-

nal de bloque. Nótese que esta idea va en contra de la filosof́ıa habitual

de la EP, donde normalmente, para maximizar la cantidad de información

estática propagada, se suele tratar de expandir las secuencias lo máximo

posible y parar el proceso de desplegado sólo cuando se ponga en peligro

la terminación.

Este comportamiento puede conseguirse fácilmente en nuestro esquema

simplemente proporcionando anotaciones de forma que se fuerce al proceso

de desplegado a parar cuando aparezca en la secuencia un átomo execute/2

cuyo PC se corresponda con un punto D. En el ejemplo, el desplegado de-

beŕıa parar en el punto pci. En cuanto al problema C, un requerimiento

adicional es que los bloques que comiencen en puntos C deben ser evalua-

dos parcialmente una sola vez. Esto básicamente se puede conseguir de la

siguiente manera: (1) parando las derivaciones en las llamadas execute/2

cuyo PC se corresponda con un punto C, y (2) pasando la llamada al con-

trol global, y asegurando que ésta se evalúa en un contexto suficientemente

generalizado de forma que se cubran todos los posibles contextos en los

que se evalúa dicha llamada. El primer punto se asegura proporcionando al

evaluador parcial las correspondientes anotaciones, mientras que el segun-

do se asegura incluyendo en el conjunto inicial de átomos pasado a la EP,

una llamada generalizada de la forma execute(st(mbl, pck, ,),) para ca-

da punto C. Obsérvese que, tanto las anotaciones, como el conjunto inicial

de llamadas pueden calcularse automáticamente simplemente haciendo dos

pasadas sobre el programa bytecode (ver por ejemplo [2, 84]).

El código resultante utilizando el esquema de decompilación óptima pa-

ra el método mbl se muestra en la Figura 2.12. Ahora, el código residual

asociado a cada bloque aparece una sola vez, asegurando que se preserva

la forma del CFG, como hacen los decompiladores dedicados. Conseguimos

aśı obtener programas cuya calidad es equivalente a la obtenida usando

decompiladores dedicados [2, 70], pero preservando las ventajas de la de-

compilación interpretativa.

63

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

main(mbl,Args,Out) :- {resA}, execute1(. . .).

execute1(. . .) :- condi, {resB}, execute2(. . .).

execute1(. . .) :- condi, {resC}, execute2(. . .).

execute2(. . .) :- {resD}.

Figura 2.12: Código decompilado óptimo para el método mbl

Estos aspectos se estudian en detalle en el Art́ıculo 6 donde se defi-

ne formalmente dicho esquema de decompilación. Se demuestra también

formalmente que el esquema propuesto satisface el criterio de la bloque-

optimalidad, que asegura que: (I) el código residual para cada instrucción

se emite una sola vez en el código decompilado, (II) cada instrucción byte-

code se evalúa como máximo una vez durante la EP, y (III) hay como

máximo una regla residual por cada bloque del programa bytecode.

2.5.1. Conclusiones de la Decompilación Óptima

Una vez se tiene en cuenta la observación principal de la Sección 2.4 de

que el intérprete se debe escribir usando una semántica “big-step”, cada una

de las condiciones del criterio de la bloque-optimalidad puede resultar más

o menos complicada de asegurar dependiendo de la estrategia de control

local utilizada. Por ejemplo, si empezamos con un decompilador modular

como el expuesto en la Sección 2.4, la condición (III) se cumplirá en ge-

neral, pero no aśı las condiciones (I) ni (II) pues la regla de control local

tiende a sobreespecializar las llamadas, lo que resulta en duplicaciones y

reevaluaciones de código.

Por otro lado, si se utilizara un evaluador parcial offline, la regla de

control local natural residualizaŕıa todas las llamadas a execute, y filtraŕıa

en el control global toda la información del estado excepto la signatura del

método y el contador de programa. Esta estrategia de control garantiza

trivialmente las condiciones (I) y (II), pues asegura que cada instrucción

bytecode se decompila de forma independiente. Sin embargo, tiende a ser

demasiado conservadora, y, en particular, no satisface la condición (III),

pues tan pronto como se encuentre con un bloque que tenga más de una

instrucción bytecode (lo que ocurre casi siempre), el programa especializado

64

2.6. IMPLEMENTACIÓN Y RESULTADOS EXPERIMENTALES

generará una regla para cada instrucción bytecode del bloque. Como resul-

tado, el programa residual obtenido es de alto nivel en el sentido de que

está escrito en Prolog. No obstante, su estrategia de control está altamente

influenciada por el hecho de que estamos decompilando desde un programa

bytecode (y no por ejemplo desde un programa fuente Java), y el programa

obtenido no se parece para nada al programa Prolog que un programador

Prolog podŕıa escribir para realizar la misma tarea. Pues uno de los ob-

jetivos importantes de la decompilación es facilitar su comprensión y su

análisis, en esta tesis sostenemos que los programas que cumplen el criterio

de la bloque-optimalidad, y en particular aquellos que cumplen la condición

(III), como los que se generan usando nuestro esquema de decompilación

óptima, son más fáciles de tratar.

Otra observación importante es que los costosos mecanismos utilizados

para controlar la EP, usados anteriormente para obtener los resultados de

las Secciones 2.3.3 y 2.4, en particular el TbHEm y el control avanzado de

polivarianza del Art́ıculo 2, ya no son necesarios al utilizarse el esquema

de decompilación óptima. Se pueden ahora usar los siguiente operadores

triviales de control: unfold despliega todas las llamadas excepto aquellas que

se correspondan con una anotación, y abstract añade al conjunto Si+1 todas

las llamadas en Lpe que no sean una instancia de ninguna llamada en Si

(ver el algoritmo genérico de la Sección 2.1). Se puede demostrar fácilmente

que la terminación está garantizada, tanto a nivel local como global gracias

a las anotaciones y al conjunto inicial de átomos proporcionados en la EP.

2.6. Implementación y Resultados Experi-

mentales

El Art́ıculo 6 discute varios detalles de implementación y realiza una

evaluación experimental exhaustiva de los diferentes esquemas de decom-

pilación propuestos. Hemos llevado a cabo dos implementaciones distintas

de un decompilador de Java Bytecode (secuencial) a Prolog. En la primera,

hemos extendido un evaluador parcial online existente, aquel integrado en

el sistema CiaoPP. Éste es un evaluador parcial muy potente y implemen-

ta reglas de desplegado y operadores de abstracción. Esto nos ha permi-

tido comparar los diferentes esquemas de decompilación, y en particular

65

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

comparar respecto a los esquemas no óptimos. Sin embargo, la sobrecar-

ga introducida al utilizar una herramienta tan potente y genérica no nos

permite competir, respecto a eficiencia, con decompiladores dedicados. Por

ello, hemos llevado a cabo una segunda implementación para la cual hemos

escrito un evaluador parcial autocontenido que sólo contiene las estrategias

de control necesarias para el esquema óptimo. Éste evaluador parcial ha

sido integrado en una herramienta de decompilación, llamada jbc2prolog, la

cual incluye también un intérprete de Java Bytecode. Esto ha hecho posible

obtener decompilaciones óptimas y al mismo tiempo competir en términos

de eficiencia respecto a decompiladores dedicados. El Art́ıculo 6 realiza una

comparación exhaustiva frente al decompilador del sistema COSTA [5] y

al decompilador de Java JDec [14].

Ambas implementaciones consideran el lenguaje Java Bytecode (secuen-

cial) al completo. Las extensiones necesarias para poder tratar los aspectos

del lenguaje no tratadas en esta introducción se discuten en el Art́ıculo 6.

Éstas incluyen a las excepciones, operaciones del heap, invocaciones virtua-

les, decompilación al nivel de clases, etc. Todas ellas han sido fácilmente

integradas en nuestro esquema de decompilación, en la mayoŕıa de los ca-

sos, simplemente las funcionalidades correspondientes en el intérprete de

bytecode.

Para la evaluación experimental del Art́ıculo 6, hemos utilizado el con-

junto estándar de “benchmarks” JOlden [55]. En particular, nos hemos in-

teresado en: a) demostrar emṕıricamente la escalabilidad del enfoque, y b)

comprobar la eficiencia de la herramienta implementada respecto a otros

decompiladores. Concluimos lo siguiente:

Escalabilidad: Mientras que en la decompilación no-óptima los tiem-

pos de decompilación y los tamaños de los programas decompilados

crecen de forma muy significativa con el tamaño de los “benchmarks”,

esto no ocurre en el esquema óptimo. Con la decompilación óptima,

estos valores se mantienen totalmente estables. Mostramos que tan-

to los tiempos de decompilación como los tamaños de los programas

decompilados crecen de forma lineal con respecto al tamaño de los

programas bytecode de entrada, demostrando aśı la escalabilidad de

la decompilación óptima.

Eficiencia: Para demostrar la eficiencia de nuestro esquema, hemos

66

2.7. TRABAJO RELACIONADO

comparado los tiempos de decompilación obtenidos usando nuestra

herramienta jbc2prolog frente a aquellos obtenidos usando el decom-

pilador del sistema COSTA, y , a aquellos obtenidos con el decompi-

lador JDec [14]. Podemos concluir que los resultados son competitivos

respecto a aquellos obtenidos con decompiladores dedicados. En par-

ticular, observamos que son bastante similares a los obtenidos con

COSTA. Mas aún, en la mayoŕıa de ejemplos, podemos observar

que jbc2prolog es cerca de diez veces más rápido que JDec. Nuestra

conclusión en este sentido es que es muy dif́ıcil comparar decompila-

dores escritos en diferentes lenguajes de programación y más aún que

decompilan a diferentes lenguajes.

2.7. Trabajo Relacionado

Los trabajos previos sobre decompilación interpretativa se han centrado

básicamente en demostrar que el enfoque es viable para pequeños y media-

nos intérpretes y lenguajes. Principalmente han tratado de demostrar su

efectividad, es decir, que la llamada capa de interpretación se puede elimi-

nar de los programas compilados. Para ello se han usado técnicas de EP

offline [63], online [48, 77] y h́ıbridas [64]. Esta tesis se ha centrado en, pri-

meramente, demostrar la viabilidad del enfoque para un lenguaje bytecode

con orientación a objetos, para después estudiar cuestiones más avanzadas

como su escalabilidad y la calidad de las decompilaciones, las cuales no se

hab́ıan estudiado hasta ahora. Los trabajos sobre decompilación interpre-

tativa ya se han ido comparando en las diferentes secciones del caṕıtulo y

en la introducción. Revisamos a continuación el trabajo relacionado en el

campo de la decompilación.

Se puede realizar decompilación a diferentes niveles, con sus correspon-

dientes grados de precisión y éxito. El caso más complicado es sin duda

la decompilación de ejecutables binarios. Hay una serie de complicaciones

como por ejemplo la dificultad a la hora de recuperar el flujo de control. Un

problema intŕınseco es la imposibilidad de distinguir entre el código de los

datos de forma estática. Ver por ejemplo [26, 81] y sus referencias donde

se discuten los problemas y las técnicas que se aplican en la decompilación

de ejecutables binarios. El siguiente nivel es la decompilación de código

ensamblador [27]. En este contexto, muchas de las complicaciones de la

67

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

decompilación de binarios se siguen presentando, aunque al menos se suele

poder separar el código de los datos. Un nivel más arriba se encontraŕıa la

decompilación de código a ser ejecutado por una máquina virtual, como el

bytecode. Esto es en general más sencillo, pues las máquinas virtuales son

generalmente más sencillas que las arquitecturas hardware. Además, estos

programas suelen cumplir varias restricciones, como que por ejemplo sean

verificables [60] o que los tipos de las variables estén disponibles. Como

resultado, en el caso particular de la decompilación de Java Bytecode, hay

un buen número de herramientas de decompilación capaces de tratar una

amplia clase de programas bytecode, especialmente aquellos generados por

compiladores de Java, por ejemplo javac. No obstante, las cosas se pueden

complicar bastante cuando el java Bytecode se ha generado con un obfus-

cador, y especialmente cuando se ha utilizado un compilador optimizante

o un compilador de un lenguaje distinto de Java como Haskell, ML, Ada,

etc. Ver por ejemplo [72] y sus referencias para una discusión más detallada

sobre decompiladores de Java Bytecode y las dificultades a las que éstos se

enfrentan.

Como hemos mencionado anteriormente, existen varios analizadores de

Java Bytecode que transforman el bytecode en algún tipo de representación

intermedia de más alto nivel, y por tanto pueden verse como decompiladores

dedicados. En particular, los sistemas COSTA [5] y CiaoPP [49] convierten

bytecode a una representación que es usada después como entrada para la

fase de análisis. Aunque en ambos casos la representación utilizada es simi-

lar, en el caso de COSTA se formaliza como una representación basada en

reglas [2], mientras que en CiaoPP se formaliza como cláusulas de Horn, es

decir, como un programa lógico [70]. Esto se hace en CiaoPP para aśı poder

usar directamente los análisis disponibles para programas CLP de CiaoPP.

Hay sin embargo una diferencia crucial entre los programas generados

en [70] o [5], y los generados por nuestro decompilador. Mientras que los

programas de [70] y [5] están exclusivamente pensados para ser analizados,

no siendo por tanto ejecutables, los programas que nosotros generamos

pueden tanto ser analizados como ejecutados. La razón de esto es que los

primeros, aunque representan el flujo de control de los programas byte-

code con reglas, dejan las instrucciones bytecode como “builtins”, es decir,

predicados predefinidos, que el análisis posteriormente interpreta. Producir

programas ejecutables es algo no trivial, pues muchas de las instrucciones

68

2.7. TRABAJO RELACIONADO

bytecode operan con el heap de una forma u otra. Por tanto, para conseguir

una decompilación CLP ejecutable, se debe introducir el heap de la JVM

expĺıcitamente en el programa CLP. Esto se consigue de forma automática

en nuestro enfoque.

69

CAPÍTULO 2. DECOMPILACIÓN INTERPRETATIVA DE BYTECODE A LP

70

Caṕıtulo 3

Aplicaciones de la

Decompilación Interpretativa

Como ya se mencionó en el caṕıtulo anterior, una de las ventajas im-

portantes de la decompilación interpretativa es que los programas que ob-

tenemos son totalmente ejecutables, lo que amplia su campo de aplicación.

En este caṕıtulo, resumimos dos estudios experimentales llevados a cabo

que tratan de aprovechar dicha ventaja de los programas decompilados:

1. Análisis de programas bytecode analizando sus decompilaciones a LP

utilizando herramientas de análisis de LP. Este punto se elabora en

el Art́ıculo 1.

2. Generación de datos de prueba para programas bytecode por medio de

evaluación parcial en CLP. Esto se estudia con detalle en el Art́ıculo 7.

3.1. Análisis de Bytecode utilizando Herra-

mientas de Análisis LP

Analizar programas en el paradigma de la programación lógica ofrece

una serie de ventajas, quizás la más importante sea la madurez y sofistica-

ción de las herramientas de análisis ya disponibles en dicho contexto. En

particular, el sistema CiaoPP, aparte de proporcionar el potente evaluador

parcial que hemos utilizado para realizar parte de los experimentos en el

caṕıtulo anterior, proporciona un motor genérico de análisis con un buen

71

CAPÍTULO 3. APLICACIONES DE LA DECOMPILACIÓN INTERPRETATIVA

número de dominios abstractos disponibles. Esto permite inferir una gran

cantidad de propiedades de los programas lógicos como terminación, cotas

en el consumo de recursos, tipos y modos, ausencia de errores, etc.

Uno de los objetivos de esta tesis ha sido investigar la posibilidad de

reutilizar herramientas existentes en el paradigma de la CLP, en particular

CiaoPP, para analizar programas bytecode a base de analizar sus decompi-

laciones a LP. Esto permitiŕıa diseñar un esquema de análisis y verificación

de programas bytecode en el cual la potencia de las herramientas de análisis

de CLP se transfiere automáticamente al análisis y verificación de progra-

mas bytecode. Esta misma idea hab́ıa sido aplicada para analizar versiones

muy reducidas de lenguajes imperativos de alto nivel [77] y también código

ensamblador del procesador PIC [47], un microprocesador de 8 bits. Sin

embargo, por lo que conocemos, esta es la primera vez que este enfoque

se ha aplicado con éxito para un lenguaje imperativo bytecode, real y de

propósito general.

Dicho estudio se presenta en el Art́ıculo 1, donde: (1) proponemos dicho

esquema para el análisis y verificación de programas bytecode (en particular

para Java Bytecode), y (2) se realizan una serie de experimentos utilizando

el sistema CiaoPP demostrando aśı la viabilidad práctica del enfoque pro-

puesto. En resumen, el Art́ıculo 1 muestra como, razonando sobre nuestros

programas decompilados, utilizando para ello los análisis disponibles en el

sistema CiaoPP, podemos demostrar automáticamente propiedades no tri-

viales de los programas bytecode como terminación, ausencia de errores en

tiempo de ejecución e inferir cotas en el consumo de recursos. Por ejemplo,

para demostrar ausencia de errores en tiempo de ejecución, proponemos

instrumentar un intérprete de bytecode, que además de computar el va-

lor de retorno del método llamado, también calcula la traza de ejecución,

la cual captura la historia de la ejecución. Dichas trazas representan los

pasos semánticos dados, y por tanto no sólo representan las instrucciones

ejecutadas, sino que representan también cierta información de contexto.

Éstas nos permiten distinguir, para una misma instrucción bytecode, si

el correspondiente paso lanza una excepción o se ejecuta normalmente.

Por ejemplo, invoke step ok y invoke step NullPointerException re-

presentan respectivamente la llamada a método normal y la llamada sobre

una referencia null que lanza una excepción. Esta flexibilidad adicional de

la decompilación interpretativa nos ha permitido demostrar ausencia de

72

3.2. GENERACIÓN DE DATOS DE PRUEBA POR EP EN CLP

errores en tiempo de ejecución de una forma casi directa, simplemente es-

pecificando la propiedad de “error-free” basada en las trazas. Una traza

es “error-free” si no contiene ningún paso de excepción, o si no termina

lanzando una excepción. Esto, en cualquier caso, dependerá de la poĺıtica

de seguridad utilizada para la propiedad “error-freeness”. De nuevo, nues-

tro enfoque demuestra su flexibilidad en este punto, pues se pueden definir

fácilmente diferentes poĺıticas, simplemente especificando la propiedad co-

rrespondiente en CiaoPP.

3.2. Generación de Datos de Prueba por EP

en CLP

Una caracteŕıstica especial de nuestros programas decompilados es que

éstos representan el estado completo del programa, a diferencia de otros

enfoques [70, 2, 84] Hasta ahora, la principal motivación de decompilar

bytecode a LP hab́ıa sido el ser capaz de realizar análisis estático sobre

los programas decompilados, para poder aśı obtener propiedades de los

programas bytecode. Si la decompilación produce programas LP que son

ejecutables, entonces dichos programas decompilados pueden usarse no solo

para ser analizados estáticamente, sino también para análisis dinámico y

ejecución. Nótese que no siempre ocurre esto, pues en otros enfoques (como

[4, 70]) las transformaciones están exclusivamente pensadas para el análisis

estático, y por tanto los programas no pueden ejecutarse. Una aplicación

novedosa de la decompilación interpretativa que proponemos en esta tesis

es la generación automática de datos de prueba.

La generación de datos de prueba, test data generation (TDG), trata

de generar automáticamente casos de prueba para un determinado criterio

de recubrimiento. El criterio de recubrimiento mide lo que se ejercita el

programa por el conjunto dado de casos de prueba. Ejemplos de criterios

de recubrimiento son: recubrimiento de instrucciones, que requiere que cada

instrucción del programa se ejecute; recubrimiento de caminos, que requiere

que cada posible traza del código se ejercite, etc. Existe una gran variedad

de enfoques para realizar TDG (ver [90] para un resumen). Nuestro trabajo

se centra en TDG de tipo “glass-box”, en el que los casos de prueba se

generan a partir del programa concreto, en lugar de generarse a partir de

73

CAPÍTULO 3. APLICACIONES DE LA DECOMPILACIÓN INTERPRETATIVA

CLPP
bc−to−CLP
Decompiler

Pbc

Generator
Test−case

Test−cases

PHASE II

Cov. Criterion
(Unfolding Rule)

TDG (PE)

PHASE I

Figura 3.1: Visión general del enfoque de TDG de bytecode por EP en CLP

una especificación de éste. Además, nos centraremos en TDG estático, en el

cual no se asume ningún conocimiento de los datos de entrada, a diferencia

de los enfoques dinámicos [39, 46], en los cuales el programa es en algún

momento ejecutado con valores de entrada concretos.

El enfoque estándar para generar casos de prueba estáticamente consis-

te en realizar una ejecución simbólica del programa (ver por ejemplo [29]),

donde los contenidos de las variables son expresiones en lugar de valores

concretos. La ejecución simbólica produce finalmente un sistema de res-

tricciones, las cuales definen las condiciones bajo las que se ejecutan los

distintos caminos. Esto ocurre por ejemplo, en las instrucciones condicio-

nales, como en los “if-then-else”, donde se suele requerir generar casos de

prueba para las dos alternativas, y por tanto se han de acumular las con-

diciones de cada camino como restricciones. Para el caso de Java Bytecode,

en [73] se diseñó una JVM simbólica (SJVM), la cual integraba varios re-

solutores de restricciones. La SJVM requiere una serie de extensiones no

triviales respecto a la JVM: (1) necesita que el bytecode sea ejecutado

simbólicamente como explicamos anteriormente, y (2) debe ser capaz de

realizar “backtracking”, pues al no conocerse los datos de entrada, el mo-

tor de ejecución debe considerar todas las alternativas. El mecanismo de

“backtracking” utilizado en [73] es de hecho esencialmente el mismo al uti-

lizado en la programación lógica.

Esta tesis propone un esquema novedoso de TDG de bytecode basado en

técnicas de EP en CLP, el cual, a diferencia de trabajos previos, no requiere

74

3.2. GENERACIÓN DE DATOS DE PRUEBA POR EP EN CLP

el desarrollo de una máquina simbólica virtual. La Figura 3.1 muestra un

diagrama con el esquema general. Como podemos ver, el enfoque se basa

en dos fases independientes de EP en CLP, que consisten básicamente en

lo siguiente:

1. Decompilación del bytecode en un programa CLP. Ya hemos explica-

do en el Caṕıtulo 2 que la decompilación de bytecode a LP se puede

obtener automáticamente por medio de la EP de LP, o alternativa-

mente utilizando un decompilador dedicado [70]. Las modificaciones

en el esquema para obtener programas CLP en lugar de programas

LP son prácticamente triviales. Esto se puede conseguir básicamente

transformando los “builtins” aritméticos del intérprete por los corres-

pondientes “builtins” CLP de la libreŕıa correspondiente.

2. Generación de casos de prueba. Ésta es una aplicación novedosa de la

EP que nos permite generar generadores de casos de prueba a partir

de los programas CLP decompilados. En este caso, utilizaremos un

evaluador parcial CLP capaz de propagar restricciones de la misma

manera que haŕıa una máquina simbólica. Los operadores de control

de la EP juegan un papel esencial: (1) El control local permite cap-

turar fácilmente diferentes criterios de recubrimiento. (2) El control

global permite la generación de generadores de casos de prueba. Intui-

tivamente, éstos son programas CLP cuya ejecución en CLP devuelve

más casos de prueba bajo demanda, sin la necesidad de empezar el

proceso de TDG de nuevo.

Esta tesis sostiene que este enfoque de TDG de bytecode tiene varias

ventajas importantes respecto a enfoques previos basados de alguna u otra

manera en ejecución simbólica. Éstas incluyen: (i) Es más genérico, pues

la mismas técnicas se pueden aplicar para otros lenguajes (imperativos) de

entrada. En particular, una vez se la realizado la decompilación a CLP,

las caracteŕısticas del lenguaje las caracteŕısticas del lenguaje quedan abs-

tráıdas, siendo por tanto la fase de generación de datos de prueba total-

mente independiente del lenguaje. Esto evita tener que tratar con aspectos

como la recursión, las llamadas a procedimientos, la memoria dinámica,

etc. (ii) Es más flexible pues es muy fácil incorporar diferentes criterios

de recubrimiento simplemente proporcionando las correspondientes reglas

de control local a la EP. (iii) Es más potente gracias a la caracteŕıstica

75

CAPÍTULO 3. APLICACIONES DE LA DECOMPILACIÓN INTERPRETATIVA

de poder generar generadores de casos de prueba. (iv) Es más simple de

implementar pues no requiere el desarrollo de ninguna máquina simbólica,

asumiendo claro que se dispone de una evaluador parcial.

Como se acaba de mencionar en la ventaja (iv), una de las ventajas

de los programas decompilados CLP respecto a sus versiones bytecode es

que se puede realizar una ejecución simbólica de éstos sin necesidad de

escribir un mecanismo espećıfico de ejecución simbólica. Simplemente po-

demos ejecutar el programa decompilado usando el mecanismo de ejecución

estándar de CLP, poniendo variables en todos los argumentos del corres-

pondiente predicado. Por ejemplo, para nuestro ejemplo motivador de la

Figura 2.4, podŕıamos ejecutar simbólicamente el método gcd lanzando el

objetivo main(gcd, [X, Y], Z) sobre el programa decompilado. Los resultados

obtenidos (restricciones sobre las variables) se pueden interpretar como las

condiciones que han de cumplir las variables de entrada (en este caso X

e Y) para seguir el camino de ejecución correspondiente. La solución de

dichas restricciones nos daŕıa por tanto datos de entrada concretos.

Sin embargo, un problema importante de la ejecución simbólica, inde-

pendientemente de si se realiza en CLP o utilizando una máquina simbóli-

ca, es que el árbol de ejecución a ser recorrido, es en la mayoŕıa de los

casos infinito, pues los programas suelen contener construcciones iterativas

y recursiones las cuales suelen inducir un número infinito de caminos de

ejecución al ejecutarse sin valores concretos. Es por tanto esencial estable-

cer un criterio de terminación, en este contexto criterio de recubrimiento,

que garantice que el número de caminos a ser recorrido es finito, y al mis-

mo tiempo que se obtiene un conjunto interesante de casos de valores de

entrada.

La mayoŕıa de criterios de recubrimiento están definidos sobre lenguajes

de programación estructurados y de alto nivel. Un criterio basado en el flujo

de control ampliamente utilizado es el loop-count(k) [53], el cual limita a

una cantidad k el número de veces que se puede iterar en los bucles. No

obstante, el bytecode tiene un flujo sin estructura, cuyos CFG’s pueden

variar mucho en forma. Es por ello que en esta tesis hemos introducido

el criterio de recubrimiento block-count(k) . Éste, en lugar de limitar el

número de veces que se itera en bucles, cuenta el número de veces que se

visita cada bloque durante cada computación. Básicamente, un conjunto de

caminos de computación satisface el criterio block-count(k) si éste incluye

76

3.2. GENERACIÓN DE DATOS DE PRUEBA POR EP EN CLP

todos los caminos de computación terminados en los que el número de veces

que se visita cada bloque no excede la k dada.

En el Art́ıculo 7 se discuten los detalles técnicos de dicho enfoque de

TDG de bytecode. En particular:

Se define formalmente el criterio block-count(k) .

Se define una estrategia de evaluación que garantiza construir un

árbol SLD de forma que se generen suficientes derivaciones para cum-

plir el criterio block-count(k), asegurando al mismo tiempo la termi-

nación del proceso.

La fase de TDG se formaliza como una EP en CLP del programa

CLP decompilado donde la regla de desplegado juega el papel del

criterio de recubrimiento. Definimos además una regla de desplegado

que implementa el criterio de recubrimiento block-count(k) y descri-

bimos como debe el operador de abstracción tratar con restricciones

para poder obtener generadores de casos de prueba efectivos.

Todos estos aspectos se ilustran a través de un ejemplo que consiste

en una serie de métodos que realizan diferentes cálculos aritméticos.

3.2.1. Generando Datos de Prueba para Prolog por

EP

Como contribución tangencial de esta tesis, hemos aplicado la idea de

utilizar EP para generar automáticamente datos de prueba en el contexto de

la LP. Ya mencionamos que nuestro enfoque podŕıa utilizarse en principio

para hacer TDG de cualquier lenguaje imperativo. Sin embargo, al tratar

de aplicarlo a un lenguaje declarativo como Prolog, encontramos problemas

a la hora de generar datos de prueba que cubran ciertos flujos de control de

Prolog. Básicamente, el problema es que una caracteŕıstica intŕınseca de la

EP es que sólo computa derivaciones no fallidas, mientras que en la TDG de

Prolog es esencial generar casos de prueba asociados a derivaciones de fallo.

En el Art́ıculo 8 hemos realizado un estudio preliminar en este dirección,

en el que se propone transformar el programa Prolog original en un pro-

grama Prolog equivalente con fallo expĺıcito. Esto puede hacerse evaluando

parcialmente un intérprete Prolog que captura las derivaciones de fallo del

77

CAPÍTULO 3. APLICACIONES DE LA DECOMPILACIÓN INTERPRETATIVA

programa. Otro aspecto importante que se discute en el Art́ıculo es que,

mientras que en el caso del lenguaje bytecode considerado anteriormente,

el dominio de restricciones sólo necesitaba manipular números enteros, en

Prolog éste debe tratar adecuadamente los datos simbólicos que maneja el

programa. Nuestros experimentos preliminares sugieren que el enfoque de

TDG basado en EP propuesto en la sección puede ser también útil para la

generación automática de casos de prueba para Prolog.

3.2.2. Trabajo Relacionado en la Generación de Da-

tos de Prueba

Como hemos mencionado anteriormente, nuestro enfoque se centra en

TDG estático, en el que los casos de prueba se generan sin ejecutar real-

mente el programa con datos particulares. Por el contrario, los enfoques

dinámicos [39, 46] ejecutan el programa para ciertos valores de entrada

concretos hasta conseguir satisfacer el criterio de recubrimiento correspon-

diente. El enfoque estándar para generar casos de prueba estáticamente es

la ejecución simbólica [29, 71, 73, 57, 45], Ésta se ha combinado con el uso

de resolutores de restricciones en [73, 45] para: tratar los sistemas de res-

tricciones resolviendo la viabilidad de los caminos y después instanciar las

variables de entrada. Para el caso particular de Java Bytecode, en [73] se

propone una JVM simbólica que integra varios resolutores de restricciones.

La TDG para lenguajes declarativos ha recibido comparativamente mu-

cha menos atención que para lenguajes imperativos. La mayoŕıa de las he-

rramientas existentes para lenguajes funcionales son de tipo “black-box”, es

decir, generan los casos de prueba a partir de la especificación del programa

(ver por ejemplo [28]). Una excepción es [40] donde se propone un enfoque

de tipo “glass-box” para el lenguaje Curry. En el caso de CLP, se han gene-

rado casos de prueba para Prolog en [69, 13, 89]; y más recientemente para

Mercury [36]. Básicamente, para obtener los casos de prueba, primeramente

calculan las restricciones sobre las variables de entrada asociadas con los

diferentes caminos de computo considerados, y después resuelven las res-

tricciones para obtener valores concretos. Por otro lado, se han definido

criterios de recubrimiento espećıficos para lenguajes funcionales [40] en los

que se consideran aspectos del lenguaje como la pereza (“laziness”).

En general, los lenguajes declarativos plantean diferentes problemas re-

78

3.2. GENERACIÓN DE DATOS DE PRUEBA POR EP EN CLP

lacionados con sus propios modelos de ejecución –como la pereza en lengua-

jes funcionales o el fallo en lenguajes lógicos (con restricciones)– los cuales

han de ser tratados por los correspondientes criterios de recubrimiento. Una

vez dicho esto, pensamos que las ideas relacionadas con el uso de técnicas

de EP para generar generadores de casos de prueba, aśı como el uso de

reglas de desplegado para supervisar la evaluación, se pueden adaptar para

lenguajes declarativos como hemos mostrado en nuestros resultados preli-

minares del Art́ıculo 8.

79

CAPÍTULO 3. APLICACIONES DE LA DECOMPILACIÓN INTERPRETATIVA

80

Caṕıtulo 4

Análisis del Consumo del Heap

para Bytecode

Predecir la cantidad de memoria que un programa requiere para su

ejecución es crucial en muchos contextos, como en aplicaciones empotradas,

donde suele haber fuertes restricciones de espacio, o en sistemas de tiempo

real, que han de responder a eventos tan rápido como sea posible. Se sabe

también que la estimación del uso de memoria también es importante para

una predicción precisa del tiempo de ejecución, pues los fallos de página y

de memoria cache contribuyen significativamente al tiempo de ejecución.

El análisis del consumo del heap trata de inferir cotas en el consumo del

heap de los programas. Como es habitual, éste se ha formulado t́ıpicamente

al nivel del código fuente (ver por ejemplo[83, 50, 85, 54] en el contexto de la

programación funcional y [52, 23] para lenguajes imperativos de alto nivel).

Como mencionamos en el Caṕıtulo 1.4, hay sin embargo situaciones en las

que no se tiene acceso al código fuente. El análisis del consumo del heap tie-

ne aplicaciones interesantes en este contexto. Por ejemplo, la certificación

de cotas de recursos, “resource bound certification” [33, 8, 10, 51, 22], pro-

pone utilizar propiedades de seguridad incluyendo requerimientos de coste,

es decir, el código recibido ha de adherirse a unos requerimientos espećıficos

respecto a su consumo de memoria. También, las cotas en el consumo del

heap pueden resultar útiles en sistemas empotrados (“embedded systems”),

por ejemplo, en tarjetas inteligentes en las cuales la memoria es limitada y

no puede recuperarse de forma sencilla.

Recientemente, en [3] se ha propuesto un análisis de coste para Java

81

CAPÍTULO 4. ANÁLISIS DEL CONSUMO DEL HEAP PARA BYTECODE

Bytecode secuencial, dando lugar al sistema COSTA [5]. Dicho análisis

genera estáticamente relaciones de coste (CRs) que definen el coste del

programa como una función de los tamaños de sus argumentos de entrada.

Estas relaciones, se expresan por medio de ecuaciones recursivas generadas

abstrayendo la estructura recursiva del programa e infiriendo relaciones

entre los argumentos. El análisis es paramétrico respecto al modelo de coste,

el cual define la unidad de coste asociada con cada instrucción bytecode de

programa.

Esta tesis desarrolla una aplicación novedosa del análisis de coste pro-

puesto en [3] para inferir cotas en el consumo del heap de programas Java

Bytecode:

1. En un primer paso, desarrollamos un modelo de coste que define el

coste de cada instrucción de alojamiento de memoria (new, newarray,

etc) en términos del número de unidades del heap que consumen. Por

ejemplo, el coste de crear un nuevo objeto será el número de unidades

de heap alojadas por el objeto. El resto de las instrucciones bytecode

no añaden ningún coste. Con este modelo, generamos CRs , y las

usamos para inferir cotas del consumo de memoria de los diferentes

métodos del programa. Estas cotas, proporcionan información de la

cantidad máxima de heap que se requiere para ejecutar cada método.

2. Desafortunadamente, en el caso de lenguajes con recolección au-

tomática de basura, “garbage collection” (GC), este enfoque, aunque

es correcto, produce estimaciones demasiado pesimistas. Es por ello,

que en un segundo paso, refinamos el análisis para que se considere

el efecto del GC. Proponemos por tanto un análisis del consumo de

la memoria activa, que aproxima la cantidad máxima de heap usada

durante la ejecución de un programa, proporcionando una estimación

mucho más precisa en presencia del GC. Para ello, nos basamos en

un análisis de escape [17] para identificar aquellos objetos creados

en un método, que serán recolectados antes de salir de él. Con esta

información, inferimos cotas de la memoria escapada en la ejecución

del método, es decir, la memoria que se aloja durante la ejecución del

método, y que permanece ocupada tras su finalización. Proponemos

entonces una nueva forma de CRs del consumo pico del heap, que

capturan el consumo pico de la ejecución del programa sobre todos

82

4.1. ANÁLISIS DEL CONSUMO TOTAL

sus posibles estados. Una caracteŕıstica esencial de nuestras CRs , es

que éstas pueden resolverse utilizando resolutores existentes, en par-

ticular el propuesto en [9].

Estos aspectos se introducen respectivamente en las Secciones 4.1 y 4.2, y

se estudian en detalle en los Art́ıculos 9 y 10.

Una caracteŕıstica única de los análisis presentados en esta tesis con

respecto a trabajos previos (por ejemplo [10, 50, 18, 24]), es que éstos no

están limitados a cotas lineales ni polinómicas, pues nuestras CRs pue-

den en principio capturar cualquier clase de complejidad. Más aún, en la

mayoŕıa de los casos, utilizando el resolutor de CRs del sistema COSTA,

nuestras relaciones pueden simplificarse a una forma cerrada, lo que nos da

información directa sobre el consumo del código en cuestión.

Una observación importante es que estos análisis se podŕıan también

haber desarrollado de forma similar utilizando nuestros programas decom-

pilados LP. De hecho, COSTA decompila también el bytecode a una repre-

sentación basada en reglas antes de realizar el análisis propiamente dicho,

con el propósito de simplificar el diseño (ver [3] para más detalles). Las

representaciones intermedias de COSTA son de hecho muy similares a

nuestros programas decompilados, con la diferencia fundamental de que,

en COSTA, prácticamente, todas las instrucciones de bytecode quedan re-

siduales en el código como “builtins”, es decir predicados predefinidos. Por

el contrario, en nuestras decompilaciones, las instrucciones de bytecode se

interpretan y evalúan en tiempo de decompilación, y se convierten, en su

caso, a instrucciones básicas de Prolog, como unificaciones y operaciones

aritméticas. La razón fundamental por la que decidimos no usar nuestras

decompilaciones para el análisis de consumo de memoria, es que de esta ma-

nera hemos sido capaces de integrar nuestro análisis en el sistema COSTA,

aprovechando aśı toda la maquinaŕıa para el análisis de coste incluida en él

(por ejemplo, el análisis de tamaños que infiere las relaciones de tamaños

entre argumentos, el resolutor de CRs , etc).

4.1. Análisis del Consumo Total

Consideremos el programa Java que aparece en la Figura 4.1. Consiste

en una serie de clases Java que definen una estructura de datos del tipo

83

CAPÍTULO 4. ANÁLISIS DEL CONSUMO DEL HEAP PARA BYTECODE

abstract class List {

abstract List copy();

}

class Nil extends List {

List copy() {

return new Nil();

}

}

class Cons extends List {

int elem;

List next;

List copy(){

Cons aux = new Cons();

aux.elem = m(this.elem);

aux.next = this.next.copy();

return aux;

}

static int m(int n) {

Integer aux = new Integer(n);

return aux.intValue();

}

} // class Cons

Figura 4.1: Ejemplo de consumo de memoria

lista enlazada, implementada en un estilo fuertemente orientado a objetos.

La clase Cons se utiliza para los nodos de datos (en este caso números

enteros), y la clase Nil juega el papel de null para indicar el final de la

lista. Tanto Cons como Nil heredan de la clase abstracta List. Aśı, los

objetos del tipo List pueden ser bien instancias de Cons o de Nil. Ambas

subclases implementan el método copy, el cual se utiliza para clonar el

objeto correspondiente. En el caso de Nil, copy simplemente devuelve una

nueva instancia de śı mismo, pues es el último elemento de la lista. En el caso

de Cons, se devuelve una instancia clonada donde el dato se clona invocando

al método estático m, y la continuación se clona llamando recursivamente

al método copy sobre el objeto next.

Nuestro análisis de consumo del heap infiere relaciones de coste (sim-

plificadas) para el método copy de la clase Cons:

Ccopy(a) = 12, a = 1

Ccopy(a) = 12 + Ccopy(a-1), a > 1

las cuales se pueden resolver usando el resolutor de COSTA dando como

resultado la siguiente cota en forma cerrada:

Ccopy(a) = 12*nat(a-1) + 12

Se puede observar que el consumo de heap es lineal respecto al parámetro

de entrada a, que se corresponde con el tamaño del objeto this del método,

84

4.2. ANÁLISIS DE CONSUMO DEL HEAP ACTIVO PARA LENGUAJES CON GC

es decir, la longitud de la lista a clonar. Esto ocurre gracias a que la abstrac-

ción utilizada por nuestro análisis para referencias a objetos es la longitud

de la cadena de referencias más larga, que en este caso se corresponde con

la longitud de la lista. La constante numérica 12 se obtiene sumando 8 y 4,

siendo 8 el número de bytes ocupados por una instancia de la clase Cons,

y 4 los bytes ocupados por una instancia de Integer. Nótese, que estamos

aproximando el tamaño de los objetos como la suma de los tamaños de to-

dos sus atributos. En particular, asumimos que, tanto un entero (integer)

como una referencia ocupan 4 bytes.

El análisis ha sido integrado en el sistema COSTA. En el Art́ıculo 9

se discuten los resultados obtenidos en nuestra evaluación experimental, en

la que se estudia el comportamiento del análisis con una serie de aplica-

ciones, escritas en un estilo fuertemente orientado a objetos, que hacen un

uso intensivo del heap, y que ilustran diferentes aspectos relevantes como

consumos dependientes de atributos, herencia y polimorfismo, invocaciones

virtuales, etc. Estos ejemplos ilustran los aspectos más relevantes de nues-

tro análisis: inferencia de consumos constantes, consumos proporcionales

al tamaño de la entrada, soporte para estructuras de datos como listas,

árboles, arrays, etc. Por que sabemos, éste es el primer análisis de consumo

capaz de inferir cotas arbitrarias para Java Bytecode.

4.2. Análisis de Consumo del Heap Activo

para Lenguajes con GC

Como hemos comentado anteriormente, la recolección de basura (GC)

complica mucho el problema de la predicción de memoria. Una primera

aproximación es inferir el consumo de memoria total, es decir, la cantidad

acumulada de memoria alojada por el programa, sin tener en cuenta el GC

(como se hicimos en la Sección anterior). Si disponemos de dicha cantidad,

está garantizado que el programa podrá ejecutarse, incluso si el GC no

se aplica durante la ejecución. No obstante, el consumo inferido es una

estimación demasiado pesimista del consumo de memoria real.

Esta tesis presenta un enfoque genérico para inferir el consumo pico de

memoria durante la ejecución del programa. Nuestro análisis del consumo

del heap activo se ha formulado para (una representación intermedia de)

85

CAPÍTULO 4. ANÁLISIS DEL CONSUMO DEL HEAP PARA BYTECODE

un lenguaje bytecode con orientación a objetos y con gestión automática

de memoria (es decir, GC).

El análisis de la memoria activa se diferencia del análisis del consumo

total pues requiere considerar el consumo en todos los estado del programa

durante su ejecución, a diferencia del consumo total, en el que sólo se ha

de tener en cuenta el estado final. Como consecuencia, el enfoque clásico

de análisis de coste estático propuesto por Wegbreit en 1975 [86] sólo se

ha aplicado para inferir consumos totales (o acumulativos). La ventaja de

este enfoque es que puede obtener información precisa sin estar restringi-

do a ninguna clase de complejidad. Además, en principio, el enfoque es

genérico en el sentido de que puede usarse para inferir diferentes nociones

de recursos como consumo de memoria, número de instrucciones, número

de llamadas a métodos, etc. Desafortunadamente, como discutimos en el

Art́ıculo 9, el enfoque no es válido para inferir el consumo pico pues éste

no es un recurso acumulativo de la ejecución del programa. Sin embargo,

requiere razonar sobre todos los posibles estados para calcular su máximo.

Basándonos en distintas técnicas, que no generan CRs , el análisis de con-

sumo del heap activo está actualmente limitado a cotas polinómicas y a

métodos no recursivos [18] o a cotas lineales con recursión [24].

Inspirándonos en las técnicas básicas usadas en los análisis de coste,

en esta tesis, presentamos un enfoque general para inferir cotas precisas

en el consumo pico de los programas, mejorando el estado actual del ar-

te al no estar el enfoque restringido a ninguna clase de complejidad, y al

ser capaz de tratar la recursión. Para desarrollar nuestro análisis necesita-

mos primeramente caracterizar el comportamiento del recolector de basura

subyacente. Asumiremos un gestor de memoria basado en entornos (“sco-

pes”), que reclama memoria sólamente al finalizar los métodos. Nuestras

principales contribuciones son:

1. Análisis de la memoria escapada. En primer lugar, desarrollamos un

análisis para inferir cotas superiores de la memoria que escapa de los

métodos, es decir, la memoria alojada durante la ejecución del método

y que permanece cuando éste finaliza. La idea básica es inferir primero

una cota superior del consumo total de memoria del método, como

hacemos en la Sección 4.1. Después, dicha cota puede ser manipulada,

utilizando la información inferida por un análisis de escape [17] para

extraer de él una cota superior de la memoria escapada.

86

4.2. ANÁLISIS DE CONSUMO DEL HEAP ACTIVO PARA LENGUAJES CON GC

2. Análisis del consumo de memoria activa. Utilizando las cotas superio-

res del punto anterior, como nuestra principal contribución, propone-

mos una nueva forma de ecuaciones del consumo pico, que capturan

el consumo pico sobre todos los estados del programa para el gestor

de memoria considerado. Una caracteŕıstica fundamental de nuestras

CRs es que aún se pueden resolver usando los resolutores existentes.

3. Recolector de basura ideal. Un aspecto muy interesante, y al mismo

tiempo novedoso de nuestro enfoque es que podemos refinar fácilmen-

te el análisis para acomodar otros tipos de gestores de memoria, en

particular más cercanos al gestor ideal, el cual recolectaŕıa los objetos

tan pronto como éstos dejan de ser referenciables.

4. Implementación. El análisis ha sido implementado e integrado en el

sistema COSTA. Hemos realizado además una evaluación experi-

mental usando los “benchmarks” JOlden. Los resultado preliminares

demuestran que el sistema obtiene cotas del consumo pico de los pro-

gramas razonablemente precisas de forma totalmente automática.

Consideremos de nuevo el ejemplo de la sección previa. Nuestro análisis

de consumo del heap activo infiere las siguientes CRs (simplificadas) para

el método copy de la clase Cons:

Ccopy(a) = 12, a = 1

Ccopy(a) = 8 + max(4,Ccopy(a-1)), a > 1

La intuición de la segunda relación es que el consumo pico del método

cuando a > 1 es el consumo del método (un objeto Cons) más el máximo

entre el consumo pico del método m y la memoria escapada de m más el

consumo pico de copy con el argumento decrementado. El CRs puede de

nuevo resolverse utilizando el resolutor de COSTA devolviendo la siguiente

cota en forma cerrada:

Ccopy(a) = 8*nat(a-1) + 24

Una observación interesante es que el objeto de tipo Integer creado dentro

del método m, no es alcanzable desde fuera y por tanto puede ser recolec-

tado. Nuestro análisis lo tiene en cuenta, y es por ello, que ha borrado el

tamaño del objeto Integer de la ecuación recursiva, obteniéndose 8 en lugar

87

CAPÍTULO 4. ANÁLISIS DEL CONSUMO DEL HEAP PARA BYTECODE

de 12 multiplicando a nat(A−1). También podemos observar que COSTA

no está siendo del todo preciso, pues el consumo pico real del método es

8 ∗ nat(A − 1) + 8 (el tamaño de la lista clonada). La razón de esta im-

precisión es que el resolutor de cotas superiores ha de considerar los casos

adicionales introducidos por el análisis del consumo pico de memoria en

las expresiones max para asegurar su corrección, haciendo que la segunda

constante crezca hasta 24.

4.3. Trabajo Relacionado

En la literatura hay una gran cantidad de trabajos sobre el análisis de

recursos y de complejidad, aunque la mayoŕıa son sobre análisis de tiempos

(ver por ejemplo [?]). El análisis del consumo del heap activo es diferente

pues requiere que se consideren todos los estados del programa. La mayoŕıa

de los trabajos sobre estimación de memoria, se han realizado en el contexto

de lenguajes funcionales. El trabajo en [50] infiere estáticamente, por medio

de derivaciones de tipos y programación lineal, expresiones lineales que

dependen de los parámetros funcionales. Nótese que con nuestro enfoque se

pueden calcular cotas no lineales (polinómicas, logaŕıtmicas, exponenciales,

etc). Las técnicas propuestas en [83, 82] consisten en, dada una función,

construir una nueva función que representa simbólicamente el coste de la

primera. Aunque estas funciones recuerdan a nuestras relaciones de coste,

éstas deben ejecutarse sobre unos valores concretos de los parámetros para

obtener una cota de memoria para una asignación concreta. A diferencia

de nuestras cotas en forma cerrada, la evaluación de su función podŕıa no

terminar, incluso aunque el programa original si lo hiciese.

Merece la pena mencionar el trabajo en [21], donde se presenta una

análisis del consumo de memoria. A diferencia de nuestro enfoque, su

propósito es verificar que el consumo de memoria del programa está acota-

do. Los autores consiguen esto simplemente comprobando que no se creen

objetos dentro de bucles, pero en ningún momento infieren cotas simbóli-

cas como hacemos en nuestro análisis. Nótese que realizar este tipo de

comprobación resultaŕıa directo usando nuestras ecuaciones de coste. Otro

trabajo relacionado es el realizado en el proyecto MRG (“Mobile Resource

Guarantees”) [10, 16], en el cual se centran en construir una arquitectura

de “Proof-Carrying-Code”[74] en la que se asegura que los programas no

88

4.3. TRABAJO RELACIONADO

violan las restricciones de consumo de recursos impuestas. El análisis se

desarrolla para un lenguaje funcional que se compila posteriormente a un

subconjunto de Java Bytecode, y está restringido a cotas lineales.

Para lenguajes del estilo de Java, podemos mencionar el trabajo de [52],

donde se presenta un sistema de tipos para realizar análisis de heap sin

recolección de basura. El análisis está desarrollado a nivel del código fuente

y está basado en técnicas de análisis amortizado. Es por tanto técnicamente

diferente al nuestro, y no llega a proponer un método de inferencia de

consumo del heap.

Se han propuesto también recientemente técnicas que tratan de mejo-

rar nuestro primer enfoque, presentado en el Art́ıculo 9. En particular, [24]

considera un lenguaje ensamblador, e infiere cotas del consumo de memoria

(tanto de la pila como del heap). El enfoque está, no obstante, restringi-

do a cotas lineales, y se basa en la existencia de comandos expĺıcitos de

liberación de memoria en lugar de en un gestor automático de memoria.

En su sistema, estos comandos de liberación de memoria pueden generarse

automáticamente a partir de unas anotaciones de usuario. En [18] se con-

sidera un lenguaje del estilo de Java y se infieren cotas del consumo pico

basándose en un gestor automático de memoria como hacemos nosotros.

Sin embargo no tratan con métodos recursivos y su enfoque está restrin-

gido a cotas polinomiales. Además, nuestro enfoque (Art́ıculo 10) es más

flexible en cuanto a su posible adaptación a distintos esquemas de recolec-

ción de basura. Pensamos que nuestro sistema es el primero capaz de inferir

cotas del consumo pico de los programas no restringidas a ninguna clase de

complejidad.

89

CAPÍTULO 4. ANÁLISIS DEL CONSUMO DEL HEAP PARA BYTECODE

90

Caṕıtulo 5

Conclusiones y Trabajo Futuro

El principal objetivo de esta tesis ha sido mejorar el estado del arte en

la transformación y análisis de lenguajes bytecode. Nuestro primer reto fue

proponer un esquema formal para la decompilación automática de progra-

mas bytecode (con orientación a objetos) a representaciones intermedias de

alto nivel usando LP, por medio de decompilación interpretativa. Este enfo-

que ofrece una serie de ventajas comparado con el desarrollo de decompila-

dores dedicados como flexibilidad, mantenibilidad, seguridad y generalidad.

Aunque es muy atractivo, hasta ahora no se hab́ıa usado realmente en la

práctica exceptuando algunas pruebas de concepto en las que simplemente

se demuestra su viabilidad [63, 48, 76, 64].. Quedaban por tanto una serie

de cuestiones abiertas a la hora de tratar de aplicar el enfoque interpre-

tativo en lenguajes y aplicaciones reales, en particular su escalabilidad y

efectividad. Esta tesis propone soluciones novedosas y finalmente responde

afirmativamente a estas cuestiones presentando un esquema de decompi-

lación modular y óptimo que: (1) produce programas decompilados cuya

calidad es equivalente a la obtenido utilizando decompiladores dedicados,

y (2) demuestra teórica y emṕıricamente escalar en la práctica. Los re-

sultados experimentales obtenidos muestran que nuestro decompilador es

competitivo en la práctica, desde el punto de vista de la eficiencia, con

decompiladores dedicados. Creemos por tanto que, las técnicas propuestas,

junto con su evaluación experimental, proporcionan por primera vez una

prueba tangible de que la teoŕıa interpretativa propuesta por Futamura

en los años 70, es de hecho una alternativa viable y realista al desarro-

llo de decompiladores dedicados de lenguajes modernos a representaciones

91

CAPÍTULO 5. CONCLUSIONES Y TRABAJO FUTURO

intermedias.

Para concretar, nuestro esquema de decompilación interpretativa ha si-

do formalizado en el contexto de la EP de programas lógicos, e implemen-

tado para el lenguaje Java Bytecode. Es sin embargo importante notar que

las ideas propuestas para posibilitar la puesta en práctica del enfoque, son

por supuesto de interés para la decompilación interpretativa de cualquier

par de lenguajes origen y destino.

Por otro lado, el estudio de una aplicación tan compleja de la EP, nos

ha llevado a resolver varios problemas no triviales de ésta en general, como

por ejemplo el tratamiento de signaturas infinitas. A este respecto, se ha

presentado la relación de la subsunción homeomórfica basada en tipos, la

cual ha demostrado mejorar el estado del arte en las herramientas de espe-

cialización online. Hemos visto también como distintos enfoques existentes

que extend́ıan la relación original no tipada para tratar con signaturas in-

finitas, se pueden reconstruir como instancias de nuestra relación TbHEm.

Aunque se han esbozado procedimientos para inferir los tipos en el con-

texto de la LP, nuestra relación basada en tipos no está atada a ningún

paradigma de programación. Más aún, se podŕıa usar en un rango amplio

de aplicaciones como en distintas áreas de análisis, śıntesis, verificación,

especialización y transformación automática de programas, y además se

beneficiaŕıa directamente de cualquier progreso en inferencia automática

de tipos.

Hemos visto como la representación intermedia resultante utilizando

LP, puede simplificar en gran medida el desarrollo de herramientas de

análisis, verificación y chequeo de modelos para lenguajes modernos, y, en

particular, como pueden ser directamente aplicadas herramientas existen-

tes desarrolladas para LP (probadas correctas y efectivas). Hemos realizado

dos estudios experimentales en esta dirección. En el primero de ellos, he-

mos investigado si es viable analizar programas bytecode a base de analizar

sus decompilaciones a LP utilizando herramientas de análisis LP existen-

tes. En este sentido, hemos sido capaces de demostrar automáticamente,

usando el sistema CiaoPP, algunas propiedades no triviales de programas

Java Bytecode (de tamaño pequeño) como, ausencia de errores en tiempo

de ejecución, terminación e inferencia de cotas en el uso de recursos.

En nuestro segundo estudio experimental, hemos aprovechado el hecho

de que nuestros programas decompilados son totalmente ejecutables, pues

92

a diferencia de otros enfoques [70, 2, 84], representan el estado comple-

to de ejecución (es decir, contienen una representación expĺıcita del heap

además de la pila de operandos). En este sentido, hemos propuesto un es-

quema de generación automática de datos de prueba, basado en ejecución

simbólica, para lenguajes bytecode por medio de técnicas de EP en CLP.

Nuestro enfoque consiste en dos fases diferenciadas: (1) la (de)compilación

del bytecode a un programa CLP, y (2) la generación de datos de prue-

ba a partir del programa CLP. una pregunta que surge inevitablemente

es si este enfoque puede utilizarse para otros lenguajes imperativos que no

sean necesariamente bytecode. Los enfoques basados en ejecución simbólica

existentes para Java [73], y para C [45], presentan problemas a la hora de

tratar con aspectos como la recursión, las llamadas a métodos, la memoria

dinámica, etc. Hemos visto como estos aspectos se tratan de forma unifor-

me en nuestro enfoque gracias a la transformación a CLP. En particular,

todas las clases de bucles en el bytecode se representan de forma uniforme

como predicados recursivos en el programa CLP. Hemos visto también co-

mo las llamadas a métodos se tratan de la misma manera que las llamadas

a bloques, y por tanto no presentan ninguna dificultad adicional.

Pensamos que el estudio experimental realizado es una prueba de con-

cepto muy prometedora, que muestra que la EP en el contexto de CLP es

una técnica muy potente, en particular, para realizar TDG de lenguajes

bytecode e imperativos en general. Para poner en práctica nuestras ideas

hemos considerado un sencillo lenguaje bytecode imperativo dejando aspec-

tos como la orientación a objetos para trabajo futuro. Hemos restringido

también el lenguaje a números enteros quedando también como trabajo

futuro la extensión para tratar con diferentes tipos de datos. A corto pla-

zo, planeamos realizar una evaluación experimental con programas Java

Bytecode de “benchmarks” existentes. Al considerar aspectos de lenguajes

bytecode más realistas como el uso de números reales, llamadas virtuales,

etc, seguro que tendremos que tratar como numerosas dificultades. Uno

de los puntos prácticos fundamentales es la escalabilidad del enfoque, que

suele venir ligada al problema de la no viabilidad de caminos [90]. Éste

suele ocurrir sobretodo en enfoques que no integran la fase de resolución de

restricciones con la de generación de caminos, sino que realizan estas fases

de forma independiente. En este sentido, no esperamos tener problemas

pues nuestro enfoque integra ambas fases y por tanto detecta y descar-

93

CAPÍTULO 5. CONCLUSIONES Y TRABAJO FUTURO

ta los caminos inviables tan rápido como éstos aparecen. Otro problema

interesante es el obtener una representación manejable del heap, lo cual

será necesario para poder obtener casos de prueba en programas que mani-

pulen objetos y arrays. Para la evaluación experimental también planeamos

extender nuestra técnica para incluir criterios de recubrimiento más avan-

zados. En particular seŕıa interesante considerar otras clases de criterios

que, por ejemplo, nos permitan obtener casos de prueba que recubran una

determinada instrucción del programa.

Como hemos visto, en principio nuestro enfoque de TDG puede aplicar-

se a cualquier lenguaje, tanto de alto como de bajo nivel. En este sentido,

esta tesis también ha presentado un estudio experimental en el que tra-

tamos de aplicar la segunda fase para generar casos de prueba de progra-

mas CLP, no necesariamente obtenidos por decompilación de programas

bytecode o imperativos. Esto introduce algunas dificultades como el tra-

tamiento de las derivaciones de fallo y de los datos simbólicos. Esta tesis

ha esbozado las soluciones para superar dichas dificultades. En particular,

hemos propuesto una transformación de programa, basada en EP, que hace

expĺıcito el fallo en los programas lógicos. Para tratar la negación en los

programas transformados, hemos esbozado soluciones basadas en técnicas

existentes, que hacen posible transformar la información negativa en positi-

va. Aunque nuestros primeros experimentos en este sentido ya sugieren que

el enfoque puede ser muy útil, por ejemplo para generar casos de prueba

para programas Prolog, pensamos realizar aún una evaluación experimental

en profundidad comparando con técnicas existentes. Esto requeriŕıa cubrir

ciertos aspectos del lenguaje Prolog que aún no hemos considerado, como el

corte, el sistema de módulos, etc. Queremos también estudiar la integración

de otras clases de criterios de recubrimiento como los basados en el flujo de

datos. Finalmente, nos gustaŕıa estudiar la integración los análisis estáti-

cos en el contexto de TDG. Por ejemplo, utilizar la información inferida

por un análisis de fallo podŕıa ser muy útil para poder aśı podar algunas

de las ramas que nuestros programas transformados en principio han de

considerar.

Otro de los grandes retos de esta tesis ha sido mejorar el estado del arte

en el análisis de consumo del heap de lenguajes bytecode. En este sentido,

hemos desarrollado una aplicación novedosa del esquema de análisis de cos-

te de [3] para analizar consumo del heap, el cual ha sido también extendido

94

para considerar el efecto de la recolección de basura. Hemos presentado

por tanto un enfoque genérico para el análisis automático y preciso de con-

sumo del heap activo para lenguajes bytecode con recolección automática

de basura. Para ello, primero hemos propuesto como obtener cotas pre-

cisas de la memoria que escapa de los métodos, combinando el consumo

total inferido por el propio método, junto con la información obtenida por

un análisis de escape. Después, hemos introducido una forma novedosa de

relaciones del consumo de memoria pico, que utilizando las cotas de la me-

moria escapada, capturan el consumo pico de los programas considerando

el efecto de la recolección de basura. Estas relaciones de coste se pueden

convertir a forma cerrada utilizando resolutores existentes, en particular el

del sistema COSTA. Para concretar, nuestro análisis ha sido desarrollado

para un lenguaje bytecode con orientación a objetos, aunque pensamos que

las mismas técnicas podŕıan aplicarse a otros lenguajes con recolección de

basura. En primer lugar, el análisis considera un gestor de memoria ba-

sado en entornos, que sólamente reclama la memoria en la finalización de

los métodos. La cantidad de memoria requerida para poder ejecutar un

método bajo este modelo, puede usarse como una sobreaproximación de la

cantidad requerida en el contexto de una recolector de basura ideal (que

reclama la memoria de los objetos tan pronto como estos dejan de ser al-

canzables). Hemos mostrado también como aproximar el comportamiento

de dicho recolector ideal en nuestro análisis.

Finalmente, es importante notar que este enfoque podŕıa también utili-

zarse para estimar otros recursos no acumulativos, que requieren maximizar

el consumo de varios caminos de ejecución diferentes. Por ejemplo, pensa-

mos que podŕıa utilizarse para estimar la profundidad máxima de la pila

de llamadas de la siguiente manera:

Dada una regla r ≡ p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn, donde bi1 . . . bik son las

llamadas en r, con 1 ≤ i1 ≤ · · · ≤ ik ≤ n y bij = qij(〈x̄ij〉, 〈ȳij〉), su ecuación

correspondiente seŕıa

p(x̄) = máx(1 + qi1(x̄ij), . . . , 1 + qik(x̄ik)) ϕr

que considera la profundidad máxima de todas las cadenas de llamadas. Ca-

da “1” corresponde a cada “frame” creado para la llamada correspondiente.

Ésta es por tanto otra ĺınea de posible trabajo futuro.

95

CAPÍTULO 5. CONCLUSIONES Y TRABAJO FUTURO

96

Parte II

Versión en Inglés (English

Version)

97

Chapter 6

Introduction: Motivation and

Contributions

6.1. Bytecode Languages

Programming languages can in general be categorized by the underlying

execution model that runs them. Thus, they typically fall into one of two

categories: compiled or interpreted. In compiled languages the source code

is first translated, or compiled, into a set of hardware-specific instructions,

often called object code. The program is then run by executing the object

code in the corresponding hardware. In contrast, in interpreted languages

the source code is executed by an interpreter. The distinction applied to

programming languages is somewhat vague as in theory any language may

be compiled or interpreted. The categorization usually reflects the most po-

pular or widespread implementations of languages and not their underlying

properties. Each of the alternatives has their own advantages and drawba-

cks. For instance, the execution of an object program in the corresponding

machine tends to be much faster than executing the same source program

using an interpreter, even a 10:1 ratio is not uncommon. On the other

hand, interpreted languages provide certain extra flexibility over compiled

programs, namely, ease of implementation, ease of debugging, and the most

important, platform-independence.

A combination of both approaches, known as bytecode-compilation

or bytecode-interpretation, is becoming widely used. In a bytecode-

compilation-based execution model, source code is translated to some inter-

99

CHAPTER 6. INTRODUCTION: MOTIVATION AND CONTRIBUTIONS

void foo(int n,int m){

this.f = n + m;

}

void foo(int,int)

0: aload 0

1: iload 1

2: iload 2

3: iadd

4: putfield f

7: return

Figura 6.1: Simple Java Bytecode program

mediate form, known as bytecode. The bytecode is not the machine code for

any particular computer, and may be portable among computer architectu-

res. The bytecode may be then interpreted by, or run on, a virtual machine.

The name bytecode stems from instruction sets which have one-byte opco-

des followed by optional parameters. Bytecode instructions are often akin

to traditional hardware instructions. For instance, bytecode languages often

have an unstructured control flow with several sources of branching (e.g.,

conditional and unconditional jumps) and use an operand stack to perform

intermediate computations. Nevertheless, since bytecode instructions are

thought to be processed by software, they may be arbitrarily complex, es-

pecially in the case of object-oriented and declarative bytecode languages.

To get the picture, Figure 6.1 shows the source code and (Java) bytecode

of a method that takes two integer numbers, adds them, and assigns the

result to the f field of the this object. Note that, in Java Bytecode, the this

object is explicitly passed in local variable 0, thus, the aload 0 instruction,

pushes the this reference at the top of the stack.

As regards efficiency, the bytecode-compilation model is typically so-

mewhere in between the pure compilation-based and interpretation-based

models; while it keeps the advantages of interpretation-based models, in

particular, platform independence. Furthermore, there is nothing about a

bytecode language that requires it to be exclusively interpreted. Therefore,

just-in-time compilation (JIT) can be used to speed up the execution of

bytecode. A JIT compiler performs the conversion to native machine code

gradually during the program’s execution thus obtaining a better perfor-

mance. Bytecode-compilation together with JIT compilation can therefore

combine most advantages of interpretation-based and compilation-based

execution models. This is the main reason of success of the runtime envi-

100

6.1. BYTECODE LANGUAGES

ronments of Microsoft .NET and the Java frameworks, which are probably

the most widely used programming environments nowadays.

Java Bytecode Java Bytecode is the language designed to be executed

by the Java Virtual Machine (JVM) [66]. It was originally designed by Sun

Microsystems to be an intermediate language in the Java runtime envi-

ronment. A Java Bytecode instruction consists of an opcode specifying the

operation to be performed, followed by zero or more operands embodying

values to be operated upon. The JVM uses a set of structures that the

bytecode instructions manipulate. The main ones are: the program counter

which contains the index of the current instruction, the operand stack

and local variables array in which parameters, variables and intermediate

results are stored, the heap from which memory for all class instances

and arrays is allocated, and the usual call stack or frame stack to handle

method calls and returns. Java Bytecode comprises, on one hand, the

classical low-level instructions to transfer values from the operand stack to

the local variables and viceversa, to perform arithmetic operations (most

of them operate directly on the operand stack), to jump to other part

of the code (conditionally or unconditionally), to call (and return from)

methods, etc. For instance, the instruction iload 1 loads the local variable

1 on the top of the operand stack and instruction iadd adds (and pops)

the top two values of the stack and pushes the result on it. On the other

hand, Java Bytecode has object-oriented and concurrency features. Thus

it also includes instructions to create objects and arrays, to get and set

object fields and array elements, to perform virtual invocations, to enter

and exit monitors, etc. E.g., instruction putfield f sets with the value

on top of the stack, the f field of the object referenced by the memory

address stored inmediately under the top of the stack.

Although Java is the most common language targeting Java Bytecode,

there are nowadays many compilers from different high-level languages to

Java Bytecode. Some of the most well known are: jython for Python pro-

grams, jRuby for Ruby and jGNAT for Ada.

.NET Common Intermediate Language The Common Intermediate

Language (CIL) is the bytecode intermediate language used by the .NET

101

CHAPTER 6. INTRODUCTION: MOTIVATION AND CONTRIBUTIONS

programming framework. Thus, source languages targeting the .NET

framework compile to CIL. As Java Bytecode, CIL is an object-oriented

and stack-based bytecode language. It therefore includes the same kind

of bytecode instructions. Unlike Java Bytecode, CIL is not meant to be

interpreted. From the beginning, it was rather thought to be compiled

into machine code using JIT compilation. The bytecode is even sometimes

entirely converted into machine code before runtime using a native image

generator to further improve performance. The .NET framework is a key

Microsoft offering and is intended to be used by most new applications

created for the Windows platform.

There are other well known bytecode languages both imperative, like

the p-code used in some Pascal implementations, and declarative, like the

WAM bytecode, used in most Prolog implementations, the Haskell Hugs’98

bytecode and the Erlang BEAM bytecode, to name some.

This thesis is mainly focused on object-oriented imperative bytecode

languages. In particular, as we will see, the technical parts of this thesis, as

well as the different prototype implementations we have developed, consider

representative subsets of Java Bytecode.

6.2. Static Program Analysis

Predicting the behavior of programs before their actual execution be-

comes more and more relevant as programs increase in complexity and get

used in critical situations such as medical operations, flight control or ban-

king cards. Being able to prove, in an automatic way, that programs do

adhere to their functional specifications is a basic factor to their success.

Static program analysis is the process of automatically analyzing the beha-

vior of programs without actually executing the code. In contrast, analysis

performed by executing programs is known as dynamic analysis. Classical

static analyses aim at inferring properties of programs like: error-freeness,

termination, cost or resource consumption (time or memory), liveness of

variables, pointer shape, etc. The usual way to perform static analysis is

to use formal methods. Some of the most common are: abstract interpreta-

tion, model checking and type systems. This thesis mainly focuses on static

analysis based on abstract interpretation.

102

6.2. STATIC PROGRAM ANALYSIS

Abstract Interpretation. The technique of abstract interpretation [30]

provides a general formal framework for computing safe approximations

(i.e., abstractions) of programs behavior. Its main practical application

is formal static analysis. Analyzers based on abstract interpretation infer

information on programs by interpreting (“running”) them using abstract

values rather than concrete ones. These analyzers are parametric w.r.t.

the so-called abstract domain, which provides a finite representation

of possibly infinite sets of values. Different domains capture different

properties of the program with different levels of precision and at a

different computational cost.

Abstract interpretation-based static analysis has been studied in the

context of declarative languages and also for high-level imperative langua-

ges. In what follows we enumerate some analysis systems:

The ASTRÉE analyzer. ASTRÉE [31] is a static program analyzer deve-

loped at the École Normale Supérieure by Cousot et. al. aiming at proving

the absence of run-time errors of C programs. ASTRÉE was able for exam-

ple to prove fully automatically the absence of any run-time error in the

primary flight control software of the Airbus A340 fly-by-wire system, a

program of 132.000 lines.

The CiaoPP system. CiaoPP [49] is the abstract interpretation-based

preprocessor of the Ciao-Prolog Contraint Logic Programming (CLP)

system [25]. It can perform a number of program debugging, analysis and

source-to-source transformation tasks on Ciao-Prolog programs. Some of

the properties it is able to infer are: types, modes and other variable ins-

tantiation properties, non-failure, determinacy, bounds on computational

cost, bounds on sizes of terms in the program, etc. CiaoPP is also able to

perform several kinds of source to source program transformations such

as program specialization, program parallelization (including granularity

control), etc.

Some other well-known (non-commercial and commercial) static analy-

sis systems are: Lint, CCA and BOON for C programs, CodeSonar for

C++, Fluid and jLint for Java, and many others. Other static analyzers

103

CHAPTER 6. INTRODUCTION: MOTIVATION AND CONTRIBUTIONS

have not become self-contained tools but are rather integrated in most com-

pilers. An example of this is the JVM verifier which integrates a data-flow

analyzer.

Traditionally, most analyses have been formulated at the source code

level. However, it can be the case that the analysis must consider the com-

piled code, or bytecode, instead. This may happen, in particular, when the

code consumer is interested in verifying some properties of 3rd party pro-

grams, but has no direct access to the source code, as usual for commercial

software and in mobile code. This is the general picture where the idea of

Proof-Carrying code [74] was born: in order for the code to be verifiable

by the user, security properties (possibly inferred by static analysis) must

refer to the compiled code (or bytecode) available to the user, so that it is

possible to check the provided proof and verify that the program satisfies

the requirements (e.g., that the code does not require more than a certain

amount of memory, or that it executes in less than a certain amount of

time).

Hence, there is a need to develop analysis and verification tools which

work directly on bytecode programs. Unfortunately, reasoning about rea-

listic (object-oriented) bytecode programs is rather complicated and time

consuming. In addition to the object-oriented features such as inheritance

and virtual method invocations, a bytecode analyzer has to deal with seve-

ral low-level language features like the unstructured control flow, the usage

of the operand stack, etc.

6.3. From Bytecode to Intermediate Repre-

sentations

In the context of analysis of bytecode languages, a usual practice is to

approach the problem into two steps: (1) the bytecode program is trans-

formed into a higher-level intermediate representation (IR), and (2) the

analysis is developed over such IR. This allows abstracting away the parti-

cular bytecode language features and developing the analysis tools on much

simpler representations. As another advantage, this approach also enables

the possibility of reusing the analysis step (step (2) below) for analyzing

different bytecode (and not bytecode) languages, provided they are trans-

104

6.3. FROM BYTECODE TO INTERMEDIATE REPRESENTATIONS

formed into the same IR. In the rest of the thesis, we will use the term

decompilation to refer to the transformation of bytecode to an IR, as it

translates a low-level language to a higher-level one.

Most of the approaches develop ad-hoc, or dedicated, decompilers, i.e.,

decompilers exclusively designed to carry out a particular decompilation.

There is however an alternative to the development of dedicated decompi-

lers which is the so called interpretive decompilation by partial evaluation.

As we will see, it allows decompiling programs by partially evaluating an

interpreter w.r.t. them.

Partial Evaluation. Partial evaluation (PE for short) [56] is a

semantics-based, source to source, program transformation technique,

which allows specializing programs w.r.t. part of their input data. Hen-

ce it is often called program specialization. Consider a program P , and its

input which is split in Istatic and Idynamic. Istatic is the static data, i.e., the

input which is known at compile time, and Idynamic is the rest of the input.

We can see the program P as a mapping of its input into its output as

follows:

P : Istatic × Idynamic −→ O

The partial evaluator transforms the pair 〈P, Istatic〉 into P ′ : Idynamic −→ O

by performing the computations of P that depend on Istatic at compile time.

P ′ is called the residual program and should run more efficiently than the

original program P .

The Interpretive Approach to Compilation. A particularly in-

teresting application of PE, first described in the 1970s by Yoshihiko

Futamura [41], is when the program P to partially evaluated, is an

interpreter for a programming language. This is called the interpretive

approach to compilation or the first Futamura projection. Let us assume

an interpreter, written in a target language LT , for programs written

in a source language LS. Then, if Istatic is a source program, written in

LS, the PE of the interpreter w.r.t. this data/program produces P ′, a

version of the interpreter that only runs that source code, which is written

in the implementation language of the interpreter, LT , and which does

not require the source code to be resupplied. P ′ can be considered as a

105

CHAPTER 6. INTRODUCTION: MOTIVATION AND CONTRIBUTIONS

compiled version of Istatic into the target language LT . The interpretive

compilation thus allows compiling programs written in LS into another

language LT by partially evaluating an interpreter for LS written in LT

w.r.t. them.

In the particular case of bytecode decompilation, the interpretive ap-

proach to compilation allows us to decompile a bytecode program written

in some bytecode language BC, into a higher-level representation, written

in a high-level language HL, by partially evaluating an interpreter of BC

written in HL. This is in principle more generic and flexible, safer and

easier to maintain than the development of a dedicated decompiler for the

same task. These advantages will be discussed later on in Section 7. The

interpretive approach, though very attractive in principle, has not been

widely applied in practice mainly because of the difficulty in finding par-

tial evaluation strategies which produce effective, i.e., quality, and efficient

decompilations.

6.4. Heap Space Analysis for Bytecode

Research about the resource usage of programs goes back to the seminal

work by Wegbreit in 1975 [86], which proposes to analyze the performance

of a program by deriving a mathematical expression which represents its

runtime behavior. The standard approach to perform static cost analysis

is as follows: given an input program, (1) in a first step, the cost analysis

generates an associated cost equation system (CES) from the program,

which captures the relation between the different parts of the code. CESs

are sets of recurrence equations which express the cost of a program in terms

of the size of its input arguments. (2) In the second step, CESs can be often

solved (or approximated) by typically relying on algebraic techniques, thus

obtaining a closed form (e.g., without recurrences) solution or an upper (or

lower) bound for it.

Cost analysis has been intensively studied in the context of declarative

(see, e.g., [79, 80, 44, 15] for functional programming and [34, 35] for logic

programming) and high-level imperative programming languages (mainly

focused on the estimation of worst-case execution times and the design of

cost models [88]). Traditionally, as most static analyses, cost analysis has

106

6.4. HEAP SPACE ANALYSIS FOR BYTECODE

been formulated at the source level. However, as we have seen, there are

situations where we do not have access to the source code, but only to the

compiled code. Recently, [2] has proposed a cost analysis framework for

Java Bytecode which is the formal base of the COSTA system [5].

The COSTA system. COSTA [5] is a research prototype which

performs automatic COSt and Termination Analysis for Java Bytecode

programs. The system receives as input a bytecode program and a cost

model chosen from a selection of resource descriptions, and tries to bound

the resource consumption of the program with respect to the given cost

model. COSTA follows the standard approach to perform cost analysis,

i.e., it first produces a CES, which is an extended form of recurrence

relation. Then, in order to obtain a closed form for such recurrence

relations, which represents an upper bound, COSTA includes a dedicated

solver [9].

An interesting application of cost analysis which poses new challenges is

heap space analysis. It aims at inferring bounds on the heap space consum-

ption of programs. Again, heap analysis is more typically formulated at the

source level (see, e.g., [83, 50, 85, 54] in the context of functional program-

ming and [52, 23] for high-level imperative programming languages). In the

context of bytecode languages, heap space analysis has interesting applica-

tions. For instance, resource bound certification [33, 8, 10, 51, 22] proposes

the use of safety properties involving cost requirements, i.e., that the un-

trusted code adheres to specific bounds on the resource consumption. Also,

heap bounds are useful on embedded systems, e.g., smart cards in which

memory is limited and cannot easily be recovered.

Unfortunately, automatic memory management, also known as garbage

collection (GC), which is increasingly used in bytecode languages like Java

Bytecode and the .NET CIL, makes the problem of predicting the memory

required to run a program very difficult. A first approximation to this pro-

blem is to infer the total memory allocation, i.e., the accumulated amount

of memory allocated by a program ignoring GC. If such amount is available

it is ensured that the program can be executed without exhausting the me-

mory, even if no GC is performed during its execution. However, this is an

overly pessimistic estimation of the actual memory requirement. Recently,

107

CHAPTER 6. INTRODUCTION: MOTIVATION AND CONTRIBUTIONS

[83, 18, 24] have proposed live heap space analysis, which aims at approxi-

mating the size of the live data on the heap during a program’s execution,

thus providing a much tighter estimation. These approaches are however

currently restricted to polynomial bounds and non-recursive methods [18]

or to linear bounds dealing with recursion [24].

6.5. Main Goals and Contributions

The main objective of this thesis is to improve the state-of-the-art in

the transformation and analysis of bytecode languages by: (1) providing

and implementing a formal framework for the automatic decompilation of

(object-oriented) bytecode programs to higher-level intermediate represen-

tations, in particular represented using logic programming (LP), by means

of the interpretive approach to compilation; (2) study the practical appli-

cations that having such IRs based on LP can have; and (3) designing and

implementing a live memory consumption analysis for bytecode languages

with garbage collection. In particular, the main contributions of this thesis

are the following:

1. Interpretive decompilation of bytecode to LP: There have been

several proofs-of-concept showing that the interpretive approach is

feasible [63, 48, 76, 64]. However, there remain important open issues

when it comes to decompile realistic languages. These include scala-

bility, which in turn depends on compositionality, and effectiveness,

i.e., quality of the obtained programs. This thesis presents, to the best

of our knowledge, the first scheme to enable interpretive decompila-

tion of a realistic bytecode language to a high-level representation,

namely, we decompile Java Bytecode to Prolog.

a) Control strategies: One of the main difficulties of interpre-

tive decompilation and of EP in general, is to properly handle

infinite signatures. We have proposed novel techniques which

enable the definition of sophisticated control rules. In particu-

lar, we have introduced the Type-based homeomorphic embedding

relation, a generalization of the original Homeomorphic embed-

ding relation which provides more precise results in the presence

108

6.5. MAIN GOALS AND CONTRIBUTIONS

of infinite signatures. We have shown that this technique, besi-

des being crucial in the specialization of interpreters, improves

state-of-the-art (online) specialization tools. This work was first

proposed in Paper 3 (see Appendix A) and later extended in Pa-

per 4, which was published in the Information Processing Letters

journal.

b) Controlling the polyvariance of EP: Even after enhancing a

partial evaluator with the Type-based homeomorphic embedding,

the decompiled programs we obtain tend to have too many (re-

dundant) specialized versions of some predicates. This issue is

studied in detail in Paper 2, where we propose advanced tech-

niques to control the polyvariance of the PE process, i.e., which

avoid having such redundant specialized versions.

c) How to write the bytecode interpreter: As shown in pre-

vious work on interpretive compilation, the characteristics of the

interpreter can be crucial for obtaining a successful specializa-

tion. We have identified the necessary features in order to obtain

a compositional decompilation scheme.

d) Optimal decompilation: We ensure the quality of the decom-

pilations, both in terms of effectiveness and efficiency, by pro-

viding different optimality criteria. They basically require that

(1) the decompilation does not generate code more than once

for each program point, and (2) there is at most one residual

rule for each block in the bytecode. We propose a decompilation

scheme which is optimal w.r.t. these optimality criteria. This en-

sures scalability of the process and quality decompilations. This

work, together with that described in issue (c), led to Paper 5.

e) Dealing with object-oriented features: We show how our

scheme can be easily adapted to handle object-oriented features.

Namely, we provide the mechanisms to: handle the heap and

its associated instructions, represent classes by means of Prolog

modules, and represent virtual invocations by means of module-

qualified calls.

f) Implementation and experimental evaluation: All the te-

chniques above have been implemented and integrated in a pro-

109

CHAPTER 6. INTRODUCTION: MOTIVATION AND CONTRIBUTIONS

totype decompiler of full sequential Java Bytecode to Prolog, ca-

lled jbc2prolog. Experimental results are reported using our pro-

totype (and other systems). In particular, both the scalability

and efficiency of our approach are assessed using the JOlden sui-

te of benchmarks [55]. The work described in issues (b), (c), (d),

(e) and (f), led to Paper 6 which has been recently published by

the Journal of Information and Software Technology. This paper

thus achieves the objective (1) above.

2. Applications of interpretive decompilation: Using a declarative

language for defining our IR offers important advantages. In particu-

lar, existing advanced analysis and transformation tools for declara-

tive languages (already proven correct and effective) could be then

re-used for the analysis and transformation of bytecode programs

a) Re-using LP analysis tools: Using the CiaoPP system with

our decompiled programs we have been able to prove some non-

trivial properties of Java Bytecode programs such as termina-

tion and run-time error-freeness, as well as, for some simple

programs, to infer bounds on their resource consumption. This

work is presented in Paper 1.

b) Test data generation: A standard approach to the automatic

generation of test data is to perform symbolic execution of the

program [29, 57], where the contents of variables are expressions

rather than concrete values. The fact that our decompiled pro-

grams are executable Prolog programs allows us to directly rely

on available techniques for CLP (where backtracking is inherent

to the language) to carry out such symbolic execution. We have

therefore developed a novel framework for test-case generation

of bytecode by relying on our decompiled (C)LP programs. In-

terestingly, we show that the generation of test-cases in CLP,

can be seen as another PE, which allows us obtaining not only

test-cases but test-case generators. This work led to Paper 7. As

a tangential contribution, we have applied this idea to automa-

tically generate test-cases for Prolog. A preliminary study in this

direction is found in Paper 8.

110

6.6. ORGANIZATION OF THIS THESIS

3. Heap and Live heap space analysis:

a) Total heap space analysis: We have first developed a novel

application of the cost analysis framework of [3] to infer upper

bounds on the heap space consumption of sequential Java Byte-

code programs. To do that, we have just provided a cost model

that defines the cost of memory allocation instructions in terms

of the number of heap (memory) units they consume. We can

then generate heap space cost relations which are directly used

to infer upper bounds on the heap space usage of Java Bytecode

programs.

b) Live heap space analysis for languages with garbage co-

llection: In presence of garbage collection, the proposed ap-

proach is a too pessimistic estimation of the actual memory re-

quirement. This thesis presents a general approach for inferring

the peak heap consumption of a bytecode program’s execution,

i.e., the maximum of the live heap usage along its execution

which, unlike previous works, is not restricted to any comple-

xity class.

c) Implementation and experimental evaluation: The analy-

ses have been implemented and integrated in the COSTA sys-

tem. We experimentally evaluate them with a series of example

applications which make intensive use of the heap, including the

JOlden benchmark suite [55]. Preliminary results demonstrate

that our system obtains reasonably accurate live heap space up-

per bounds in a fully automatic way. All this work on heap space

analysis led to papers 9 and 10, thus achieving objective (3) abo-

ve.

6.6. Organization of this Thesis

This thesis is a “thesis by articles” and therefore it consists of an in-

troduction describing its main objectives, contributions and conclusions,

which is presented in chapters 6, 7, 8, 9 and 10, and, the set of papers

which led to the thesis presented as they appear on the corresponding for-

mal proceedings as an appendix.

111

CHAPTER 6. INTRODUCTION: MOTIVATION AND CONTRIBUTIONS

The rest of the thesis is thus organized as follows: Chapter 7 overviews

the work covering the contribution (1) above. In particular, Section 7.1 pro-

vides some background on PE of logic programs, then the challenges that

specializing a bytecode interpreter are presented in Section 7.2, Section 7.3

introduces the Type-based homeomorphic embedding relation, Sections 7.4

and 7.5 summarize the technical details of our modular and optimal de-

compilation schemes, Section 7.6 summarizes the implementation and ex-

perimental evaluation, and finally Section 7.7 overviews related work on

(interpretive) decompilation.

Chapter 8 overviews our work on the applications of using our interpre-

tive decompilation technique to analyze bytecode programs (Section 8.1),

and to perform test data generation (Section 8.2). Then, Chapter 9 intro-

duces our work on heap space analysis (Section 9) and its extension to

consider the effect of garbage collection (Section 9.2), and discusses rela-

ted work (Section 9.3). Finally, Chapter 10 presents the conclusions of the

thesis and discusses ongoing and future work.

The technical details are presented in the papers which led to this thesis,

which can be found in Appendix A.

112

Chapter 7

Interpretive Decompilation of

Bytecode to LP

Decompiling bytecode languages to an intermediate representation has

become a usual practice nowadays within the development of analyzers, ve-

rifiers, model checkers, etc. For instance, in the context of mobile code, as

the source code is not available, decompilation facilitates the reuse of exis-

ting analysis and model checking tools. In general, high-level intermediate

representations allow abstracting away the particular language features and

developing the tools on simpler representations. In particular, Java Byte-

code is decompiled to a rule-based representation in [2], to clause-based

programs in [70], to a three-address code representation in Soot [84] and

to the typed procedural language BoogiePL in [37]. Also, analysis of Java

programs is formalized and performed using Datalog in [87] and in [48] PIC

assembly is transformed into logic programs. This shows that the rule-based

representations used in declarative programming in general—and in LP in

particular—provide a convenient formalism to define such intermediate re-

presentations. For instance, as it can be seen in [2, 70, 48], the operand

stack used in a bytecode language can be represented by means of explicit

logic variables and its unstructured control flow can be transformed into

recursion.

The resulting intermediate representation greatly simplifies the develop-

ment of the above tools for modern languages and, interestingly, existing

advanced tools developed for declarative programs (already proven correct

and effective) can be directly applied on it.

113

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

All above cited approaches (except [48]) develop ad-hoc, or dedicated,

decompilers to carry out the particular decompilations. As we pointed out

in Section 6.3, an appealing alternative to the development of dedicated

decompilers is interpretive decompilation by partial evaluation. The ad-

vantages of interpretive (de)compilation w.r.t. dedicated (de)compilers are

well-known and discussed in the PE literature. Very briefly, they include:

1. Flexibility : it is easier to modify the interpreter in order to tune the

decompilation (e.g., observe new properties of interest). As an interes-

ting example, in Paper 1, a Java Bytecode interpreter is instrumented

with an additional argument which computes the trace of bytecode

instructions in order to collect the computation history. A program

decompiled by using this interpreter contains an additional argument

with the execution trace at the level of Java Bytecode. This trace will

allow observing a good number of interesting properties about the

program, e.g., runtime error-freeness can be ensured when the trace

does not contain instructions which issue any kind of run-time error.

2. Easier to trust : it is more difficult to prove (or trust) that ad-hoc

decompilers preserve the program semantics. For example, the for-

mal specification chosen for defining our bytecode interpreter is Bi-

colano [78], which is written with the Coq Proof Assistant [11]. This

allows checking that the specification is consistent and also proving

properties on the behavior of some programs.

3. Easier to maintain: new changes in the language semantics can be

easily reflected in the interpreter. This will become apparent later

when we see that defining a bytecode interpreter in Prolog is a rather

easy task and, hence, also maintaining it.

The challenge now is in defining a practical, scalable scheme to interpretive

decompilation which achieves quality decompiled programs and, provided

this is feasible, we will be able to take advantage of the above features.

There have been several proofs-of-concept of interpretive

(de)compilation (e.g., [48, 63]), but there remain interesting open is-

sues when it comes to assess its power and/or limitations to decompile a

real language. Such issues are enumerated in Figure 7.1 to facilitate further

referencing. This thesis answers these questions positively by proposing

114

a) does the approach scale?

b) do decompiled programs preserve the structure of the original ones?

c) is the “quality” of decompiled programs comparable to that obtained

by dedicated decompilers?

Figura 7.1: Open Issues of Interpretive Decompilation

a modular decompilation scheme which can be steered to control the

structure of decompiled code and ensure quality decompilations which

preserve the original program’s structure.

The rest of the chapter is organized as follows:

We first provide in Section 7.1 an informal background on PE of

logic programs in order to enable the reader to understand the details

explained throughout the chapter. A more formal background is given

in Section 2 of Paper 6.

Section 7.2 introduces the challenges behind the specialization a byte-

code interpreter through a representative example.

Section 7.3.3 informally introduces the Type-based homeomorphic em-

bedding, an extension of the original homeomorphic embedding rela-

tion which, by taking information about the behavior of the compu-

tation into account, provides more precise results in the presence of

infinite signatures. The formal details and an experimental evaluation

is presented in Papers 4 and 3.

Sections 7.4 and 7.5 introduce the necessary ingredients to develop a

modular and optimal decompilation scheme addressing issues a), b)

and c). The notion of optimality is first defined by means of a series

of optimality criteria. Then, the problems of non-modular decompi-

lation are presented and the components needed to enable a modular

scheme are identified. This includes how to write an interpreter and

how to control an online partial evaluator in order to preserve the

structure of the original program w.r.t. method invocations. We fi-

nally introduce an interpretive decompilation scheme which answers

115

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

issues (a), (b) and (c) by producing decompiled programs whose qua-

lity is equivalent to that of dedicated decompilers. This requires a

block-level decompilation scheme which avoids code duplication and

code re-evaluation.

Section 7.6 summarizes our experimental results on a prototype im-

plementation of a decompiler of Java bytecode to Prolog which incor-

porates the above techniques, and demonstrates its scalability and

efficiency on an set of realistic Java Bytecode programs.

Finally, Section 7.7 discusses related work on interpretive decompila-

tion of bytecode languages.

For the sake of concreteness, our interpretive decompilation scheme is

formalized in the context of PE of logic programs but the ideas we propose

for enabling the practicality of the approach are also of interest for the

interpretive (de)compilation of any pair of source and target languages.

7.1. Basics of Partial Evaluation of Logic

Programs

We assume familiarity with basic notions of logic programming [68].

Executing a logic program P for an atom A consists in building a so-called

SLD tree for P ∪ {A} and then extracting the computed answer substitu-

tions from every non-failing branch of the tree. Partial evaluation builds

upon the execution approach of logic programs with two main differences:

In order to guarantee termination of the unfolding process, when buil-

ding the SLD-trees, it is possible to choose not to further unfold a

goal, and rather leave a leaf in the tree with a non-empty, possibly

non-failing, goal. The resulting SLD tree is called a partial SLD tree.

Note that even if the SLD trees for all possible queries are finite, the

SLD tree to be built during partial evaluation may be infinite. The

reason for this is that since dynamic values are not known at specia-

lization time, the specialization SLD tree can have more branches (in

particular, infinite branches) than the actual SLD tree at run-time.

116

7.1. BASICS OF PARTIAL EVALUATION OF LOGIC PROGRAMS

1: function EP (P,A, S)

2: S0 := S; i := 0;

3: repeat

4: Lpe := unfold(Si, P,A);

5: Si+1 := abstract(Si, L
pe,A);

6: i := i + 1;

7: until Si = Si−1 % (modulo renaming)

8: return codegen(Lpe, unfold);

Figura 7.2: A generic PE algorithm for logic programs

Which atom to select from each resolvent and when to stop unfolding

is determined by the unfolding rule.

The partial evaluator may have to build several SLD-trees to ensure

that all atoms left in the leaves are “covered” by the root of some tree

(this is known as the closedness condition of EP [67]). The so-called

abstraction operator performs “generalizations” on the atoms that

have to be partially evaluated in order to avoid computing partial SLD

trees for an infinite number of atoms. When all atoms are covered,

then there is no need to build more trees and the process finishes.

The essence of most algorithms for partial evaluation of logic programs

(see e.g. [42]) can be viewed in the algorithm shown in Figure 7.2, which is

parametric w.r.t. the unfolding rule, unfold, and the abstraction operator,

abstract. EP starts from a program P , a (possibly empty) set of annotations

A and an initial set of calls S. At each iteration, the so-called local control

is performed by the unfolding rule unfold (Line 4), which takes the current

set of atoms Si, the program and the annotations and constructs a partial

SLD tree for each call in Si. In the global control, which is performed by

the abstraction operator abstract, when some calls in the leaves of the trees

are not properly covered, the operator abstract adds them to the new set of

atoms to be partially evaluated in a proper “generalized” form such that

termination is ensured (i.e., the condition Si = Si−1 is reached).

A partial evaluation of P w.r.t. S is then systematically extracted from

the resulting set of calls Lpe in the final phase, codegen in L8. The notion

of resultant is used to generate a program rule associated to each root-

117

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

to-leaf derivation of the SLD-trees for the final set of atoms Lpe. Given

an SLD derivation of P ∪ {A} with A ∈ Lpe ending in B and θ being

the composition of the mgu’s in the derivation steps, the rule θ(A) : −B

is called the resultant of the derivation. A PE is defined as the set of

resultants (clauses) associated to the derivations of the constructed partial

SLD trees for all P ∪ Lpe. The resulting program is often referred to as

the specialized program or residual program. A more formal background is

given in Section 2 of Paper 6.

7.1.1. Online vs. Offline Partial Evaluation

It is well-known that both the quality of the specialized programs and

the time required for the PE process greatly vary with the control strate-

gies used. Traditionally, two approaches to PE have been considered, online

and offline PE. In online PE, all control decisions are taken on the fly du-

ring the specialization phase by keeping track of the specialization history.

In the offline approach, all control decisions are taken before the proper

specialization phase. These control decisions are based on abstract descrip-

tions of the data instead of the actual data. The control strategy is usually

represented as program annotations which are the sole decision criteria for

control of the partial evaluator. For instance, in the local control, an anno-

tation can explicitly indicate that an atom should not be unfolded. In the

global control, annotations typically specify for each call which arguments

have to be generalized away (i.e. replaced by variables). Such annotations

are in some partial evaluators automatically generated by a binding-time

analysis and in other partial evaluators they are manually provided by the

user, either in part or in full.

Under this classification, the PE algorithm we propose can be conside-

red a generic or a hybrid approach since the A annotations can provide

information to the control operators, as in offline PE, and the algorithm

can include control rules based on the actual specialization history, as in

online PE. The advantages of the offline approach are that, once all control

annotations are available, PE is quite simple and efficient. On the other

hand, online PE, though less efficient, has a strictly more powerful con-

trol strategy since control decisions are based on actual data instead of

abstract descriptions of data. Therefore, though all offline PEs can be re-

118

7.2. CHALLENGES IN THE SPECIALIZATION OF BC INTERPRETERS

plicated using online techniques, many online PEs cannot be reproduced

using offline techniques.

In this work we are interested in investigating how far we can go with

the more powerful but less efficient online PE approach. The motivation

for this is that this way we may obtain decompilations of higher quality

than those achievable using offline PE. Thus, our challenges are both in

terms of quality of the decompiled programs and in terms of efficiency of

the decompilation process. As we will see later, many of the lessons learned

in this thesis are of interest both to the online and offline approaches to

the PE of interpreters.

7.2. Challenges in the Specialization of

Bytecode Interpreters

This section illustrates the challenges which appear in the specialization

of a bytecode interpreter by means of an example. Fig. 7.3 shows a fragment

of a bytecode interpreter implemented in Prolog. We assume that the code

for every method in the bytecode program is represented as a set of facts

bytecode/3 such that, for every pair pci :bci in the code for method m, we

have a fact bytecode(m,pci,bci). The state carried around by the interpre-

ter is of the form st(Fr,FrStack) where Fr represents the current frame

(environment) and FrStack the stack of frames (call-stack) implemented as

a list. Frames are of the form fr(M,PC,OStack,LocalV), where M represents

the current method, PC the program counter, OStack the operand stack and

LocalV the list of local variables. Predicate main/3, given the method to

be interpreted Method and its input method arguments InArgs, first builds

the initial state by means of predicate build s0/3 and then calls predicate

execute/2, returning Res, which is the top of the operand stack at the end

of the computation. In turn, execute/2 calls predicate step/3, which pro-

duces S’, the state after executing the bytecode, and then calls predicate

execute/2 recursively with S’ until we reach a return instruction with

the empty stack. For brevity, we only show the definition of step/3 for a

selected set of instructions and omit the code of some auxiliary predicates.

Namely build s0/3, which was explained above, next/3, which produces

the next program counter given the current one, and split OS/4, which

119

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

main(Method,InArgs,Res) :-

build_s0(Method,InArgs,S0),

execute(S0,Sf),

Sf = st(fr(_,_,[Res|_],_),_)).

execute(S,S) :-

S = st(fr(M,PC,_,_),[]),

bytecode(M,PC,return).

execute(S,Sf) :-

S = st(fr(M,PC,_,_),_),

bytecode(M,PC,Inst),

step(Inst,S,S’),

execute(S’,Sf).

step(goto(PC),S,S’) :-

S = st(fr(M,_,OS,LV),FrS),

S’ = st(fr(M,PC,OS,LV),FrS).

step(push(X),S,S’) :-

S = st(fr(M,PC,OS,L),FrS),

next(M,PC,PC’),

S’ = st(fr(M,PC’,[X|OS],L),FrS).

...

step(invoke(M’),S,S’) :-

S = st(fr(M,PC,OS,LV),FrS),

split_OS(M’,OS,Args,OS’’),

build_s0(M’,Args,

st(fr(M’,PC’,OS’,LV’),_)),

S’ = st(fr(M’,PC’,OS’,LV’),

[fr(M,PC,OS’’,LV)|FrS]).

step(return,S,S’) :-

S = st(fr(_,_,[RV|_],_),

[fr(M,PC,OS,LV)|FrS]),

next(M,PC,PC’),

S’ = st(fr(M,PC’,[RV|OS],LV),FrS).

Figura 7.3: Fragment of a bytecode interpreter

splits the current operand stack into the parameters list to be used in the

called method and the rest.

Figure 7.4 depicts the bytecode program that we will use as our working

example. On the top of the figure we depict the Java source code for clarity.

Note that the decompiler works directly on the bytecode which is shown at

the bottom. Our working example consists of a set of methods that carry

out different arithmetic operations. Method gcd computes the greatest-

common divisor, abs the absolute value and fact the factorial recursively.

Method count has no particular meaning, it just increments a counter

initialized to 0 until its value reaches the value of the given argument.

In order to achieve an effective decompilation, one of the crucial re-

quirements is to have available control strategies (i.e., unfold and abstract

operators) which are powerful enough to remove the interpreter overhead.

For this reason, our first experiments in Paper 1 were performed using “ag-

gressive” control strategies based on homeomorphic embedding [58, 62]. In

local control, by aggressiveness we mean unfolding rules which compute

derivations as long as possible provided there are no termination problems.

120

7.2. CHALLENGES IN THE SPECIALIZATION OF BC INTERPRETERS

int count(int n){

int i = 0;

while (i < n) i++;

return i;}

int gcd(int x,int y){

int res;

while (y != 0){

res = x%y; x = y;

y = res;}

return abs(x);}

int abs(int x){

if (x < 0) return -x;

else return x;

}

int fact(int x){

if (x == 0)

return 1;

else

return x*fact(x-1);

}

Method count

0:push(0)

1:store(1)

2:load(1)

3:load(0)

4:ifge(3)

5:inc(1,1)

6:goto(2)

7:load(1)

8:return

Method gcd

0:load(1)

1:if0eq(11)

2:load(0)

3:load(1)

4:rem

5:store(2)

6:load(1)

7:store(0)

8:load(2)

9:store(1)

10:goto 0

11:load(0)

12:invoke(abs)

13:return

Method abs

0:load(0)

1:if0ge(5)

2:load(0)

3:neg

4:return

5:load(0)

6:return

Method fact

0:load(0)

1:if0ne(4)

2:push(1)

3:return

4:load(0)

5:load(0)

6:push(1)

7:sub

8:invoke(fact)

9:mul

10:return

Figura 7.4: Source code and bytecode for working example

In global control, it denotes abstraction operators which generalize in as

few situations as possible without endangering termination.

Figure 7.5 depicts the decompiled program we obtain using the state-

of-the-art partial evaluator available in the CiaoPP system [49]. For this

preliminary experiments the homeomorphic embedding was used both for

the local and global control levels. By looking at the code we observe the

following:

1. The partial evaluator has not been able to successfully decompile the

121

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

main(count,[N],A) :-

% out of memory error

main(gcd,[A,0],A) :- A>=0.

main(gcd,[B,0],A) :-

B<0, A is -B.

main(gcd,[B,C],A) :-

C\=0, D is B rem C,

execute_1(C,D,A).

execute_1(A,0,A) :- A>=0.

execute_1(A,0,C) :- A<0, C is -A.

execute_1(A,B,G) :-

B\=0, I is A rem B,

execute_1(B,I,G).

main(abs,[A],A) :- A>=0.

main(abs,[B],A) :- B<0, A is -B.

main(fact,[N],A) :- ...% Full interpreter

Figura 7.5: Decompiled code for working example. First attempt.

count method. It runs out of memory because there are termination

problems both at the local and at the global control. The reason for

this is that the control rules based on the homeomorphic embedding

do not ensure termination of PE in programs which can potentially

generate infinite values, as it is the case of the bytecode interpreter

(in particular because of the is/3 predicate).

2. The method compositionality of the original program has been lost

in the decompiled program. This can be seen by looking at the de-

compiled code of the gcd method. Note that it does not call abs but

instead it has inlined its code. Though this might be seen as positive

from the point of view of the specialization, the consequences can

highly degrade the efficiency and quality of the process and makes

impossible to scale up when considering realistic bytecode programs

with calls to libraries.

3. The decompiled code we obtain for the fact method basically con-

tains the full interpreter and is not shown in the figure due to space

limitations. The problem was first detected in [43] and arises when

the method to be decompiled is recursive. As we will see, this problem

(and also its solution) is very related to the composisionality problem

explained in the previous item.

4. If we look at the code of the main(gcd,...) and execute/3 pre-

dicates, we can see that there are code duplications. Even more, the

122

7.3. CHALLENGE I: HANDLING INFINITE SIGNATURES

partial evaluator has produced such duplications because some part of

the bytecode program has been re-evaluated during EP. Our experi-

mental evaluation demonstrates that having or not these duplications

(re-evaluations) makes the difference between being or not being able

to scale up in practice.

The solutions to the above problems are summarized in the following

three challenges:

Challenge I. Handling infinite signatures in PE: We first re-

view existing solutions identifying their flaws and then introduce the

type-based homeomorphic embedding. This issue is further discussed

in Section 7.3 and elaborated in more detail in Papers 3 and 4.

Challenge II: A modular decompilation scheme. Even after

achieving Challenge I, we will see that it is a necessity to design a

modular decompilation scheme which preserves the method compo-

sitionality of the original programs and, besides, solves the problem

with recursive programs. Such a decompilation scheme is introduced

in Section 7.4 and further studied in detail in Paper 6.

Challenge III: Optimal decompilation. Preliminary experiments

performed using the modular decompilation scheme with realistic pro-

grams show that it is yet not possible to successfully scale up. We the-

refore introduce an optimal decompilation scheme which ensures that

the decompilation times and decompiled program sizes grow linearly

w.r.t. to the size of the input programs by avoiding code duplications

and re-evaluations. This issue is introduced in Section 7.5 and further

studied in depth in Paper 6.

7.3. Challenge I: Handling Infinite Signatu-

res

7.3.1. The Homemorphic Embedding

The homeomorphic embedding (HEm) relation [58, 61, 62] has become

very popular to ensure online termination of symbolic transformation and

123

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

specialization methods and it is essential to obtain powerful optimizations,

for instance, in the context of online PE. Intuitively, HEm is a structural

ordering under which an expression t1 embeds expression t2, written as

t2E t1, if t2 can be obtained from t1 by deleting some operators, e.g., s(s(U+

W)×(U+s(V))) embeds s(U× (U + V)).

The HEm relation can be used to guarantee termination because, assu-

ming that the set of constants and functors is finite, every infinite sequen-

ce of expressions t1, t2, . . . , contains at least a pair of elements ti and tj
with i < j s.t. tiE tj. Therefore, when iteratively computing a sequence

t1, t2, . . . , tn, finiteness of the sequence can be guaranteed by using HEm

as a “whistle”. Whenever a new expression tn+1 is to be added to the se-

quence, we first check whether ti 6E tn+1 for all i s.t. 1 ≤ i ≤ n. If that is

the case, finiteness is guaranteed and computation can proceed. Otherwise,

HEm is not capable of guaranteeing finiteness and the computation has to

be stopped. The intuition is that computation can proceed as long as the

new expression is not larger than any of the previously computed ones sin-

ce that is a sign of potential non-termination. The success of HEm is due

to the fact that sequences can usually grow considerably large before the

whistle blows, when compared to other online approaches for guaranteeing

termination.

While HEm has been proved very powerful for symbolic computations,

some difficulties remain in the presence of infinite signatures such as the

numbers. In the case of logic programs, infinite signatures appear as soon as

certain Prolog built-ins such is/2, functor/3 and name/2 are used. HEm

relations over infinite signatures have been defined (e.g. [61, 6]), but they

tend to be too conservative in practice (“whistling” too early).

7.3.2. A Challenging Example

Consider the count method which appears in the left hand side of Fi-

gure 7.4. It can be seen that count receives an integer and executes a loop

where a counter initialized to “0” (in bytecodes 0 and 1) is incremented

by one at each iteration (bytecode 5) until the counter reaches the value of

the input parameter (checking the condition comprises bytecodes 2, 3 and

4). The method returns the value of the counter in bytecodes 7 and 8. In

order to decompile the count method, we partially evaluate the interpreter

124

7.3. CHALLENGE I: HANDLING INFINITE SIGNATURES

main(N, I)

��

execute(st(fr(count, 0, [], [N, 0]), []), Sf)

��

execute(st(fr(count, 1, [0], [N, 0]), []), Sf)

��_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

execute(st(fr(count,2, [], [N,0]), []),Sf)(1)

��

execute(st(fr(count, 4, [N, 0], [N, 0]), []), Sf)
{0≥N}

ssggggggg {0<N}
++WWWWWWW

execute(st(fr(count, 8, [0], [N, 0]), []), Sf)
{I/0}

��

execute(st(fr(count, 6, [], [N, 1]), []), Sf)

��

true
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

execute(st(fr(count,2, [], [N,1]), []),Sf)(2)

(1) ET (2), (1) 6E∗

S
(2)��

∞ (with E)

main(count,[N],0) :- 0>=N.

main(count,[N],I) :- 0<N,

execute(N,1,I).

execute(N,I,I) :- I>=N.

execute(N,A,I) :- A<N, A’ is A+1,

execute(N,A’,I).

Figura 7.6: Partial unfolding SLD tree and residual code of working example

in Figure 7.3 w.r.t. the count bytecode method by specializing the atom

main(count,[N],I), where N is the input parameter and I represents the

returned value (i.e., the top of the stack at the end of the computation).

In Figure 7.6, we depict (a reduced version of) one of the SLD trees

that leads to an effective decompilation of the count method and that we

will refer to below. For simplicity, apart from the entry atom main/3, we

only show atoms for execute/2, as it is the only recursive predicate in the

program. Thus, each arrow in the tree involves the application of several

unfolding steps. Note that some of the statements within the body of each

step operation can remain residual when they involve data which is not

known at specialization time. The computation rule used in the unfolding

operator is able to residualize calls which are not sufficiently instantiated

and select non-leftmost atoms in a safe way [7], in particular, further calls

to execute can be selected. We represent such residual calls as labels in

the arrows of the tree.

125

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

Using the Original HE

Let us first consider an online partial evaluator which uses HEm to

control termination both at the local and global control levels. As it can

be seen in the figure, the PC value “2” corresponds to the loop entry. By

applying HEm, the evaluation contains a subsequence of atoms of the form:

execute(st(fr(count, 2, [], [N, 0]), []), Sf), execute(st(fr(count, 2, [], [N, 1]), []),

Sf), execute(st(fr(count, 2, [], [N, 2]), []), Sf), . . . marked within dashed frames

in the figure, which correspond to consecutive iterations of the loop in

which the control returns to the loop head (PC value 2 in the first position

of the state) with a value for the loop counter (local variable at the second

position in the resulting state) increased by one. This sequence can grow

infinitely, as the HEm does not flag it as potentially dangerous, which is

marked by “∞ (with E)” in the figure. This is because the interpreter

uses Prolog’s arithmetic (i.e., the is/2 predicate), which breaks the finite

signature property featured by pure logic programs.

In order to get a quality decompilation, we need to filter out the va-

lue of the counter (local variable 1) but not that of the PC. As shown

in the figure, this requires stopping the derivation when we hit the atom

execute(st(fr(count, 2, [], [N, 1]), []), Sf) (marked as (1) ET (2)) and generali-

ze it w.r.t. the above atom within a dashed frame, resulting in execute(st(

fr(count, 2, [], [N, X]), []), Sf).

Recovering Termination: Embedding with Number Filtering

In programs which contain Prolog arithmetic but do not ge-

nerate an infinite number of functors via functor/3, =../2, etc.,

a relatively straightforward solution in order to recover termina-

tion is to use the Enum relation, which is an adaptation of HEm

which filters out numeric values, i.e., any number embeds any

other number. The atom execute(st(fr(count, 2, [], [N, 1]), []), Sf) em-

beds execute(st(fr(count, 2, [], [N, 0]), []), Sf) under Enum and therefore

we avoid non-termination. Unfortunately, this modification to HEm,

is far too conservative, and leads to excessive precision loss. For

instance, in the specialization of main(count, [N], I), the first two

atoms for execute/2 are execute(st(fr(count, 0, [], [N, 0]), []), Sf) and

execute(st(fr(count, 1, [0], [N, 0]), []), Sf). By using Enum, the whistle

126

7.3. CHALLENGE I: HANDLING INFINITE SIGNATURES

blows at this point and unfolding has to stop. Furthermore,

the latter atom is generalized at the global control level into

execute(st(fr(count, X, Y, [N, 0]), []), Sf) before proceeding with the specia-

lization. This turns out not to be acceptable for the specialization of our

interpreter, since we lose track of which the next instruction to execute

is—which prevents us from eliminating the interpretation layer—and in

many cases the residual program ends up containing the whole original

interpreter.

Increasing Accuracy: Static Symbols in the Program

A simple syntactic way of increasing the accuracy while preserving ter-

mination, as proposed in [61], consists in considering two sets of symbols:

those which appear explicitly in the program and goal, which is obviously

finite, and another infinite set which contains all other symbols. In the fo-

llowing, this relation is denoted as E∗
S. When comparing two terms we keep

those symbols which belong to the finite set and filter out all other ones.

Under this relation, the atom execute(st(fr(count, 1, [0], [N, 0]), []), Sf) does

not embed the atom execute(st(fr(count, 0, [], [N, 0]), []), Sf) in the figure, as

the numbers 0 and 1 are different static symbols which occur in the pro-

gram. Hence, we are not forced to generalize them and we can keep the PC

value.

Unfortunately, the E∗
S relation turns out not to be optimal in our

case either since execute(st(fr(count, 2, [], [N, 1]), []), Sf) does not embed

execute(st(fr(count, 2, [], [N, 0]), []), Sf). This means that unfolding proceeds

with a second iteration of the loop. The process is guaranteed to termi-

nate, we will unfold at most as many iterations of the loop as distinct

numbers appear in the program. However, we are not able to achieve

the quality decompilation which appears at the bottom of Figure 7.6.

For obtaining such good decompilation, we need to generalize the loop

counter, i.e., the atom execute(st(fr(count, 2, [], [N, 1]), []), Sf) has to embed

execute(st(fr(count, 2, [], [N, 0]), []), Sf). Intuitively, the reason why this re-

lation does not behave optimally is because many symbols which appear

explicitly in the program for one argument (in our case the PC counter)

should not affect the set of symbols which we should consider as static for

other arguments (the list of local variables).

In conclusion, this example suggests that embeddings that take context

127

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

information into account are needed: a context-sensitive embedding should

handle in a different way the PC values and the numeric values in program

variables such as the loop counter.

7.3.3. Type-based Homeomorphic Embedding

In the presence of infinite signatures, a general method of defining ho-

meomorphic embedding relations exists; an extended homeomorphic embed-

ding relation is defined in [61] based on previous results by Kruskal [58] and

by Dershowitz [38]. This solution defines a family of embedding relations,

where a subsidiary ordering on function symbols plays an essential role.

However, we argue that this does not really solve the practical problem of

finding an effective embedding relation, since there is no automated me-

chanism for finding the “right” ordering relation on the function symbols

in the signature.

In this thesis, we propose the type-based homeomorphic embedding (Tb-

HEm for short), a relation which improves HEm by making use of additional

information provided in the form of types. We outline how this approach

can be seen as a way of generating instances of extended HEm as defined

by Leuschel, including the possibility of taking into account the program

semantics. The types required for guiding TbHEm can be provided manua-

lly or, interestingly, be automatically inferred by program analysis, as we

discuss in Paper 3.

A starting point of TbHEm is the observation that, even if an expres-

sion is defined over an infinite signature, it might only take a finite set

of values over such domain for each computation. To perform such a dis-

tinction our typed relation is defined on types which are structured into

a (possibly empty) finite part and a (possibly empty) infinite partition.

Intuitively, TbHEm allows expanding sequences as long as, whenever we

compare sub-terms from an infinite type, the concrete values which appear

in the expression remain within the finite part of the type.

Using the TbHEm to control the PE of the bytecode interpreter

In the case of our bytecode interpreter, the PC argument can be defined

by a structured type such that the bounded interval in which it ranges

constitutes its finite partition and the remaining integers form its infinite

128

7.3. CHALLENGE I: HANDLING INFINITE SIGNATURES

part. This way, the TbHEm will not generalize the PC as long as its value

remains within the bounded interval.

In order to infer such type, let us rely on existing analysis techniques,

namely on the inference of well-typings described by Bruynooghe et al.

[20]1. The following type τPC for the program counter argument is inferred

for the interpreter of Figure 7.3, together with the particular bytecode

program of Figure 7.4:

τPC --> -4; 0; 1; 2; 3; 4; 5; 6; 7; 8; num

Type τPC can be naturally interpreted as consisting of a finite part (the

named constants) and an infinite part (the numbers other than the named

constants). In other words, the partition F of the rule is {−4, 0, 1, 2, . . . , 8}

and I = num \ F . Using the rule structured in this way, TbHEm en-

sures that the program counter is never abstracted away during par-

tial evaluation, so long as its value remains in the expected range (the

named constants). The atom execute(st(fr(count, 1, [0], [N, 0]), []), Sf) does

not embed execute(st(fr(count, 0, [], [N, 0]), []), Sf) by using the type defi-

nition above, thus, the derivation can proceed. This avoids the need for

generalizing the PC what would prevent us from having a quality spe-

cialization (decompilation) as explained above. The derivation will eit-

her eventually end or the PC value will be repeated due to a back-

wards jump in the code (loops). In this case, the TbHEm, also written

ET , will flag the relevant atom as dangerous, e.g., execute(st(fr(count, 2,

[], [N, 0]), []), Sf) ET execute(st(fr(count, 2, [], [N, 1]), []), Sf), as can be seen in

Figure 7.6.

The decompiled program that we obtain using the inferred typings

and combined with TbHEm is shown at the bottom of Figure 7.6. We can

observe that the decompilation is optimal2 in the sense that the inter-

pretation layer has been completely removed and there is no superfluous

residual code.

Besides the inference of well-typings we saw above, Paper 3 also outlines

how analysis of numeric bounds can be used to infer useful information for

TbHEm. Such analysis makes over-approximations of the set of values that

1Available on-line at http://saft.ruc.dk/Tattoo/
2We will see later that this can be further improved

129

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

main(count,[N],0) :- 0>=N.

main(count,[N],I) :-

0<N, execute_2(N,1,I).

execute_2(N,I,I) :- I>=N.

execute_2(N,A,I) :-

A<N, A’ is A+1,

execute_2(N,A’,I).

main(abs,[A],A) :- A>=0.

main(abs,[B],A) :- B<0, A is -B.

main(fact,[N],A) :- ...% full int.

main(gcd,[A,0],A) :- A>=0.

main(gcd,[B,0],A) :-

B<0, A is -B.

main(gcd,[B,C],A) :-

C\=0, D is B rem C,

execute_1(C,D,A).

execute_1(A,0,A) :- A>=0.

execute_1(A,0,C) :- A<0, C is -A.

execute_1(A,B,G) :-

B\=0, I is A rem B,

execute_1(B,I,G).

Figura 7.7: Decompiled code for working example after overcoming Chall. I

the program arguments can have. Intuitively, when we can prove that such

set of values is bounded, then we know that the infinite partition of the type

is empty and, hence, we can safely apply traditional HEm (and improve the

effectiveness of PE).

Note that, determining the exact set of symbols that can appear at run-

time at a specific program point, and in particular determining whether

the set is finite, is closely related to termination detection and is thus

undecidable. However, the better the derived types are, the more aggressive

partial evaluation can be without risking non-termination. If the derived

types have finite components that are too small, then over-generalization

is likely to result; if they are too large, then specialization might be over-

aggressive, producing unnecessary versions.

7.4. Challenge II: Modular Decompilation

Once we have overcome the problem of handling infinite signatures,

the class of bytecode programs which can be successfully decompiled is

significantly wider. Another issue, which is not further discussed in this

introduction, is that using the classical online abstraction operator which

is simply based on the original HEm, or even enhancing it by using the

TbHEm, the decompiled programs we obtain tend to have too many (re-

130

7.4. CHALLENGE II: MODULAR DECOMPILATION

dundant) specialized versions of some predicates. This is studied in detail in

Paper 2 where we propose an advanced abstraction operator which is able

to control the polyvariance of the PE process, i.e., which is able to avoid

having such redundant specialized versions. As it is shown in Paper 2, this

allows obtaining better decompiled programs, in a more efficient way, which

also widens a bit more the class of programs which we can successfully de-

compile. Nevertheless, even after enhancing the partial evaluator so that it

integrates both the TbHEm and such advanced abstraction operator, the

current scheme can still be rather unsatisfactory with realistic programs,

since the compositionality of the original programs as regards method calls

is lost.

Let us consider again our bytecode example in Figure 7.4. The de-

compiled code we obtain using the enhanced partial evaluator is shown in

Figure 7.7. It can be noted that it is the same as the one in Figure 7.5 ex-

cept for the method count for which the code at the bottom of Figure 7.6

is now obtained. Note that, this example is not complex enough to expose

the problem of polyvariance that the advanced abstraction operator solves.

We refer the reader again to Paper 2 where a representative example is

presented.

We now identify four limitations, which we name as (L1). . . (L4), of

the current decompilation (from now on non-modular decompilation). It is

important to note that such limitations, and the way to avoid them which

we introduce later, are also relevant to the case of offline PE.

(L1) Calls to methods are inlined within their calling contexts and, as

a consequence, the structure of the original code is lost. For example, the

method invocation from gcd to abs (index 12 of gcd) does not appear in

the decompiled code. As a result, the decompiled code for gcd has two base

cases in which the builtins of abs are inlined, namely, A>=0, B<0 and A is

-B. This happens because calls to methods are dealt with in a small-step

fashion within the interpreter, i.e., the code of invoked methods is unfolded

as if it was inlined inside the “caller” method.

(L2) As a consequence, decompilation becomes very inefficient. E.g.,

if n calls to the same method appear within a code, such method will be

decompiled n times. Even worse, if there is a method invocation inside a

loop, its code will be evaluated twice in the best case, as we have to perform

the corresponding generalizations in the global control before reaching a

131

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

fixpoint. This can be even worse in the case of nested loops.

(L3) The non-modular approach does not work incrementally, in the

sense that it does not support separate decompilation of methods but rather

has to (re)decompile all method calls. Thus, decompiling a real language

becomes unfeasible, as one needs to consider system libraries, whose code

might not be available. Limitation L2 together with L3 answer issue (a) of

Figure 7.1 negatively.

(L4) The decompiled code contains basically the whole interpreter when

there are recursive methods. This is why the decompiled program in Fi-

gure 7.7 does not contain the code corresponding to the recursive fact

method. The problem with recursion is as follows. Assume we want to de-

compile method m1 whose code is 〈pc0 : bc0, . . . , pcj : invoke(m1), . . . , pcn :

return〉. There is an initial decompilation for Ak = execute(st(fr(m1, pcj,

os, lv), []), Sf) in which the call-stack is empty. During its decompilation, a

call of the form Al = execute(st(fr(m1, pcj, os
′, lv′), [fr(m1, pcj, os, lv)]),

Sf) with the call-stack containing the previous frame appears when we arri-

ve to the recursive call. At this point, the derivation must be stopped as

AkET Al. In order to ensure termination, global control generalizes the abo-

ve calls into execute(st(fr(m1, pcj, ,),), Sf), where denotes a fresh va-

riable and thus the call-stack has become unknown. As a consequence, after

evaluating the return statement, the continuation obtained from the call-

stack is unknown and we produce the call execute(st(fr(, , ,),), Sf)

to be decompiled. Here, the fact that the method and the program counter

are unknown prevents us from any chance of removing the interpretation

layer, i.e., the decompiled code will potentially contain the whole interpre-

ter. This indeed happens during the decompilation of fact. Limitations L1

and L4 answer issue (b) (see Figure 7.1) negatively.

We now identify the ingredients which are necessary in order to achieve

a modular decompilation scheme. By modular decompilation, we refer to a

decompilation technique whose decompilation unit is the method, i.e., we

decompile a method at a time. We show that this approach overcomes the

four limitations of non-modular decompilation described above and ans-

wers issues (a) and (b) of Figure 7.1 positively. In essence, we need to: (i)

Give a compositional treatment to method invocations. We show that this

can be achieved by considering an interpreter implemented using a big-step

semantic. (ii) Provide a mechanism to residualize calls in the decompiled

132

7.4. CHALLENGE II: MODULAR DECOMPILATION

program (i.e., do not unfold them and add them without modifications to

the residual code). We automatically generate program annotations for this

purpose. (iii) Study the conditions which ensure that separate decompila-

tion of methods is sound.

7.4.1. Big-step Semantics Interpreter to Enable Mo-

dularity

Traditionally, two different approaches have been considered to defi-

ne language semantics, big-step (or natural) semantics and small-step (or

structural operational) semantics (see, e.g., [59]). Essentially, in big-step

semantics, transitions relate the initial and final states for each statement,

while in small-step semantics transitions define the next step of the exe-

cution for each statement. In the context of bytecode interpreters, it turns

out that most of the statements execute in a single step, hence making both

approaches equivalent for such statements. This is the case for our bytecode

interpreter in Figure 7.3 for all statements except for invoke. The transition

for invoke in small-step defines the next step of the computation, i.e., the

current frame is pushed on the call-stack and a new environment is initia-

lized for the execution of the invoked method. Note that, after performing

this step, we do not distinguish anymore between the code of the caller

method and that of the callee. This prevents us from having modularity in

decompilation.

In the context of interpretive (de)compilation of imperative languages,

small-step interpreters are commonly used (see e.g. [77, 48]). We argue that

the use of a big-step interpreter is a necessity to enable modular decompi-

lation which scales to realistic languages. In Fig. 7.8, we depict the relevant

part of a big-step version for our bytecode interpreter. We can see that

the invoke statement, after extracting the method parameters from the

operand stack, calls recursively predicate main/3 in order to execute the

callee. Upon return from the method execution, the return value is pushed

on the operand stack of the new state and execution proceeds normally.

Also, we do not need to carry the call-stack explicitly within the state,

but only the information for the current environment, i.e., states are of the

form st(M,PC,OStack,LocalV). This is because the call-stack is already

available by means of the calls for predicate main/3.

133

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

The compositional treatment of methods within the interpreter is not

only essential to enable modular decompilation (overcome L1, L2 and L3)

but also to solve the recursion problem in a simple and elegant way. In-

deed, the decompilation based on the big-step interpreter does not present

L4. E.g., the decompilation of a recursive method m1 starts from the call

main(m1, ,) and then reaches a call main(m1, args,) where args repre-

sents the particular arguments in the recursive call. This call is flagged as

dangerous by local control and the derivation is stopped. The important

points are that, unlike before, no re-computation is needed as the second

call is necessarily an instance of the first one and, besides, there is no in-

formation loss associated to the generalization of the call-stack, as there is

no stack.

Partial solutions to the recursion problem exist and are discussed in

the following. The problem was first detected in [43] and a solution based

on computing regular approximations during PE was proposed. Although

feasible in theory, such technique might be too inefficient in practice and

problematic to scale it up to realistic applications due to the overhead in-

troduced by the underlying analysis. Another solution is proposed in [48],

where a simpler control-flow analysis is performed before PE in order to

collect all possible instructions which might follow the return. Such infor-

mation may then be used to recover information lost by the generalization.

This solution turns out to be also impractical for our purposes when consi-

dering realistic programs that make intensive use of library code (e.g. Java

Bytecode) as many continuations can follow. Our solution does not requi-

re the use of static analysis and, as our experiments show, does not pose

scalability problems.

It is important to note that the idea of using a big-step semantics for

describing the interpreter in order to achieve modular (de)compilation is

equally useful in the offline approach to interpretive decompilation. Furt-

hermore, to the best of our knowledge, our idea is novel and has not been

proposed before, neither in online nor in offline PE of interpreters.

7.4.2. The Modular Decompilation Scheme

In addition to use a big-step interpreter, it is necessary in order to

design a modular decompilation scheme to: 1) provide a mechanism to

134

7.4. CHALLENGE II: MODULAR DECOMPILATION

execute(S,S) :-

S = st(M,PC,[_Top|_],_),

bytecode(M,PC,return).

execute(S,Sf) :-

S = st(M,PC,_,_),

bytecode(M,PC,Inst),

step(Inst,S,S’),

execute(S’,Sf).

step(invoke(M’),S,S’) :-

S = st(M,PC,OS,LV),

next(M,PC,PC’),

split_OS(M’,OS,Args,OSRs),

main(M’,Args,RV),

S’ = st(M,PC’,[RV|OSRs],LV).

Figura 7.8: Fragment of big-step bytecode interpreter

residualize calls in the decompiled program (i.e., do not unfold them and

add them without modifications to the residual code), and 2) define the

notion of separate decompilation and study the conditions which ensure its

soundness.

Paper 6 studies in detail these issues and defines a modular decompi-

lation scheme whose correctness and completeness is formally proven. It is

also proven that the proposed scheme satisfies the method-optimality crite-

rion, which ensures that each method is decompiled only once.

Modular decompilation basically works as follows: when a method invo-

cation is to be decompiled, the call step(invoke(m’), ,) occurs during

unfolding. We can see that, by using the big-step interpreter in Fig. 7.8, a

subsequent call main(m’, ,) will be generated. At this point, there will be

an annotation indicating to the partial evaluator to not to unfold this call

and rather add it without modifications to the residual code. If m’ is inter-

nal (i.e., it is defined in the input program), a corresponding decompilation

from the call main(m’, ,) will be, or has already been, performed since

modular decompilation ensures that the PE is executed for every method

in the bytecode program.

Figure 7.9 shows the decompiled program we obtain using the modular

decompilation scheme with our working example. It can be observed that

the structure of the original program w.r.t. method calls is now preserved,

as the residual predicate for gcd contains an invocation to the definition of

abs, as it happens in the original bytecode. Moreover, we now obtain an

effective decompilation for the recursive method fact where the interpre-

tive layer is completely removed. Thus, L1 and L4 have been successfully

135

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

main(count,[N],0) :- 0>=N.

main(count,[N],I) :-

0<N, execute_2(N,1,I).

execute_2(N,I,I) :- I>=N.

execute_2(N,A,I) :-

A<N, A’ is A+1,

execute_2(N,A’,I).

main(gcd,[B,0],A) :-

main(abs,[B],A).

main(gcd,[B,C],A) :-

C\=0, D is B rem C,

execute_1(C,D,A).

execute_1(A,0,C) :- main(abs,[A],C).

execute_1(A,B,F) :- B\=0,

H is A rem B,

execute_1(B,H,F).

main(abs,[A],A) :- A>=0.

main(abs,[B],A) :- B<0, A is -B.

main(fact,[B],A) :- B\=0,

C is B-1,

main(fact,[C],D),

A is B*D.

main(fact,[0],1).

Figura 7.9: Decompiled code obtained using modular decompilation

solved.

Note that modular decompilation gives a monovariant treatment to met-

hods in the sense that it does not allow creating specialized versions of met-

hod definitions. This is against the usual spirit in PE, where polyvariance

is a main goal to achieve further specialization. However, in the context of

decompilation, we have shown that a monovariant treatment is necessary

to enable scalability and to preserve program structure. It naturally raises

the question whether a polyvariant treatment could achieve, even if at the

cost of efficiency and loss of structure, a better quality decompilation. No-

te that enabling polyvariant specialization in the modular setting can be

trivially done by not introducing the corresponding annotations for certain

selected methods which should be treated in a polyvariant manner. Our

experience indicates that there is often a small quality gain at the price of

a highly inefficient decompilation.

7.5. Challenge III: An Optimal Decompila-

tion Scheme

As we already mentioned in Section 7.2, and as we can see by looking at

Figure 7.9, the decompiled programs we obtain using the modular scheme

136

7.5. CHALLENGE III: AN OPTIMAL DECOMPILATION SCHEME

int mbl(...){

· · ·

A

· · ·

if (cond){ B }

else{ C }

. . .

D

. . .

}

Method mbl

pc0 : bc0
...

pci : if ⋄ (pcj)

pci+1 : bci+1

...

pcj−1 : goto(pck)

pcj : bcj
...

pck−1 : bck−1

pck : bck
pcn : return

pcj−1:goto(pck)

. . .

pci+1:bci+1 pcj:bcj

pck−1:bck−1

. . .

pc0:bc0

. . .

pci:if⋄(pcj)

pck:bck

. . .

pcn:return

condi

Block A

Block B

Block D

Block Ccondi

Figura 7.10: Source code, bytecode and CFG of mbl method

are still not optimal as they can contain code duplications. See for exam-

ple the code on the right-hand side of the rules defining main(gcd,...)

and execute 1/3. Duplications are (very often) produced because part of

the code is re-evaluated during PE. Unfortunately, as we will see later,

such duplications and re-evaluations grow exponentially with the number

of branching and merging points respectively, and as our experiments show,

highly degrade the effiency of the process and the quality of the decompi-

led code. The main issue is whether it is possible to obtain, by means of

interpretive decompilation, programs whose quality is equivalent to that

obtained by dedicated decompilers; issue (c) in Figure 7.1. In order to

obtain comparable results, it makes sense to use similar heuristics. Since

decompilers first build a control flow graph (CFG) for the method, which

guides the decompilation process, we now study how a similar notion can

be used for controlling PE of the interpreter.

Let us explain the problem by means of an example. Consider the met-

hod mbl in Fig. 7.10. The source code is shown to the left, the relevant

bytecode in the center and its CFG to the right. As customary, the CFG

[1] consists of basic blocks which contain a sequence of non-branching byte-

code instructions and which are connected by edges which describe the

possible flows originated from the branching instructions (like conditional

jumps, exceptions, virtual method invocation, etc.). In our small bytecode

programs, they correspond with conditional jumps (i.e. if⋄ and if0⋄). A

137

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

main(mbl, ,)
��

execute(st(mbl, 0, os0, lv0),)
{resA} ��

execute(st(mbl, pci, osi, lvi),)
condi

sshhhhhh condi
++VVVVVV

execute(st(mbl, pci+1, osi+1, lvi+1),)
{resB}��

execute(st(mbl, pcj, osj, lvj),)
{resC}��

execute(st(mbl, pck, osk, lvk),)
{resD}��

execute(st(mbl, pck, osk, lvk),)
{res

′

D}��

execute(st(mbl, pcn, osn, lvn),)

��

execute(st(mbl, pcn, osn, lvn),)

��

true true

main(mbl,Args,Out) :- {resA}, condi, {resB}, {resD}.

main(mbl,Args,Out) :- {resA}, condi, {resC}, {res
′

D}.

Figura 7.11: Unfolding SLD-tree and decompiled code of mbl method

divergence point (D point) is a program point (bytecode index) from which

more than one branch originates; likewise, a convergence point (C point)

is a program point where two or more branches merge. In the CFG of mbl,

the only divergence (resp. convergence) point is pci (resp. pck).

By using the decompilation scheme presented so far, we obtain the SLD-

tree shown in Fig. 7.11, in which all calls are completely unfolded as there

is no termination risk. The decompiled code is shown under the tree. We

use {resX} to refer to the residual code emitted for BlockX and condi to

refer to the condition associated to the branching instruction at pci (condi
denotes its negation). The quality of the decompiled code is not optimal

due to:

D. Decompiled code {resA} for BlockA is duplicated in both rules. Du-

ring PE, this code is evaluated once but, due to the way resultants

are defined (see Section 7.1), each rule contains the decompiled co-

de associated to the whole branch of the tree. This code duplication

brings in two problems: it increases considerably the size of decom-

piled programs and also makes their execution slower. For instance,

when condi holds, the execution goes unnecessarily through {resA}

138

7.5. CHALLENGE III: AN OPTIMAL DECOMPILATION SCHEME

in the first rule, fails to prove condi and, then, attempts the second

rule.

C. Decompiled code of BlockD is again emitted more than once. Each

rule for the decompiled code contains a (possibly different) ver-

sion, {resD} and {res
′

D}, of the code of BlockD. Unlike above,

at PE time, the code of BlockD is actually evaluated in the con-

text of {condi, {resB}} and then re-evaluated in the context of

{condi, {resC}}. Convergence points thus might degrade both effi-

ciency (and endanger scalability) and quality of decompilation (due

to larger residual code).

The amount of repeated residual code grows exponentially with the number

of C and D points and the amount of re-evaluated code grows exponentially

with the number of C points. Thus, we now aim at designing an optimal,

block-level decompilation that helps overcome problems D and C above.

Intuitively, a block-level decompilation must produce a residual rule for

each block in the CFG. This can be achieved by building SLD-trees which

correspond to each single block, rather than expanding them further. Note

that this idea is against the typical spirit of PE which, in order to maximize

the propagation of static information, tries to build SLD-trees as large as

possible and only stops unfolding when there is termination risk.

This can be easily done in our setting by providing annotations that

force the unfolding process to stop when an execute/2 atom whose PC

corresponds to a D point appears in the sequence. In the example, unfolding

should stop at pci. Regarding C points, an additional requirement is to

partially evaluate the code on blocks starting at these points at most once.

The problem is similar to the polyvariant vs. monovariant treatment in

the decompilation of methods in the previous section, by viewing entries

to blocks as method calls. Not surprisingly, the solution can be achieved

similarly in our setting by: (1) stopping the derivation at execute/2 calls

whose PC corresponds to C points and (2) passing the call to the global

control, and ensuring that it is evaluated in a sufficiently generalized context

which covers all incoming contexts. The former point is ensured by the use

of the corresponding annotations and the latter by including in the initial

set of atoms a generalized call of the form execute(st(mbl, pck, ,),) for

all C points, which forces such generalization.

139

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

main(mbl,Args,Out) :- {resA}, execute1(. . .).

execute1(. . .) :- condi, {resB}, execute2(. . .).

execute1(. . .) :- condi, {resC}, execute2(. . .).

execute2(. . .) :- {resD}.

Figura 7.12: Optimal decompiled code for mbl method

An important point is that, unlike annotations used in offline PE [63]

which are generated by only taking the interpreter into account, our anno-

tations for the optimal decompilation are generated by taking into account

the particular program to be decompiled. Importantly, both the annotations

and the initial set of calls can be computed automatically by performing

two passes on the bytecode (see, e.g., [2, 84]).

The result of performing an optimal decompilation on mbl is shown in

Figure 7.12. Now, the residual code associated to each block appears once in

the code. This ensures that the optimal decompilation preserves the CFG

shape as dedicated decompilers do. Thus, the quality of our decompiled

code is as good as that obtained by state-of-the-art decompilers [2, 70] but

with the advantages of interpretive decompilation.

Paper 6 studies in detail these issues and defines a block-level, optimal

decompilation scheme overcoming the problems above. It is also formally

proved that the proposed scheme satisfies the block-optimality criterion,

which ensures that: (I) residual code for each bytecode instruction in the

program is emitted once in the decompiled program, (II) each bytecode

instruction is evaluated at most once during PE, and (III) there is at most

one residual rule for each block in the bytecode program.

7.5.1. Conclusions of Optimal Decompilation

After taking into account the central observation from Section 7.4 that

the interpreter should be written in big-step semantics, each condition

of the block-optimality criterion above is simpler or more complicated to

achieve depending on the local control strategy we use. For example, if we

start from a modular decompiler as discussed in Section 7.4 above, condi-

tion (III) will in general be satisfied, but not condition (I) nor (II) since the

140

7.5. CHALLENGE III: AN OPTIMAL DECOMPILATION SCHEME

local control rule tends to over-specialize calls which results in re-evaluating

expressions and emitting code multiple times.

Conversely, if we use an offline partial evaluator, the natural local con-

trol is to residualize all calls to execute and, then, filter out all information

other than the method signature and program counter when transferring

the atom to the global control. This control strategy trivially guarantees

conditions (I) and (II) of the block-optimality criterion since it guarantees

that each bytecode instruction is decompiled independently of the others.

However, it tends to under-specialize and namely it does not satisfy the

condition (III): as soon as there is a block with more than one bytecode

instruction, which is almost always the case, the specialized program will

contain a separate rule for each and every bytecode instruction in the blo-

ck. As a result, the residual program thus obtained is high-level in the

sense that it is written in Prolog. However, its control strategy is heavily

influenced by the fact that we decompile bytecode (instead of converting,

e.g. from Java source) and the decompiled program is not at all similar to

the Prolog program which a Prolog programmer would write for performing

the same task. Since an important objective of decompilation is to enable

program understanding and analysis, we argue that programs which satisfy

this optimality criterion, in particular meeting condition (III), like the ones

we generate, are easier to reason about.

Another important observation is that the costly mechanisms, namely

the TbHEm and the advanced polyvariance control from Paper 2, used for

controlling the PE that were used earlier to achieve the results in Sec-

tions 7.3.3 and 7.4, are not needed anymore using the optimal decompila-

tion scheme. Instead, the following trivial control operators can be used:

unfold unfolds all calls except those matching an annotation, and abstract

adds to the set Si+1 every call in Lpe which is not an instance of any call

in Si (see the generic algorithm in Section 7.1). It can be easily proved

that termination is ensured both at the local and at the global control level

thanks to the annotations and the initial set of atoms provided to the PE.

141

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

7.6. Implementation and Experimental Re-

sults

Paper 6 discusses several implementation details and performs a tho-

rough experimental evaluation of the different decompilation schemes pro-

posed in this chapter. We have reported on two different implementations

of a decompiler for full (sequential) Java Bytecode into Prolog. For the first

one we have extended an already existing powerful online PE, the one in-

tegrated in the CiaoPP system. This partial evaluator implements several

unfolding rules and abstraction operators. This has allowed us to compare

the different decompilation schemes, in particular, to compare against the

non-optimal ones. However, the overhead introduced by using such generic

and powerful tool prevents us from competing with ad-hoc decompilers as

regards efficiency (decompilation times). For this reason, we have carried

out a second implementation for which we have written a stand-alone PE

which only contains the local and global strategies required by an optimal

decompilation. This partial evaluator is integrated into a decompilation

tool called jbc2prolog which also includes a Java Bytecode interpreter. This

makes it possible to both obtain optimal decompilations and be compe-

titive in terms of efficiency with ad-hoc decompilers. Paper 6 performs a

thorough comparison against the decompiler in the COSTA [5] system and

against the JDec [14] decompiler.

Both implementations consider full sequential Java Bytecode. The ex-

tensions needed to handle the features not considered in this introduction

are further discussed in Paper 6. These include exceptions, heap operations,

virtual invocations, decompilation at the level of classes, etc. It is important

to note that all of them have been easily accommodated in our decompi-

lation scheme, most of the times, simply by providing the corresponding

support within the bytecode interpreter.

For the experimental evaluation in Paper 6, we have used the stan-

dardized set of benchmarks in the JOlden suite [55]. In particular, we are

interested in: a) empirically demonstrating the scalability of the approach,

and b) assessing the efficiency of the implemented tool by comparing it

against other decompilers. We conclude the following:

Scalability: While in the non-optimal decompilation both the de-

142

7.7. RELATED WORK ON INTERPRETIVE DECOMPILATION

compilation times and the decompiled program sizes greatly increase

with the size of the benchmarks, this does not happen in the optimal

scheme. In the optimal decompilation, these figures are totally sta-

ble. We show that both the decompilation times and the decompiled

program sizes are linear with the size of the input bytecode program,

thus demonstrating the scalability of our optimal decompilation.

Efficiency: To assess the efficiency of our approach we have compa-

red the decompilation times we get using our tool jbc2prolog w.r.t.

those obtained using the decompiler in the COSTA system and tho-

se obtained using the well-known Java decompiler JDec [14]. It can

be concluded that our results our competitive with those of an ad-

hoc decompiler. In particular, we see that they are similar to those

obtained in COSTA. Furthermore, in most examples, jbc2prolog is

slightly more efficient. On the other hand we can see that jbc2prolog

is about ten times faster than JDec. Our conclusion in this regard is

that it is very difficult to compare with decompilers written in other

programming languages, since the performance of the implementation

language heavily influences the decompilation time.

7.7. Related Work on Interpretive Decom-

pilation

Previous work in interpretative (de)compilation has mainly focused on

proving that the approach is feasible for small interpreters and medium-

sized programs. The focus has been on demonstrating its effectiveness, i.e.,

that the so-called interpretation layer can be removed from the compiled

programs. To achieve effectiveness, offline [63], online [48, 77] and hybrid

[64] PE techniques have been assessed. This thesis has firstly focused on

demonstrating that interpretive decompilation is feasible (as shown in pre-

vious work) and has studied further issues which had not been explored

yet. Let us review now related work both in the field of decompilation of

low-level code. Related work on on the PE of interpreters has been al-

ready compared in the introduction of this chapter and in several places

throughout the paper.

The work by Breuer and Bowen [19] is only tangentially related to

143

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

ours. They propose a general method for compiling decompilers from the

specifications of (non-optimizing) compilers. The main idea is that a data

type specification for a programming-language grammar can be remolded

into a functional program that enumerates all of the abstract syntax trees of

the grammar. It is showed that by relying on this technique a decompiler

can be generated from a simple Occam-like compiler specification. The

only similarity with our work is that decompiled programs are somehow

obtained from specifications (in our case of the interpreter and in their case

of the compiler). However, the underlying methods are technically different

and also they do not provide a practical solution for ensuring applicable

conditions for their technique.

As regards (direct) decompilation of low-level back to source code, it

has been the subject of a good amount of research. Decompilation can be

attempted at different levels, with different levels of success. The most com-

plicated case is when decompiling binary executables. There are a good

number of associated complications, such as recovering the control flow.

One intrinsic problem in this approach is that it is not possible in general

to distinguish code from data statically. See e.g. [26, 81] and their references

for a discussion on the problems and techniques for binary decompilation.

The next level is decompilation of assembly, see e.g. [27]. This shares many

of the complications associated to the decompilation of binaries, since cu-

rrent hardware architectures are rather complex, but at least it is possible

to separate code from data. The following level is decompilation of code

to be run on a virtual machine. This is in general easier to perform since

virtual machines are usually simpler than current hardware architectures

and because often the code for this virtual machines (bytecode) must sa-

tisfy certain behavior restrictions (must be verifiable [60]) and types of

variables are available. As a result, in the particular case of decompilation

of Java Bytecode back to Java source, a number of successful commercial

and free software decompilers exist which are able to handle a large class

of bytecode programs, especially those generated by common Java compi-

lers, i.e., javac. Nevertheless, things become more complicated when the

Java Bytecode has been generated by an obfuscator, and especially when

an optimizing compiler, or a compiler from other programming languages

such as Haskell, Eiffel, ML, Ada, and Fortran is used. See e.g. [72] and its

references for a good account on the existing Java Bytecode decompilers

144

7.7. RELATED WORK ON INTERPRETIVE DECOMPILATION

and the difficulties associated to its decompilation.

As already mentioned, there exist several analyzers for Java Bytecode

which use a higher-level intermediate representation and which can be seen

as ad-hoc decompilers. In particular, both the COSTA [5] and CiaoPP [49]

systems have a front-end which converts bytecode into an intermediate re-

presentation which is then the input to the subsequent analysis. Though in

both cases the intermediate representation is similar, in the case of COS-

TA it is formalized as a rule-based representation [2], whereas in CiaoPP

it is formalized as Horn clauses, i.e., a logic program [70]. The reason for

doing that in CiaoPP is that, at least in principle, that allows using the

analysis which are already available in CiaoPP. However, there is a crucial

difference between the logic programs generated in [70] and those generated

by our decompiler. Whereas the programs generated by [70] are only meant

to be the subject of static analysis and are not executable, the programs

we generate can both be subject to analysis or be executed. The reason

why the programs in [70] nor those in [2] are executable is because they

basically capture the control-flow of the bytecode program, but the basic

bytecode instructions themselves remain as builtins, i.e., predefined predi-

cates, to the analysis. Analysis results are correct as long as the behavior

of such bytecode instructions is safely approximated by the analysis. Pro-

ducing fully executable logic programs as the result of decompilation is not

trivial since many of the bytecode instructions operate on the heap in a

way or another. Thus, in order to make an executable decompiled program

we need to introduce the JVM heap explicitly in the logic program. All this

is done automatically in our approach.

145

CHAPTER 7. INTERPRETIVE DECOMPILATION OF BYTECODE TO LP

146

Chapter 8

Applications of Interpretive

Decompilation

As already mentioned in the previous chapter, an important advantage

is that the decompiled programs obtained by interpretive decompilation

are fully executable, which in turn broadens their application field. In this

chapter, we summarize two different experimentations we have performed

which take advantage of such feature of our decompiled programs:

1. Analysis of bytecode programs by analyzing its decompilations to LP

using LP analysis tools. This is further elaborated in Paper 1.

2. Test data generation of bytecode programs by CLP partial evaluation.

This issue is studied in detail in Paper 7.

8.1. Analysis of Bytecode using LP Analysis

Tools

Analyzing programs in the CLP paradigm offers a good number of ad-

vantages, an important one being the maturity and sophistication of the

analysis tools available for it. In particular, the CiaoPP system, besides

providing a very powerful partial evaluator which we have used to perform

part of our experimentation in the previous chapter, also provides a gene-

ric analysis engine with a good number of abstract domains available. This

147

CHAPTER 8. APPLICATIONS OF INTERPRETIVE DECOMPILATION

allows inferring a good number of properties of logic programs like termi-

nation, bounds on resource consumption, types and modes, error-freeness,

etc.

One of the objectives of this thesis has been to investigate whether it

is feasible to reuse existing analysis tools already available in the CLP pa-

radigm, in particular CiaoPP, to analyze bytecode programs by analyzing

their decompilations to LP. This allows devising a generic framework for

the analysis and verification of bytecode programs in which the power of the

analysis tools for CLP is automatically transferred to the analysis and veri-

fication of bytecode programs. The same idea had been applied to analyze

rather restricted versions of high-level imperative languages [77] and also

assembly code for PIC [47], an 8-bit microprocessor. However, to the best

of our knowledge, this is the first time this approach has been successfully

applied to a general purpose, realistic, imperative programming language.

These issues are further elaborated in Paper 1, where: 1) we propose

such a framework for the analysis and verification of bytecode programs (in

particular for Java Bytecode), and 2) we perform a series of experiments

using the CiaoPP system demonstrating the feasibility of the proposed ap-

proach. In summary, Paper 1 shows how, by reasoning on our decompiled

programs, we can automatically prove, by relying on the analyses availa-

ble in the CiaoPP system, some non-trivial properties of bytecode programs

such as termination, run-time error-freeness and infer bounds on its resour-

ce consumption. For instance, in order to prove run-time error-freeness, we

propose an enhanced bytecode interpreter which computes, in addition to

the return value of the method called, also the trace which captures the

computation history. Such traces represent the semantic steps used, and

therefore do not only represent instructions, as the context has also some

importance. They have allowed us to distinguish, for example, for a same

instruction, the step that throws an exception from the normal behavior.

E.g., invoke step ok and invoke step NullPointerException represent,

respectively, a normal method call and a method call on a null reference

that throws an exception. Such additional flexibility of interpretive decom-

pilation has allowed to prove run-time error-freeness in a straightforward

way by simply specifying the property of being error-free as verifying that

the corresponding trace in the decompiled program does not contain an ex-

ceptional step, or that it does not end raising an exception, depending on

148

8.2. TEST DATA GENERATION BY CLP PE

the particular policy for the error-freeness property. Again, our approach

demonstrates its flexibility here, as different policies can be easily defined

simply by specifying the corresponding property in CiaoPP.

8.2. Test Data Generation by CLP PE

A unique feature of our decompiled programs is that they represent the

whole program state, in contrast to [70, 2, 84]. In particular, they contain

a representation of the heap explicitly in addition to the operand stack.

Up to now, the main motivation for decompiling bytecode to LP had been

to be able to perform static analysis on the decompiled programs in order

to infer properties about the original bytecode. If the decompilation ap-

proach produces LP programs which are executable, then such decompiled

programs can be used not only for static analysis, but also for dynamic

analysis and execution. Note that this is not always the case, since there

are approaches (like [4, 70]) which are aimed at producing static analysis

targets only and their decompiled programs cannot be executed. A novel

interesting application of interpretive decompilation which we propose in

this thesis is the automatic generation of test data.

Test data generation (TDG) aims at automatically generating test-cases

for interesting test coverage criteria. The coverage criteria measure how well

the program is exercised by a test suite. Examples of coverage criteria are:

statement coverage which requires that each line of the code is executed;

path coverage which requires that every possible trace through a given part

of the code is executed; etc. There are a wide variety of approaches to

TDG (see [90] for a survey). Our work focuses on glass-box testing, where

test-cases are obtained from the concrete program in contrast to black-box

testing, where they are deduced from a specification of the program. Also,

our focus is on static testing, where we assume no knowledge about the

input data, in contrast to dynamic approaches [39, 46] which execute the

program to be tested for concrete input values.

The standard approach to generating test-cases statically is to perform

a symbolic execution of the program (see e.g. [29]), where the contents of

variables are expressions rather than concrete values. The symbolic exe-

cution produces a system of constraints consisting of the conditions to

execute the different paths. This happens, for instance, in branching ins-

149

CHAPTER 8. APPLICATIONS OF INTERPRETIVE DECOMPILATION

CLPP
bc−to−CLP
Decompiler

Pbc

Generator
Test−case

Test−cases

PHASE II

Cov. Criterion
(Unfolding Rule)

TDG (PE)

PHASE I

Figura 8.1: Overview of our approach for TDG of bytecode by CLP PE

tructions, like if-then-else, where we might want to generate test-cases for

the two alternative branches and hence accumulate the conditions for each

path as constraints. For the particular case of Java Bytecode, a symbolic

JVM (SJVM) which integrates several constraint solvers has been designed

in [73]. A SJVM requires non-trivial extensions w.r.t. a JVM: (1) it needs

to execute the bytecode symbolically as explained above, (2) it must be

able to backtrack, as without knowledge about the input data, the execu-

tion engine might need to execute more than one path. The backtracking

mechanism used in [73] is essentially the same as in logic programming.

In this thesis we propose a novel approach to TDG of bytecode which

is based on PE techniques developed for CLP and which, in contrast to

previous work, does not require devising a dedicated symbolic virtual ma-

chine. Figure 8.1 depicts a diagram with an overview of the framework. As

can be seen, it comprises two independent, CLP PE phases, which basically

consist in the following:

1. The decompilation of bytecode into a CLP program. We already dis-

cussed in Chapter 7 that the decompilation of bytecode to LP can be

achieved automatically by means of partial evaluation of LP, or alter-

natively by means of an ad-hoc decompiler [70]. The modification to

obtain CLP instead of LP programs is straightforward, e.g. by means

of a trivial transformation of the arithmetic builtins into their CLP

counterparts.

2. The generation of test-cases. This is a novel application of PE which

150

8.2. TEST DATA GENERATION BY CLP PE

allows generating test-case generators from the CLP decompiled byte-

code. In this case, we rely on a CLP partial evaluator which is able

to solve the constraint system, in much the same way as a symbolic

abstract machine would do. The two control operators of a CLP par-

tial evaluator play an essential role: (1) The local control applied to

the decompiled code will allow capturing interesting coverage criteria

for TDG of the bytecode. (2) The global control will enable the ge-

neration of test-case generators. Intuitively, the test-case generators

we produce are CLP programs whose execution in CLP returns furt-

her test-cases on demand without the need to start the TDG process

from scratch.

We argue that our CLP PE based approach to TDG of bytecode has se-

veral advantages w.r.t. existing approaches based on symbolic execution: (i)

It is more generic, as the same techniques can be applied to other both low

and high-level imperative languages. In particular, once the CLP decom-

pilation is done, the language features are abstracted away and, the whole

part related to the generation of test data is totally language independent.

This avoids the difficulties of dealing with recursion, procedure calls, dy-

namic memory, etc. that symbolic abstract machines typically face. (ii) It

is more flexible, as different coverage criteria can be easily incorporated to

our framework just by adding the appropriate local control to the partial

evaluator. (iii) It is more powerful as we can generate test-case generators.

(iv) It is simpler to implement compared to the development of a dedicated

symbolic virtual machine, as long as a CLP partial evaluator is available.

As noted in point (iv) above, an important advantage of CLP decompi-

led programs w.r.t. their bytecode counterparts is that symbolic execution

does not require, at least in principle, to build a dedicated symbolic exe-

cution mechanism. Instead, we can simply run the decompiled program by

using the standard CLP execution mechanism with all arguments being

distinct free variables. E.g., for our working example of Figure 7.4, we

could perform symbolic execution of the gcd method by running the query

main(gcd, [X, Y], Z) on the decompiled program. Note that as we are not

providing input values, each successful execution corresponds to a different

computation path in the bytecode. Furthermore, along the execution, a

constraint store on the program’s variables is obtained which can be used

for inferring the conditions that the input values (in our case X and Y) must

151

CHAPTER 8. APPLICATIONS OF INTERPRETIVE DECOMPILATION

satisfy for the execution to follow the corresponding computation path.

However, an important problem with symbolic execution, regardless

of whether it is performed using CLP or a dedicated execution engine,

is that the execution tree to be traversed is in most cases infinite, since

programs usually contain iterative constructs such as loops and recursion

which induce an infinite number of execution paths when executed without

input values. Therefore, it is essential to establish a termination criterion

(in this context coverage criterion) which guarantees that the number of

paths traversed remains finite, while at the same time an interesting set of

test data is generated.

Another issue is that depending on the particular type of decompilation

–and even on the options used within a particular method– we can obtain

different correct decompilations which are valid for the purpose of execu-

tion. However, for the purpose of generating useful test-cases, additional

requirements are needed: we must be able to define coverage criteria on the

CLP decompilation which produce test-cases which cover the equivalent

coverage criteria for the bytecode. Fortunately, our notion of block-level de-

compilation, introduced in 7.5, provides a sufficient condition for ensuring

that equivalent coverage criteria can be defined. According to this defini-

tion, there is a one to one correspondence between blocks in the CFG of

the bytecode program and rules in the decompiled one.

Most existing coverage criteria are defined on high-level, structured pro-

gramming languages. A widely used control-flow based coverage criterion

is loop-count(k), which dates back to 1977 [53], and limits the number

of times we iterate on loops to a threshold k. However, bytecode has an

unstructured control flow: CFGs can contain multiple different shapes, so-

me of which do not correspond to any of the loops available in high-level,

structured programming languages.

In this thesis, we introduce the block-count(k) coverage criterion which

is not explicitly based on limiting the number of times we iterate on loops,

but rather on counting how many times we visit each block in the CFG

within each computation. Basically, a set of computation paths satisfies the

block-count(k) criterion if the set includes all finished computation paths

which can be built such that the number of times each block is visited

within each computation does not exceed a given k.

Paper 7 discusses the technical details of such an approach to TDG of

152

8.2. TEST DATA GENERATION BY CLP PE

bytecode. In particular:

The block-count(k) coverage criterion is formally defined.

We define an evaluation strategy which guarantees constructing an

SLD tree so that we generate sufficiently many derivations so as to

satisfy the block-count(k) criterion while, at the same time, guaran-

teeing termination.

The TDG phase is formalized as a CLP PE of the CLP decompi-

led program where the unfolding rule plays the role of the covera-

ge criterion. We hence provide an unfolding rule which implements

the block-count(k) coverage criterion and outline how the abstraction

operator must deal with constraints so that we get effective test-case

generators.

All such issues are illustrated through a working example which com-

prises a set of methods performing different arithmetic computations.

8.2.1. On the Generation of Test Data for Prolog by

EP

As a tangential contribution of the thesis, we have applied the idea of

using PE to automatically generate test data in the context of LP. We ar-

gue that our approach to TDG can in principle be directly applied to any

imperative language. However, when one tries to apply it to a declarative

language like Prolog, we have found as a main difficulty the generation of

test-cases which cover the more complex control flow of Prolog. Essentia-

lly, the problem is that an intrinsic feature of PE is that it only computes

non-failing derivations while in TDG for Prolog it is essential to generate

test-cases associated to failing computations. Paper 8 performs a prelimi-

nary study in this direction. Basically, it proposes to transform the original

Prolog program into an equivalent Prolog program with explicit failure by

partially evaluating a Prolog interpreter which captures failing derivations

w.r.t. the input program. Another issue that we have discussed in the paper

is that, while in the case of bytecode the underlying constraint domain only

manipulates integers, in Prolog it should properly handle the symbolic data

153

CHAPTER 8. APPLICATIONS OF INTERPRETIVE DECOMPILATION

manipulated by the program. Our preliminary experiments already suggest

that the approach can be very useful to generate test-cases for Prolog.

8.2.2. Related work on Test Data Generation

As mentioned before, our approach is focused on static TDG, in which

test-cases are obtained without running the program with particular input

values. In contrast, dynamic approaches [39, 46] execute the program to be

tested for concrete input values until achieving the particular coverage of

the program. The standard approach to generating test-cases statically is

to perform a symbolic execution of the program [29, 71, 73, 57, 45]. The

symbolic execution approach has been combined with the use of constraint

solvers [73, 45] in order to: handle the constraint systems by solving the

feasibility of paths and, afterwards, to instantiate the input variables. For

the particular case of Java Bytecode, a symbolic JVM machine (SJVM)

which integrates several constraint solvers has been designed in [73].

TDG for declarative languages has received comparatively less attention

than for imperative languages. The majority of existing tools for functional

programs are based on black-box testing (see e.g. [28]). An exception is [40]

where a glass-box testing approach is proposed to generate test-cases for

Curry. In the case of CLP, test-cases are obtained for Prolog in [69, 13, 89];

and very recently for Mercury in [36]. Basically the test-cases are obtained

by first computing constraints on the input arguments that correspond to

execution paths of logic programs and then solving these constraints to

obtain test inputs for such paths. For functional logic languages, specific

coverage criteria are defined in [40] which capture the control flow of these

languages as well as new language features are considered, namely laziness.

In general, declarative languages pose different problems to testing re-

lated to their own execution models –like laziness in functional languages

and failing derivations in (C)LP– which need to be captured by appropriate

coverage criteria. Having said this, we believe our ideas related to the use

of PE techniques to generate test data generators and the use of unfolding

rules to supervise the evaluation could be adapted to declarative programs

as our preliminary experiments in Paper 8 show.

154

Chapter 9

Heap Space Analysis of

Bytecode Programs

Predicting the memory required to run a program is crucial in many

contexts like in embedded applications with stringent space requirements

or in real-time systems which must respond to events or signals as fast

as possible. It is widely recognized also that memory usage estimation is

important for an accurate prediction of running time, as cache misses and

page faults contribute directly to the runtime.

Heap space analysis aims at inferring bounds on the heap space consum-

ption of programs. Heap analysis is more typically formulated at the source

level (see, e.g., [83, 50, 85, 54] in the context of functional programming and

[52, 23] for high-level imperative programming languages). As mentioned in

Chapter 6.4, there are however situations where one has only access to the

compiled code and not to the source code. Automatic heap space analysis

has interesting applications in this context. For instance, resource bound

certification [33, 10, 51, 22] proposes the use of safety properties involving

cost requirements, i.e., that the untrusted code adheres to specific bounds

on the resource consumption. Also, heap bounds are useful on embedded

systems, e.g., smart cards in which memory is limited and cannot easily be

recovered.

A general framework for the cost analysis of sequential Java Bytecode

has been proposed in [3] which led to the COSTA system [5]. Such analysis

statically generates cost relations (CRs) which define the cost of a program

as a function of its input data size. The CRs are expressed by means of

155

CHAPTER 9. HEAP SPACE ANALYSIS OF BYTECODE PROGRAMS

recursive equations generated by abstracting the recursive structure of the

program and by inferring size relations between arguments. The analysis

is parametric w.r.t. a cost model which defines the cost unit associated to

each bytecode.

This thesis develops a novel application of the cost analysis framework

of [3] to infer bounds on the heap space consumption of sequential Java

Bytecode programs:

1. In a first step, we develop a cost model that defines the cost of me-

mory allocation instructions (e.g., new and newarray) in terms of the

number of heap (memory) units they consume. E.g., the cost of crea-

ting a new object is the number of heap units allocated to that object.

The remaining bytecode instructions do not add any cost. With this

cost model, we generate heap space CRs which are then used to in-

fer upper bounds on the heap space usage of the different methods.

These upper bounds provide information on the maximal heap space

required for executing each method in the program.

2. Unfortunately, in the case of languages with automatic memory ma-

nagement (garbage collection), the above approach, though still co-

rrect, can produce too pessimistic estimations. Therefore, in a second

step, we refine the analysis to consider the effect of garbage collection.

We propose a live heap space analysis, which aims at approximating

the maximum of the live heap usage along the execution of a program,

thus providing a much tighter estimation in presence of garbage co-

llection. This is done by relying on escape analysis [17] to identify

those memory allocation instructions which create objects that will

be garbage collected upon exit from the corresponding method. With

this information available, we can infer upper bounds on the escaped

memory of method’s execution, i.e., the memory that is allocated du-

ring the execution of the method and which remains upon exit. We

then propose a novel form of peak consumption CRs which capture

the peak memory consumption over all program states along its exe-

cution. An essential feature of our CRs is that they can be solved by

using existing tools for solving standard CRs .

These issues are respectively introduced and summarized in Sections 9.1

and 9.2 and studied in detail in Papers 9 and 10.

156

9.1. TOTAL HEAP SPACE ANALYSIS OF BYTECODE

A distinguishing feature of the analyses presented in this chapter w.r.t.

previous approaches (e.g., [10, 50, 18, 24]) is that they are not restricted to

linear bounds since the generated CRs can in principle capture any com-

plexity class. Moreover, in many cases, using the upper bound solver of

the COSTA system, the relations can be simplified to a closed form solu-

tion from which one can glean immediate information about the expected

consumption of the code to be run.

It is important to note that the analysis could have been developed on

the decompiled LP programs in a similar way. In fact, COSTA performs a

decompilation of the bytecode into a rule-based representation before the

actual analysis phase with the aim of making the analysis design simpler

(see [3] for details). The IRs of COSTA are actually very similar to our LP

decompiled programs with the main difference that in the COSTA IRs,

all bytecode instructions remain residual and have to be taken as builtins,

i.e., predefined procedures. In contrast, in our decompilations, bytecode

instructions are interpreted at decompilation time and converted into ba-

sic Prolog instructions such as unifications and arithmetic operations. The

reason why we have not used our interpretive decompilations for the analy-

sis is that this way we have been able to integrate our analysis in COSTA

and thus take advantage of all the machinery for the cost analysis which

is included in it, like e.g., the size analysis for inferring the size relations

among arguments, the upper bound solver, etc.

9.1. Total Heap Space Analysis of Bytecode

Let us consider the Java program depicted in Figure 9.1. It consists of

a set of Java classes which define a linked-list data structure in an object-

oriented style. The class Cons is used for data nodes (in this case integer

numbers) and the class Nil plays the role of null to indicate the end of

a list. Both Cons and Nil extend the abstract class List. Thus, a List

object can be either a Cons or a Nil instance. Both subclasses implement

a copy method which is used to clone the corresponding object. In the case

of Nil, copy just returns a new instance of itself since it is the last element

of the list. In the case of Cons, it returns a cloned instance where the data

is cloned by calling the static method m, and the continuation is cloned by

calling recursively the copy method on next.

157

CHAPTER 9. HEAP SPACE ANALYSIS OF BYTECODE PROGRAMS

abstract class List {

abstract List copy();

}

class Nil extends List {

List copy() {

return new Nil();

}

}

class Cons extends List {

int elem;

List next;

List copy(){

Cons aux = new Cons();

aux.elem = m(this.elem);

aux.next = this.next.copy();

return aux;

}

static int m(int n) {

Integer aux = new Integer(n);

return aux.intValue();

}

} // class Cons

Figura 9.1: Example for memory consumption

Our heap space analysis infers the following simplified CRs for the copy

method of class Cons:

Ccopy(a) = 12, a = 1

Ccopy(a) = 12 + Ccopy(a-1), a > 1

which can then be solved using the upper-bound solver of COSTA yielding

the following upper-bound in closed-form:

Ccopy(a) = 12*nat(a-1) + 12

It can be observed that the heap consumption is linear w.r.t. the input

parameter a, which corresponds to the size of the this object of the met-

hod, i.e., the length of the list which is being cloned. This is because the

abstraction being used by our analysis for object references is the length of

the longest reference chain, which in this case corresponds to the length of

the list. The numeric constant 12 is obtained by adding 8 and 4, being 8

the bytes taken by an instance of class Cons, and 4 the bytes taken by an

Integer instance. Note that we are approximating the size of an object by

the sum of the sizes of all of its fields. In particular, both an integer and a

reference are assumed to consume 4 bytes.

The analysis has been integrated in the COSTA system. Paper 9 per-

forms an experimental evaluation by means of a series of example applica-

tions written in an object-oriented style which make intensive use of the

158

9.2. LIVE HEAP SPACE ANALYSIS FOR LANGUAGES WITH GC

heap and which present novel features like heap consumption that depends

on the class fields, multiple inheritance, virtual invocation, etc. These exam-

ples allow us to illustrate the most salient features of our analysis: inference

of constant heap usage, heap usage proportional to input size, support of

standard data-structures like lists, trees, arrays, etc. To the best of our kno-

wledge, this is the first analysis able to infer arbitrary heap usage bounds

for Java Bytecode.

9.2. Live Heap Space Analysis for Langua-

ges with GC

As mentioned earlier, garbage collection (GC) makes the problem of

predicting the memory required to run a program difficult. A first approxi-

mation is to infer the total memory allocation, i.e., the accumulated amount

of memory allocated by a program ignoring GC, as done in the previous

section. If such amount is available it is ensured that the program can be

executed without exhausting the memory, even if no GC is performed du-

ring its execution. However, it is an overly pessimistic estimation of the

actual memory requirement.

This thesis presents a general approach for inferring the peak heap con-

sumption of a program’s execution, i.e., the maximum of the live heap

usage along its execution. Our live heap space analysis is developed for (an

intermediate representation of) an object-oriented bytecode language with

automatic memory management.

Analysis of live heap usage is different from total memory allocation

because it involves reasoning on the memory consumed at all program states

along an execution, while total allocation needs to observe the consumption

at the final state only. As a consequence, the classical approach to static

cost analysis proposed by Wegbreit in 1975 [86] has been applied only to

infer total allocation. Intuitively, given a program, this approach produces

a CR system which is a set of recursive equations that capture the cost

accumulated along the program’s execution. Symbolic closed-form solutions

(i.e., without recursion) are found then from the CR. This approach leads to

very accurate cost bounds as it is not limited to any complexity class (infers

polynomial, logarithmic, exponential consumption, etc.) and, besides, it can

159

CHAPTER 9. HEAP SPACE ANALYSIS OF BYTECODE PROGRAMS

be used to infer different notions of resources (total memory allocation,

number of executed instructions, number of calls to specific methods, etc.).

Unfortunately, as argued in Paper 9, it is not suitable to infer peak heap

consumption because it is not an accumulative resource of a program’s

execution as CR capture. Instead, it requires to reason on all possible states

to obtain their maximum. By relying on different techniques which do not

generate CR, live heap space analysis is currently restricted to polynomial

bounds and non-recursive methods [18] or to linear bounds dealing with

recursion [24].

Inspired by the basic techniques used in cost analysis, in this thesis,

we present a general framework to infer accurate bounds on the peak heap

consumption of programs which improves the state-of-the-art in that it is

not restricted to any complexity class and deals with all bytecode language

features including recursion. To pursue our analysis, we need to characterize

the behavior of the underlying garbage collector. We assume a standard

scoped-memory manager that reclaims memory when methods return. In

this setting, our main contributions are:

1. Escaped Memory Analysis. We first develop an analysis to infer up-

per bounds on the escaped memory of method’s execution, i.e., the

memory that it is allocated during the execution of the method and

which remains upon exit. The key idea is to infer first an upper bound

for the total memory allocation of the method, as done in Section 9.1.

Then, such bound can be manipulated, by relying on information

computed by escape analysis [17], to extract from it an upper bound

on its escaped memory.

2. Live Heap Space Analysis. By relying on the upper bounds on the

escaped memory, as our main contribution, we propose a novel form of

peak consumption CR which captures the peak memory consumption

over all program states along the execution for the considered scoped-

memory manager. An essential feature of our CRs is that they can

be solved by using existing tools for solving standard CRs .

3. Ideal Garbage Collection. An interesting, novel feature of our ap-

proach is that we can refine the analysis to accommodate other kinds

of scope-based managers which are closer to an ideal garbage collector

which collects objects as soon as they become unreachable.

160

9.3. RELATED WORK ON HEAP SPACE ANALYSIS

4. Implementation. We report on a prototype implementation which is

integrated in COSTA and experimentally evaluate it on the JOlden

benchmark suite. Preliminary results demonstrate that our system

obtains reasonably accurate live heap space upper bounds in a fully

automatic way.

Let us consider again the example of the previous section. Our live

heap analysis now infers the following simplified CRs for the copy method

of class Cons:

Ccopy(a) = 12, a = 1

Ccopy(a) = 8 + max(4,Ccopy(a-1)), a > 1

The intuition of the second CR is that the peak consumption of the method

when a > 1 is the consumption of the method (a Cons object) plus the

maximum between the peak consumption of method m and the escaped

memory from m plus the peak consumption of copy with the decremented

argument. The CRs can again be solved using the upper-bound solver of

COSTA yielding the following upper-bound in closed-form:

Ccopy(a) = 8*nat(a-1) + 24

An interesting observation is that the Integer object which is created inside

the m method is not reachable from outside and thus can be garbage co-

llected. The peak heap analyzer accounts for this and therefore has deleted

the size of the Integer object from the recursive equation, thus obtaining 8

instead of 12 multiplying nat(A− 1). It can also be observed that COSTA

is not being fully precise, as the actual peak consumption of this method is

8∗nat(A−1)+8 (i.e. the size of the cloned list). The reason for this is that

the upper bound solver has to consider the additional cases introduced by

the peak heap analysis in the max expressions to ensure soundness, hence

making the second constant increase to 24.

9.3. Related Work on Heap Space Analysis

There has been much work on analyzing program cost or resource com-

plexities, but the majority of it is on time analysis (see, e.g., [?]). Analysis

of live heap space is different because it involves explicit analysis of all

161

CHAPTER 9. HEAP SPACE ANALYSIS OF BYTECODE PROGRAMS

program states. Most of the work on memory estimation has been stu-

died for functional languages. The work in [50] statically infers, by typing

derivations and linear programming, linear expressions that depend on fun-

ctional parameters while we are able to compute non-linear bounds (expo-

nential, logarithmic, polynomial). The technique is developed for functional

programs with an explicit deallocation mechanism while our technique is

meant for imperative bytecode programs which are better suited for an

automatic memory manager. The techniques proposed in [83, 82] consist

in, given a function, constructing a new function that symbolically mimics

the memory consumption of the former. Although these functions resem-

ble our cost equations, their computed function has to be executed over a

concrete valuation of parameters to obtain a memory bound for that assign-

ment. Unlike our closed-form upper bounds, the evaluation of that function

might not terminate, even if the original program does. Other differences

with the work by Unnikrishnan et al. are that their analysis is developed

for a functional language by relying on reference counts for the functional

data constructed, which basically count the number of pointers to data and

that they focus on particular aspects of functional languages such as tail

call optimizations.

It is worth mentioning also the work in [21], where a memory consum-

ption analysis is presented. In contrast to ours, their aim is to verify that

the program executes in bounded memory by simply checking that the

program does not create new objects inside loops, but they do not infer

bounds as our analysis does. Moreover, it is straightforward to check that

new objects are not created inside loops from our cost relations. Another

related work includes research in the MRG project [10, 16], which focu-

ses on building a proof-carrying code [75] architecture for ensuring that

bytecode programs are free from run-time violations of resource bounds. In

contrast to ours, the analysis is developed for a functional language which

then compiles to a (subset of) Java Bytecode and it is restricted to linear

bounds. In [12] the Bytecode Specification Language is used to annotate

Java Bytecode programs with memory consumption behavior and policies,

and then verification tools can be used to verify those policies.

For Java-like languages, the work of [52] presents a type system for heap

analysis without garbage collection, it is developed at the level of the source

code and based on amortized analysis (hence it is technically quite different

162

9.3. RELATED WORK ON HEAP SPACE ANALYSIS

to our work) and, unlike us, they do not present an inference method for

heap consumption.

Related techniques have been also recently proposed to improve our

first proposal of Paper 9. In particular, for an assembly language, [24] infers

memory resource bounds (both stack usage and heap usage) for low-level

programs (assembly). The approach is limited to linear bounds, they rely

on explicit disposal commands rather than on automatic memory manage-

ment. In their system, dispose commands can be automatically generated

only if alias annotations are provided. For a Java-like language, the ap-

proach of [18] infers upper bounds of the peak consumption by relying on

an automatic memory manager as we do. They do not deal with recursive

methods and are restricted to polynomial bounds. Besides, our approach

in Paper 10 is more flexible as regards its adaptation to other GC schemes.

We believe that our system is the first one to infer upper bounds on the live

heap consumption which are not restricted to simple complexity classes.

163

CHAPTER 9. HEAP SPACE ANALYSIS OF BYTECODE PROGRAMS

164

Chapter 10

Conclusions and Future Work

The main objective of this thesis has been to improve the state-of-the-

art in the transformation and analysis of bytecode languages. Our first cha-

llenge was to provide a formal framework for the automatic decompilation

of (object-oriented) bytecode programs into higher level intermediate re-

presentations using LP by means of interpretive decompilation. Compared

to the development of a dedicated decompiler, interpretive decompilation

has important advantages like flexibility, maintainability, security and ge-

nericity. Though very attractive, up to now it had not been widely applied

in practice except for some proofs-of-concept showing the feasibility of the

approach [63, 48, 76, 64]. Hence, there remained important open issues

when it came to decompile realistic languages, namely, scalability and ef-

fectiveness. The thesis proposed novel solutions and finally answered them

positively by presenting a modular, optimal decompilation scheme which:

1) produces decompiled programs whose quality is equivalent to that of de-

dicated decompilers, and 2) is demonstrated (theoretically and empirically)

to scale up in practice. Our experimental results show that our decompiler

is competitive, from the point of view of efficiency, with dedicated decom-

pilers. We thus believe that the proposed techniques, together with their

experimental evaluation, provide for the first time actual evidence that the

interpretive theory proposed by Futamura in the 70s is indeed an appealing

and feasible alternative to the development of dedicated decompilers from

modern languages to intermediate representations.

For the sake of concreteness, our interpretive decompilation scheme has

been formalized in the context of PE of logic programs, and implemented

165

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

for the Java Bytecode language. It is however important to note that the

ideas we propose for enabling the practicality of the approach are also of

interest for the interpretive (de)compilation of any pair of source and target

languages.

On the other hand, the study of such a complex application of EP has

led us to solve some non-trivial problems of EP in general, like the handling

of infinite signatures. In this regard, we have come out with the type-based

homeomorphic embedding relation, which has been demonstrated to im-

prove the state-of-the-art of (online) specialization tools. We have shown

that existing approaches which extend the untyped embedding relation to

handle infinite signatures can be reconstructed as instances of our TbHEm

relation. Though we have outlined procedures to infer the types in the

context of LP, our type-based relation is not tied to any programming pa-

radigm. Moreover, it can be used for a wide range of applications, namely

in all areas of automatic program analysis, synthesis, verification, speciali-

zation and transformation; and will directly benefit from any progress on

automatic type inference.

We have seen that the resulting intermediate representation, using LP,

can greatly simplify the development of analysis, verification and model-

checking tools for modern languages and, more interestingly, existing ad-

vanced tools developed for declarative languages (already proven correct

and effective) can be directly applied on it. We have performed two experi-

mentations in this direction. In the first one we have investigated whether

it is feasible to analyze bytecode programs by analyzing its decompilations

to LP using existing LP analysis tools. In this sense, we have been able to

automatically prove in the CiaoPP system some non-trivial properties of

Java Bytecode programs such as termination, run-time error freeness and

infer bounds on its resource consumption for some simple programs.

For our second experimentation we have taken advantage of the fact

that our decompiled programs are fully executable since, in contrast to ot-

her approaches [70, 2, 84], they represent the whole program state (i.e. they

contain a representation of the heap in addition to the operand stack). We

have therefore proposed a methodology for test data generation of byte-

code by means of existing EP techniques developed for CLP. Our approach

consists of two separate phases: (1) the compilation of the bytecode to a

CLP program, and (2) the generation of test-cases from the CLP program.

166

It naturally raises the question whether this approach can be applied to

other imperative languages in addition to bytecode. This is interesting as

existing approaches for Java [73], and for C [45], struggle for dealing with

features like recursion, method calls, dynamic memory, etc. during symbo-

lic execution. We have shown that these features can be uniformly handled

in our approach after the transformation to CLP. In particular, all kinds of

loops in the bytecode become uniformly represented by recursive predicates

in the CLP program. Also, we have seen that method calls are treated in

the same way as calls to blocks.

We believe this experimentation is a, very promising, proof-of-concept

that partial evaluation of CLP is a powerful technique for carrying out

TDG in bytecode languages. To develop our ideas, we have considered a

simple imperative bytecode language and left out object-oriented features

which require a further study. Also, our language is restricted to integer

numbers and the extension to deal with real numbers is subject of future

work. We plan to carry out an experimental evaluation by transforming Java

Bytecode programs from existing test suites to CLP programs and then tr-

ying to obtain useful test-cases. When considering realistic programs with

object-oriented features and real numbers, we will surely face additional

difficulties. One of the main practical issues is related to the scalability of

our approach. An important threaten to scalability in TDG is the so-called

infeasibility problem [90]. It happens in approaches that do not handle

constraints along the construction of execution paths but rather perform

two independent phases (1) path selection and (2) constraint solving our

approach integrates both parts in a single phase, we do not expect scala-

bility limitations in this regard. Also, a challenging problem is to obtain

a decompilation which achieves a manageable representation of the heap.

This will be necessary to obtain test-cases which involve data for objects

stored in the heap. For the practical assessment, we also plan to extend our

technique to include further coverage criteria. We want to consider other

classes of coverage criteria which, for instance, generate test-cases which

cover a certain statement in the program.

In principle, such an approach to TDG can be applied to any language,

both to high-level and low-level. In this direction, this thesis has perfor-

med a preliminary experimentation in which we study whether the second

phase can be useful for test-case generation of CLP programs, which are

167

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

not necessarily obtained from a decompilation of an imperative code. This

introduces some difficulties like the handling of failing derivations and of

symbolic data. In this thesis, we have sketched solutions to overcome such

difficulties. In particular, we have proposed a program transformation, ba-

sed on PE, to make failure explicit in the Prolog programs. To handle

Prolog’s negation in the transformed programs, we have outlined existing

solutions that make it possible to turn the negative information into po-

sitive information. Though our preliminary experiments already suggest

that the approach can be very useful to generate test-cases for Prolog, we

plan to carry out a thorough practical assessment. This requires to cover

additional Prolog features which have not been handled yet, and, also to

compare the results with other TDG systems. We also want to study the

integration of other kinds of coverage criteria like data-flow based criteria.

Finally, we would like to explore the use of static analyses in the context

of TDG. For instance, the information inferred by a failure analysis can be

very useful to prune some of the branches that our transformed programs

have to consider.

Another big challenge of this thesis has been to improve the state-of-

the-art of heap space analysis of bytecode languages. In this regard, we have

developed a novel application of the cost analysis framework of [3] which has

been further extended to consider the effect of garbage collection. We have

therefore presented a general approach to the automatic and accurate live

heap space analysis for bytecode languages with garbage collection. First,

we have proposed how to obtain accurate bounds on the memory escaped

from a method’s execution by combining the total allocation performed

by the method together with information obtained by means of escape

analysis. Then, we have introduced a novel form of peak consumption cost

relation which uses the computed escaped memory bounds and precisely

captures the actual heap consumption of programséxecution for garbage-

collected languages. Such cost relations can be converted into closed-form

upper bounds by relying on standard upper bound solvers, in particular

the one in COSTA. For the sake of concreteness, our analysis has been

developed for object-oriented bytecode, though the same techniques can be

applied to other languages with garbage collection. We have first developed

our analysis under a scoped-memory management which reclaims memory

on method’s return. The amount of memory required to run a method under

168

such model can be used as an over-approximation of the amount required

to run it in the context of an ideal garbage collection which frees objects as

soon as they become dead. We have also shown how to approximate such

ideal behavior with our analysis.

Finally, it is important to note that this approach could be used to

estimate other (non accumulative) resources which require to consider the

maximal consumption of several execution paths. For example, it can be

used to estimate the maximal height of the frames stack as follows. Given

a rule r ≡ p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn, where bi1 . . . bik are the calls in r, with

1 ≤ i1 ≤ · · · ≤ ik ≤ n and bij = qij(〈x̄ij〉, 〈ȳij〉), its corresponding equation

would be

p(x̄) = máx(1 + qi1(x̄ij), . . . , 1 + qik(x̄ik)) ϕr

which takes the maximal height from all possible call chains. Each “1” co-

rresponds to a single frame created for the corresponding call. Note that in

this setting, tail call optimization can be also supported, by using an analy-

sis that detects calls in tail position, and then replace their corresponding

1’s by 0’s. This is also a subject for future work.

169

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

170

Bibliograf́ıa

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers - Principles, Tech-

niques and Tools. Addison-Wesley, 1986.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

Analysis of Java Bytecode. In Rocco De Nicola, editor, 16th European

Symposium on Programming, ESOP’07, volume 4421 of Lecture Notes

in Computer Science, pages 157–172. Springer, March 2007.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

analysis of java bytecode. In 16th European Symposium on Program-

ming, ESOP’07, Lecture Notes in Computer Science. Springer, March

2007. Available online http://www.clip.dia.fi.upm.es/papers/jvm-

cost-esop.pdf.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost

Analysis of Java Bytecode. In ESOP, LNCS 4421, pages 157–172.

Springer, 2007.

[5] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COS-

TA: Design and Implementation of a Cost and Termination Analyzer

for Java Bytecode. In Post-proceedings of Formal Methods for Compo-

nents and Objects (FMCO’07), number 5382 in LNCS, pages 113–133.

Springer-Verlag, October 2008.

[6] E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation

Scheme for Multi-Paradigm Declarative Languages. Journal of Fun-

ctional and Logic Programming, 2002(1), 2002.

[7] E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Unfolding in

Partial Evaluation of Logic Programs with Impure Predicates. In

171

BIBLIOGRAFÍA

15th International Symposium on Logic-based Program Synthesis and

Transformation (LOPSTR’05), number 3901 in LNCS, pages 115–132.

Springer-Verlag, April 2006.

[8] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying

Code. In Proc. of LPAR’04, volume 3452 of LNAI. Springer, 2005.

[9] Elvira Albert, Puri Arenas, Samir Genaim, and German Puebla. Au-

tomatic Inference of Upper Bounds for Recurrence Relations in Cost

Analysis. In Maŕıa Alpuente and Germán Vidal, editors, Static Analy-

sis, 15th International Symposium, SAS 2008, Valencia, Spain, July

15-17, 2008, Proceedings, volume 5079 of Lecture Notes in Computer

Science, pages 221–237. Springer-Verlag, July 2008.

[10] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile

Resource Guarantees for Smart Devices. In CASSIS’04, LNCS 3362,

pages 1–27. Springer-Verlag, 2005.

[11] B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliatre, E. Gimenez,

H. Herbelin, G. Huet, C. Munoz, C. Murthy, C. Parent, C. Paulin-

Mohring, A. Saibi, and B. Werner. The Coq Proof Assistant Refe-

rence Manual : Version 6.1. Technical Report RT-0203, 1997. cite-

seer.ist.psu.edu/barras97coq.html.

[12] Gilles Barthe, Mariela Pavlova, and Gerardo Schneider. Precise analy-

sis of memory consumption using program logics. In SEFM, pages

86–95, 2005.

[13] F. Belli and O. Jack. Implementation-based analysis and testing of

prolog programs. In ISSTA, pages 70–80, 1993.

[14] S. Belur and K. Bettadapura. Jdec: Java Decompiler.

http://jdec.sourceforge.net/.

[15] R. Benzinger. Automated Higher-Order Complexity Analysis. Theor.

Comput. Sci., 318(1-2), 2004.

[16] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Auto-

matic Certification of Heap Consumption. In Proc. of LPAR’04, LNCS

3452, pages 347–362. Springer, 2004.

172

BIBLIOGRAFÍA

[17] Bruno Blanchet. Escape Analysis for Object Oriented Languages. Ap-

plication to Java(TM). In Conference on Object-Oriented Program-

ming, Systems, Languages and Applications (OOPSLA’99), pages 20–

34. ACM, November 1999.

[18] V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Pa-

rametric Prediction of Heap Memory Requirements. In ISMM. ACM

Press, 2008.

[19] Peter T. Breuer and Jonathan P. Bowen. Decompilation: The enu-

meration of types and grammars. ACM Trans. Program. Lang. Syst.,

16(5):1613–1647, 1994.

[20] M. Bruynooghe, J. Gallagher, and W. Humbeeck. Inference of Well-

typings for Logic Programs with Application to Termination Analysis.

In 12th International Static Analysis Symposium (SAS’05), volume

3672 of LNCS, pages 35–51. Springer-Verlag, 2005.

[21] D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified me-

mory usage analysis. In FM’05, number 3582 in LNCS. Springer, 2005.

[22] A. Chander, D. Espinosa, N. Islam, P. Lee, and G.Ñecula. Enforcing

resource bounds via static verification of dynamic checks. In ESOP’05,

volume 3444 of LNCS. Springer, 2005.

[23] W.-N. Chin, H. H. Nguyen, S. Qin, and M. C. Rinard. Memory Usage

Verification for OO Programs. In Proc. of SAS’05, volume 3672 of

LNCS, pages 70–86, 2005.

[24] W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory

Resource Bounds for Low-Level Programs. In ISMM. ACM Press,

2008.

[25] The Ciao Development Team. The Ciao Multiparadigm Language

and Program Development Environment, November 2006. The ALP

Newsletter 19(3). The Association for Logic Programming.

[26] Cristina Cifuentes and K. John Gough. Decompilation of binary pro-

grams. Softw., Pract. Exper., 25(7):811–829, 1995.

173

BIBLIOGRAFÍA

[27] Cristina Cifuentes, Doug Simon, and Antoine Fraboulet. Assembly to

high-level language translation. In ICSM, pages 228–237, 1998.

[28] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for

random testing of haskell programs. In ICFP, pages 268–279, 2000.

[29] L. A. Clarke. A system to generate test data and symbolically execute

programs. IEEE Trans. Software Eng., 2(3):215–222, 1976.

[30] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice

Model for Static Analysis of Programs by Construction or Approxima-

tion of Fixpoints. In ACM Symposium on Principles of Programming

Languages (POPL 1977), pages 238–252, 1977.

[31] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. The ASTRÉE Analyser. In The European Symposium

on Programming (ESOP 2005), number 3444, pages 21–30. Springer-

Verlag, 2005.

[32] Stephen-John Craig, John P. Gallagher, Michael Leuschel, and Kim S.

Henriksen. Fully automatic binding-time analysis for prolog. In

LOPSTR, pages 53–68, 2004.

[33] K. Crary and S. Weirich. Resource Bound Certification. In POPL’00,

pages 184–198. ACM, 2000.

[34] S. K. Debray and N.-W. Lin. Cost analysis of logic programs. ACM

Transactions on Programming Languages and Systems, 15(5):826–875,

1993.

[35] S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lo-

wer Bound Cost Estimation for Logic Programs. In 1997 International

Logic Programming Symposium, pages 291–305. MIT Press, Cambrid-

ge, MA, October 1997.

[36] F. Degrave, T. Schrijvers, and W. Vanhoof. Automatic generation of

test inputs for mercury. In 18th International Symposium on Logic-

based Program Synthesis and Transformation (LOPSTR’08), LNCS.

Springer-Verlag, 2009.

174

BIBLIOGRAFÍA

[37] R. DeLine and K.R.M. Leino. BoogiePL: A typed procedural language

for checking object-oriented programs. Technical Report MSR-TR-

2005-70, Microsoft Research, 2005.

[38] N. Dershowitz and J. P. Jouannaud. Rewrite Systems. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. B,

pages 243–320. Elsevier, 1990.

[39] R. Ferguson and B. Korel. The chaining approach for software test data

generation. ACM Trans. Softw. Eng. Methodol., 5(1):63–86, 1996.

[40] S. Fischer and H. Kuchen. Systematic generation of glass-box test

cases for functional logic programs. In PPDP, pages 63–74, 2007.

[41] Y. Futamura. Partial Evaluation of Computation Process - An

Approach to a Compiler-Compiler. Systems, Computers, Controls,

2(5):45–50, 1971.

[42] J.P. Gallagher. Tutorial on specialisation of logic programs. In Procee-

dings of PEPM’93, the ACM Sigplan Symposium on Partial Evalua-

tion and Semantics-Based Program Manipulation, pages 88–98. ACM

Press, 1993.

[43] J.P. Gallagher and J.C. Peralta. Using regular approximations for

generalisation during partial evaluation. In Proc. of the SIGPLAN

Workshop on Partial Evaluation and Semantics-based Program Mani-

pulation, pages 44–51. ACM Press, 2000.

[44] G. Gómez and Y. A. Liu. Automatic Time-Bound Analysis for a

Higher-Order Language. In Proceedings of the Symposium on Par-

tial Evaluation and Semantics-Based Program Manipulation (PEPM).

ACM Press, 2002.

[45] A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing

structural test data. In Computational Logic, pages 399–413, 2000.

[46] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test data for

branch coverage. In Automated Software Engineering, pages 219–228,

2000.

175

BIBLIOGRAFÍA

[47] Kim S. Henriksen and John P. Gallagher. Analysis and specialisation

of a pic processor. In SMC (2), pages 1131–1135. IEEE, 2004.

[48] Kim S. Henriksen and John P. Gallagher. Abstract interpretation of

pic programs through logic programming. In SCAM ’06: Proceedings

of the Sixth IEEE International Workshop on Source Code Analysis

and Manipulation, pages 184–196. IEEE Computer Society, 2006.

[49] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. In-

tegrated Program Debugging, Verification, and Optimization Using

Abstract Interpretation (and The Ciao System Preprocessor). Science

of Computer Programming, 58(1–2):115–140, October 2005.

[50] M. Hofmann and S. Jost. Static prediction of heap space usage for

first-order functional programs. In ACM Symposium on Principles of

Programming Languages (POPL), 2003.

[51] M. Hofmann and S. Jost. Static prediction of heap space usage for

first-order functional programs. In POPL, 2003.

[52] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Analysis.

In 15th European Symposium on Programming, ESOP 2006, volume

3924 of Lecture Notes in Computer Science, pages 22–37. Springer,

2006.

[53] W.E. Howden. Symbolic testing and the dissect symbolic evaluation

system. IEEE Transactions on Software Engineering, 3(4):266–278,

1977.

[54] J. Hughes and L. Pareto. Recursion and Dynamic Data-structures in

Bounded Space: Towards Embedded ML Programming. In Proc. of

ICFP’99, pages 70–81. ACM Press, 1999.

[55] JOlden Suite Collection. http://www-

ali.cs.umass.edu/DaCapo/benchmarks.html.

[56] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and

Automatic Program Generation. Prentice Hall, New York, 1993.

176

BIBLIOGRAFÍA

[57] J. C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, 1976.

[58] J.B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazson-

yi’s Conjecture. Transactions of the American Mathematical Society,

95:210–225, 1960.

[59] J. Launchbury. A Natural Semantics for Lazy Evaluation. In POPL,

pages 144–154, 1993.

[60] Xavier Leroy. Java Bytecode Verification: Algorithms and Formaliza-

tions. Journal of Automated Reasoning, 30(3-4):235–269, 2003.

[61] M. Leuschel. Homeomorphic Embedding for Online Termination of

Symbolic Methods. In The Essence of Computation, volume 2566 of

LNCS, pages 379–403. Springer, 2002.

[62] M. Leuschel and M. Bruynooghe. Logic Program Specialisation th-

rough Partial Deduction: Control Issues. Theory and Practice of Logic

Programming, 2(4 & 5):461–515, July & September 2002.

[63] M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof. Specialising

interpreters using offline partial deduction. In Program Development

in Computational Logic, volume 3049 of Lecture Notes in Computer

Science, pages 340–375. Springer, 2004.

[64] M. Leuschel, S. Craig, and D. Elphick. Supervising offline partial eva-

luation of logic programs using online techniques. In LOPSTR, volu-

me 4407 of Lecture Notes in Computer Science, pages 43–59. Springer,

2006.

[65] Michael Leuschel and Germán Vidal. Fast offline partial evaluation of

large logic programs. In LOPSTR, pages 119–134, 2008.

[66] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.

Addison-Wesley, 1996.

[67] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic pro-

gramming. The Journal of Logic Programming, 11:217–242, 1991.

177

BIBLIOGRAFÍA

[68] J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd Ext.

Ed., 1987.

[69] G. Luo, G. Bochmann, B. Sarikaya, and M. Boyer. Control-flow ba-

sed testing of prolog programs. In In Proc. of the 3rd International

Symposium on Software Reliability Engineering, pages 104–113, 1992.

[70] M. Méndez-Lojo, J.Ñavas, and M. Hermenegildo. A Flexible (C)LP-

Based Approach to the Analysis of Object-Oriented Programs. In

17th International Symposium on Logic-based Program Synthesis and

Transformation (LOPSTR 2007), number 4915, pages 154–168. LNCS,

August 2007.

[71] C. Meudec. Atgen: Automatic test data generation using constraint lo-

gic programming and symbolic execution. Softw. Test., Verif. Reliab.,

11(2):81–96, 2001.

[72] Jerome Miecznikowski and Laurie J. Hendren. Decompiling java byte-

code: Problems, traps and pitfalls. In R.Ñigel Horspool, editor, CC,

volume 2304 of Lecture Notes in Computer Science, pages 111–127.

Springer, 2002.

[73] R. A. Müller, C. Lembeck, and H. Kuchen. A symbolic java virtual

machine for test case generation. In IASTED Conf. on Software En-

gineering, pages 365–371, 2004.

[74] G. Necula. Proof-Carrying Code. In ACM Symposium on Principles

of programming languages (POPL 1997), pages 106–119. ACM Press,

1997.

[75] G. Necula. Proof-Carrying Code. In POPL’97, pages 106–119. ACM

Press, 1997.

[76] J.C. Peralta, J. Gallagher, and H. Sağlam. Analysis of imperative

programs through analysis of constraint logic programs. In G. Levi,

editor, Static Analysis. 5th International Symposium, SAS’98, Pisa,

volume 1503 of LNCS, pages 246–261, 1998.

178

BIBLIOGRAFÍA

[77] J.C. Peralta, J. Gallagher, and H. Sağlam. Analysis of imperative

programs through analysis of constraint logic programs. In Proc. of

SAS’98, volume 1503 of LNCS, pages 246–261, 1998.

[78] D. Pichardie. Bicolano (Byte Code Language in cOq). http://www-

sop.inria.fr/everest/personnel/David.Pichardie/bicolano/main.html.

[79] F. A. Rabhi and G. A. Manson. Using Complexity Functions to Con-

trol Parallelism in Functional Programs. Res. Rep. CS-90-1, Dept. of

Computer Science, Univ. of Sheffield, England, January 1990.

[80] D. Sands. A näıve time analysis and its theory of cost equivalence. J.

Log. Comput., 5(4), 1995.

[81] Benjamin Schwarz, Saumya K. Debray, and Gregory R. Andrews. Di-

sassembly of executable code revisited. In Arie van Deursen and Eli-

zabeth Burd, editors, WCRE, pages 45–54. IEEE Computer Society,

2002.

[82] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Automatic Accurate

Live Memory Analysis for Garbage-Collected Languages. In Proc. of

LCTES/OM, pages 102–111. ACM, 2001.

[83] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized Live Heap

Bound Analysis. In Proc. of VMCAI’03, volume 2575 of LNCS, pages

70–85, 2003.

[84] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and

P. Co. Soot - a Java optimization framework. In Proc. of Conference

of the Centre for Advanced Studies on Collaborative Research (CAS-

CON), pages 125–135, 1999.

[85] P. Vasconcelos and K. Hammond. Inferring Cost Equations for Re-

cursive, Polymorphic and Higher-Order Functional Programs. In IFL,

volume 3145 of LNCS. Springer, 2003.

[86] B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM,

18(9), 1975.

179

BIBLIOGRAFÍA

[87] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam.

Using Datalog with Binary Decision Diagrams for Program Analysis.

In Kwangkeun Yi, editor, APLAS, volume 3780 of Lecture Notes in

Computer Science, pages 97–118. Springer, 2005.

[88] Reinhard Wilhelm. Timing Analysis and Timing Predictability. In

Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Wi-

llem P. de Roever, editors, Formal Methods for Components and Ob-

jects, Third International Symposium (FMCO), volume 3657 of LNCS,

Revised Lectures, pages 317–323. Springer, 2004.

[89] L. Zhao, T. Gu, J. Qian, and G. Cai. A novel test case generation met-

hod for prolog programs based on call patterns semantics. In APLAS,

pages 105–121, 2007.

[90] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test

coverage and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

180

Apéndice A

Art́ıculos de la Tesis (Papers

of the Thesis)

Lista de art́ıculos (List of papers):

1. E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of

Java Bytecode using Analysis and Transformation of Logic Programs. In

Ninth International Symposium on Practical Aspects of Declarative Lan-

guages, number 4354 in LNCS, pages 124–139. Springer-Verlag, January

2007.

2. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Improving the Decompila-

tion of Java Bytecode to Prolog by Partial Evaluation. In M. Huisman and

F. Spoto, editors, ETAPS Workshop on Bytecode Semantics, Verification,

Analysis and Transformation (BYTECODE’07), volume 190, Issue 1 of

Electronic Notes in Theoretical Computer Science, pages 85–101. Elsevier

- North Holland, July 2007.

3. E. Albert, J. Gallagher, M. Gómez-Zamalloa, and G. Puebla. Type-based

Homeomorphic Embedding and its Applications to Online Partial Evalua-

tion. In 17th International Symposium on Logic-based Program Synthesis

and Transformation (LOPSTR’07), volume 4915 of LNCS, pages 23–42.

Springer-Verlag, February 2008.

4. E. Albert, J. Gallagher, M. Gómez-Zamalloa, and G. Puebla. Type-based

Homeomorphic Embedding for Online Termination. Information Proces-

sing Letters, 2009.

181

APÉNDICE A. ARTÍCULOS DE LA TESIS (PAPERS OF THE THESIS)

5. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Modular Decompilation of

Low-Level Code by Partial Evaluation. In 8th IEEE International Working

Conference on Source Code Analysis and Manipulation (SCAM’08), pages

239–248. IEEE Computer Society, September 2008.

6. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Decompilation of Java

Bytecode to Prolog by Partial Evaluation. Journal of Information and

Software Technology, 2009. To appear.

7. E. Albert, M. Gómez-Zamalloa, and G. Puebla. Test Data Generation of

Bytecode by clp Partial Evaluation. In 18th International Symposium on

Logic-based Program Synthesis and Transformation (LOPSTR’08), num-

ber 5438 in LNCS, pages 4–23. Springer-Verlag, March 2009.

8. M. Gómez-Zamalloa, E. Albert, and G. Puebla. On the Generation of Test

Data for Prolog by Partial Evaluation. In Workshop on Logic-based met-

hods in Programming Environments (WLPE’08), volume WLPE/2008/06,

pages 26–43, 2008.

9. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis

for Java Bytecode. In ISMM ’07: Proceedings of the 6th international

symposium on Memory management, pages 105–116, New York, NY, USA,

October 2007. ACM Press.

10. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis

for Languages with Garbage Collection. In ISMM’09: Proceedings of the

8th international symposium on Memory management, New York, NY,

USA, June 2009. ACM Press.

182

Verification of Java Bytecode Using Analysis

and Transformation of Logic Programs

E. Albert1, M. Gómez-Zamalloa1, L. Hubert2, and G. Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

{elvira,mzamalloa,laurent,german}@clip.dia.fi.upm.es

Abstract. State of the art analyzers in the Logic Programming (LP)
paradigm are nowadays mature and sophisticated. They allow inferring
a wide variety of global properties including termination, bounds on re-
source consumption, etc. The aim of this work is to automatically transfer
the power of such analysis tools for LP to the analysis and verification of
Java bytecode (jvml). In order to achieve our goal, we rely on well-known
techniques for meta-programming and program specialization. More pre-
cisely, we propose to partially evaluate a jvml interpreter implemented
in LP together with (an LP representation of) a jvml program and then
analyze the residual program. Interestingly, at least for the examples we
have studied, our approach produces very simple LP representations of
the original jvml programs. This can be seen as a decompilation from
jvml to high-level LP source. By reasoning about such residual programs,
we can automatically prove in the CiaoPP system some non-trivial prop-
erties of jvml programs such as termination, run-time error freeness and
infer bounds on its resource consumption. We are not aware of any other
system which is able to verify such advanced properties of Java bytecode.

1 Introduction

Verifying programs in the (Constraint) Logic Programming paradigm —(C)LP—
offers a good number of advantages, an important one being the maturity and
sophistication of the analysis tools available for it. The work presented in this
paper is motivated by the existence of abstract interpretation-based analyzers [3]
which infer information on programs by interpreting (“running”) them using
abstract values rather than concrete ones, thus, obtaining safe approximations of
programs behavior. These analyzers are parametric w.r.t. the so-called abstract
domain, which provides a finite representation of possibly infinite sets of values.
Different domains capture different properties of the program with different levels
of precision and at different computational costs. This includes error freeness,
data structure shape (like pointer sharing), bounds on data structure sizes, and
other operational variable instantiation properties, as well as procedure-level
properties such as determinacy, termination, non-failure, and bounds on resource
consumption (time or space cost), etc. CiaoPP [9] is the abstract interpretation-
based preprocessor of the Ciao (C)LP system, where analysis results have been
applied to perform high- and low-level optimizations and program verification.

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 124–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Verification of Java Bytecode Using Analysis and Transformation 125

CLASS

EVALUATOR

PARTIAL

 Class n

Class 1

....

Class files

META−PROGRAMMING

asser

ANALYZER

Domains
Abstract

READER

check

VERIFICATIONPROGRAM TRANSFORMATION

Program

Residual Abs
JVML r

JVML

Interpreter
r

Program

(LP)

Fig. 1. Verification of Java Bytecode using Logic Programming Tools

A principal advantage of verifying programs on the (LP) source code level is
that we can infer complex global properties (like the aforementioned ones) for
them. However, in certain applications like within the context of mobile code, one
may only have the object code available. In general, analysis tools for such low-
level languages are unavoidably more complicated than for high-level languages
because they have to cope with complicated and unstructured control flow. Fur-
thermore, as the jvml (Java Virtual Machine Language, i.e., Java bytecode) is
a stack-based language, stacks cells are used to store intermediate values, and
therefore their type can change from one assignment to another, and they can
also be used to store 32 bits of a 64 bit value, which make the inference of stack
information much more difficult. Besides, it is a non trivial task to specify/infer
global properties for the bytecode by using pre- and post-conditions (as it is
usually done in existing tools for high-level languages).

The aim of this work is to provide a practical framework for the verification
of jvml which exploits the expressiveness, automation and genericity of the ad-
vanced analysis tools for LP source. In order to achieve this goal, we will focus on
the techniques of meta-programming, program specialization and static analysis
that together support the use of LP tools to analyze jvml programs. Interpre-
tative approaches which rely on CLP tools have been applied to analyze rather
restricted versions of high-level imperative languages [13] and also assembly code
for PIC [8], an 8-bit microprocessor. However, to the best of our knowledge, this
is the first time the interpretative approach has been successfully applied to a
general purpose, realistic, imperative programming language.

Overview. Fig. 1 presents a general overview of our approach. We depict an
element within a straight box to denote its use as a program and a rounded box
for data. The whole verification process is split in three main parts:

1. Meta-programming. We use LP as a language for representing and manipu-
lating jvml programs. We have implemented an automatic translator, called
class reader, which given a set of .class files {Class 1,. . ., Class n} re-
turns P , an LP representation of them in jvmlr (a representative subset of
jvml presented in Sect. 2). Furthermore, we also describe in Sect. 3 an in-
terpreter in LP, called jvmlr int, which captures the JVM semantics. The
interpreter has been extended in order to compute execution traces, which
will be very useful for reasoning about certain properties.

126 E. Albert et al.

2. Partial evaluation. The development of partial evaluation techniques [10] has
allowed the so-called “interpretative approach” to compilation which consists
in specializing an interpreter w.r.t. a fixed object code. We have used an
existing partial evaluator for LP in order to specialize the jvmlr int

w.r.t. P . As a result, we obtain IP , an LP residual program which can be
seen as a decompiled and translated version of P into LP (see Sect. 4).

3. Verification of Java bytecode. The final goal is that the jvml program can be
verified by analyzing the residual program IP obtained in Step 2) above by
using state-of-the-art analyzers developed for LP, as we will see in Sect. 5.

The resulting scheme has been implemented and incorporated in the CiaoPP pre-
processor. Our preliminary experiments show that it is possible to infer global
properties of the computation of the residual LP programs. We believe our pro-
posed approach is very promising in order to bring the analysis power of declar-
ative languages to low-level, imperative code such as Java bytecode.

2 The Class Reader (jvml to jvmlr in LP)

As notation, we use Prog to denote LP programs and Class to denote .class

files (i.e., jvml classes). The input of our verification process is a set of .class
files, denoted as C1 . . . Cn ∈ Class, as specified by the Java Virtual Machine
Specification [12]. Then, the class reader takes C1 . . . Cn and returns an LP
file which contains all the information in C1 . . . Cn represented in our jvmlr

language. jvmlr is a representative subset of the jvml language which is able to
handle: classes, interfaces, arrays, objects, constructors, exceptions, method call
to class and instance methods, etc. For simplicity, some other features such as
packages, concurrency and types as float, double, long and string are left out of
the chosen subset. For conciseness, we use jvmlr Prog to make it explicit that
an LP program contains a jvmlr representation. The differences between jvml

and jvmlr are essentially the following:

1. Bytecode factorization. Some instructions in jvml have a similar behavior
and have been factorized in jvmlr in order to have fewer instructions1.
This makes the jvmlr code easier to read (as well as the traces which will
be discussed in Sect. 3) and the jvmlr int easier to program and main-
tain.

2. References resolution. The original jvml instructions contain indexes onto
the constant-pool table [12], a structure present in the .class file which
stores different kinds of data (constants, field and method names, descrip-
tors, class names, etc.) and which is used in order to make bytecode pro-
grams as compact as possible. The class reader removes all references to
the constant-pool table in the bytecode instructions by replacing them with
the complete information to facilitate the task of the tools which need to
handle the bytecode later.

1 This allows covering over 200 instructions of jvml in 54 instructions in jvmlr.

Verification of Java Bytecode Using Analysis and Transformation 127

1
2
3

4
5

6
7

8
9
10

11
12

13
14

15
16
17

18
19

20
21
22

23
24

25
26

27
28
29

30
31

32
33
34

35
36

37
38

class(
className(packageName(’’),shortClassName(’Rational’)),final(false),public(true),
abstract(false),className(packageName(’java/lang/’),shortClassName(’Object’)),[],

[field(
fieldSignature(

fieldName(
className(packageName(’’),shortClassName(’Rational’)),shortFieldName(num)),

primitiveType(int)),
final(false),static(false),public,initialValue(undef)),

field(

fieldSignature(
fieldName(

className(packageName(’’),shortClassName(’Rational’)),shortFieldName(den)),
primitiveType(int)),

final(false),static(false),public,initialValue(undef))],

[method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(’<init>’)),

[primitiveType(int),primitiveType(int)],none),
bytecodeMethod(3,2,0,methodId(’Rational_class’,1),[]),
final(false),static(false),public),

method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(exp)),

[primitiveType(int)],

refType(classType(className(packageName(’’),shortClassName(’Rational’))))),
bytecodeMethod(4,4,0,methodId(’Rational_class’,2),[]),

final(false),static(false),public),
method(

methodSignature(
methodName(

className(packageName(’’),shortClassName(’Rational’)),shortMethodName(expMain)),

[primitiveType(int),primitiveType(int),primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’))))),

bytecodeMethod(3,4,0,methodId(’Rational_class’,3),[]),
final(false),static(true),public)]).

Fig. 2. Extract of the Program Fact Describing the Rational Class of Running Example

The Ciao file generated by the class reader contains the bytecode instructions
for all methods in C1 . . . Cn, represented as a set of facts; and also, a single fact
obtained by putting together all the other information available in the .class

files (class name, methods and fields signatures, etc.).

Example 1 (running example). Our running example considers a main Java class
named Rational which represents rational numbers using two attributes: num
and den. The class has a constructor, an instance method exp for computing
the exponential of rational numbers w.r.t. a given exponent (the result is re-
turned on a new rational object), and a static method expMain which given
three integers, creates a new rational object using the first two ones as numer-
ator and denominator, respectively, and invokes its exp method using the third
argument as parameter. Finally, it returns the corresponding rational object.
This example features arithmetic operations, object creation, field access, and
invocation of both class and instance methods. It also shows that our approach
is not restricted to intra-procedural analysis.

In Fig. 2, we show the extract of the program fact corresponding to class Ra-
tional. Line numbers are provided for convenience but they are not part of the

128 E. Albert et al.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

class(
className(packageName(’’),shortClassName(’Rational’)),final(false),public(true),
abstract(false),className(packageName(’java/lang/’),shortClassName(’Object’)),[],
[field(

fieldSignature(
fieldName(

className(packageName(’’),shortClassName(’Rational’)),shortFieldName(num)),
primitiveType(int)),

final(false),static(false),public,initialValue(undef)),
field(

fieldSignature(
fieldName(

className(packageName(’’),shortClassName(’Rational’)),shortFieldName(den)),
primitiveType(int)),

final(false),static(false),public,initialValue(undef))],
[method(

methodSignature(
methodName(

className(packageName(’’),shortClassName(’Rational’)),shortMethodName(’<init>’)),
[primitiveType(int),primitiveType(int)],none),

bytecodeMethod(3,2,0,methodId(’Rational_class’,1),[]),
final(false),static(false),public),

method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(exp)),

[primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’))))),

bytecodeMethod(4,4,0,methodId(’Rational_class’,2),[]),
final(false),static(false),public),

method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(expMain)),

[primitiveType(int),primitiveType(int),primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’))))),

bytecodeMethod(3,4,0,methodId(’Rational_class’,3),[]),
final(false),static(true),public)]).

Fig. 3. Extract of the Bytecode facts of our Running Example

code. The description of the field num appears in Lines 4-9, den in L.10-15 and
the methods in L.16-38. For conciseness, only methods actually used are shown.
The first method (L.16-22) is a constructor that takes two integers (L.20) as
arguments. The second method (L.23-30) is named exp (L.26), it is an instance
method (cf. static(false) L.30)) and takes an integer (L.27) as a parameter
and returns an instance of Rational (L.28). Finally, the last method (L.31-38),
expMain, is a class method (cf. static(true) L.38), that takes as parameters
three integers (L.35) and returns an instance of Rational (L.36).

Fig. 3 presents the bytecode facts corresponding to the methods exp and
expMain. Each fact is of the form bytecode(PC,MethodID,Class,Inst,Size),
where Class and MethodID, respectively, identify the class and the method to
which the instruction Inst belongs. PC corresponds to the program counter and
Size to the number of bytes of the instruction in order to be able to compute the
next value of the program counter. The class method number 3 (i.e., expMain)
creates first an instance of Rational (Instructions 0-6) and then invokes the
instance method exp (I.9-10). The bytecode of the method number 2 (i.e., exp),
can be divided in 3 parts. First, the initialization (I.0-3) of two local variables,

Verification of Java Bytecode Using Analysis and Transformation 129

say x2 and x3, to 1. Then, the loop body (I.4-25) first compares the exponent
to 0 and, if it is less or equal to 0, exits the loop by jumping 23 bytes ahead
(I.4-5). Then, the current value of x2 (iload) and the denominator (aload and
getfield) are retrieved (I.8-10), multiplied and stored in x2 (I.13-14). The same
is done for x3 with the numerator in I.15-21. Finally, the value of the exponent
is decreased by one (I.22) and PC is decreased by 21 (I.25) i.e., we jump back
to the beginning of the loop. After the loop, the method creates an instance of
Rational, stores the result (I.28-34), and returns this object (I.37).

3 Specification of the Dynamic Semantics

(C)LP programs have been used traditionally for expressing the semantics of
both high- and low-level languages [13,17]. In our approach, we express the
jvml semantics in Ciao. The formal jvml specification chosen for our work is
Bicolano [14], which is written with the Coq Proof Assistant [1]. This allows
checking that the specification is consistent and also proving properties on the
behavior of some programs.

In the specification, a state is modeled by a 3-tuple2 〈 Heap, Frame, Stack-
Frame 〉 which represents the machine’s state where Heap represents the con-
tents of the heap, Frame represents the execution state of the current Method
and, StackFrame is a list of frames corresponding to the call stack. Each frame
is of the form 〈 Method, PC, OperandStack, LocalV ar 〉 and contains the stack
of operands OperandStack and the values of the local variables LocalV ar at
the program point PC of the method Method. The definition of the dynamic
semantics is based on the notion of step.

Definition 1 (step
L
−→P). The dynamic semantics of each instruction is speci-

fied as a partial function step : jvmlr Prog×StateJV M → StateJV M ×Step Na-
me that, given a program P ∈ jvmlr Prog and a state S ∈ StateJV M , computes
the next state S′ ∈ StateJV M and returns the name of the step L ∈ Step Name.

For convenience, we write S
L
−→P S′ to denote step(P, S) = (S′, L).

In order to formally define our interpreter, we need to define the following func-
tion which iterates over the steps of the program until obtaining a final state.

Definition 2 (
T
−→

∗

P). Let
T
−→

∗

P be a relation on StateJV M with S
T
−→

∗

P S′ iff:

– there exists a sequence of steps L1 to Ln such that S
L1−−→P . . .

Ln−−→P S′,

– there is no state S′′ ∈ StateJV M such that S′ L
−→P S′′, and

– T ∈ Traces such that T = [L1, . . . , Ln] is the list of the names of the steps.

We can now define a general interpreter which takes as parameters a program
and a method invocation specification (mis in the following) that indicates: 1)

2 Both in Bicolano and in our implementation there is another kind of state for ex-
ceptions, but we have omitted it from this formalization for the sake of simplicity.

130 E. Albert et al.

the method the execution should start from, 2) the corresponding effective pa-
rameters of the method which will often contain logical variables or partially
instantiated terms (and should be interpreted as the set of all their instances)
and 3) an initial heap. The interpreter relies on an execute function that takes
as parameters a program P ∈ jvmlr Prog and a state S ∈ StateJV M and returns

(S′, T) where S
T
−→

∗

P S′.
The following definition of jvmlr int computes, in addition to the return

value of the method called, also the trace which captures the computation his-
tory. Traces represent the semantic steps used and therefore do not only represent
instructions, as the context has also some importance. They allow us to distin-
guish, for example, for a same instruction, the step that throws an exception from
the normal behavior. E.g., invokevirtual step ok and invokevirtual step -

NullPointerException represent, respectively, a normal method call and a
method call on a null reference that throws an exception.

Definition 3 (jvmlr int). Let M be a mis that contains a method signature,
the parameters for the method and a heap, written as M ∈ mis. We define a
general interpreter jvmlr int(P, M) = (R, T) with

– S = initialState(P, M), where function initialState builds, from the program
P and the mis M , a state S ∈ StateJV M ,

– execute(P, S) = (S′, T) and
– R = result of (S′) is the result of the execution of the method specified by M

(the value on top of the stack of the current frame of S′).

This definition of jvmlr int returns the trace and the result of the method but it
is straightforward to modify the definitions of jvmlr int and execute to return
less information or to add more. This gives more flexibility to our interpretative
approach when compared to direct compilation: for example, if needed, we can
return in an additional argument a list containing the information about each
state which we would like to observe in order to prove properties which may
require a deeper inspection of execution states.

4 Automatic Generation of Residual Programs

Partial evaluation (PE) [10] is a semantics-based program optimization technique
which has been deeply investigated within different programming paradigms.
The main purpose of PE is to specialize a given program w.r.t. the static data,
i.e., the part of its input data which is known—hence it is also known as program
specialization. The partially evaluated (or residual) program will be (hopefully)
executed more efficiently since those computations that depend only on the static
data are performed once and for all at PE time. We use the partial evaluator for
LP programs of [15] which is part of CiaoPP. Here, we represent it as a function
partial evaluator: Prog×Data → Prog which, for a given program P ∈ Prog
and static data S ∈ Data, returns a residual program PS ∈ Prog which is a
specialization [10] of P w.r.t. S.

Verification of Java Bytecode Using Analysis and Transformation 131

The development of PE, program specialization and related techniques [6,10,7]
has led to an alternative approach to compilation (known as the first Futamura
projection) based on specializing an interpreter with respect to a fixed object
program. The success of the application of the technique involves eliminating
the overhead of parsing the program, fetching instructions, etc., and leading to a
residual program whose operations mimic those of the object program. This can
also be seen as a translation of the object program into another programming
language, in our case Ciao. The residual program is ready now to be, for instance,
efficiently executed in such language or, as in our case, accurately analyzed by
tools for the language in which it has been translated. The application of this
interpretative approach to compilation within our framework consists in partially
evaluating the jvmlr int w.r.t. P = class reader(C1, . . . , Cn) and a mis.

Definition 4 (LP residual program). Let jvmlr int ∈ Prog be a jvmlr

interpreter, M ∈ mis and C1, . . . , Cn ∈ Class be a set of classes. The LP
residual program, IP , for jvmlr int w.r.t. C1, . . . , Cn and M is defined as
IP =partial evaluator(jvmlr int, (class reader(C1, . . . , Cn), M)).

Note that, instead of using the interpretative approach, we could have imple-
mented a compiler from Java bytecode to LP. However, we believe that the
interpretative approach has at least the following advantages: 1) more flexible,
in the sense that it is easy to modify the interpreter in order to observe new
properties of interest, see Sect. 3, 2) easier to trust, in the sense that it is rather
difficult to prove (or trust) that the compiler preserves the program semantics
and, it is also complicated to explicitly specify what the semantics used is, 3)
easier to maintain, new changes in the JVM semantics can be easily reflected
in the interpreter by modifying (or adding) a proper “step” definition, and 4)
easier to implement, provided a powerful partial evaluator for LP is available.

Example 2 (residual programs). We now want to partially evaluate our imple-
mentation of the interpreter which does not output the trace (see Sect. 3) w.r.t.
the bytecode method expMain in Ex. 1, an empty heap and three free variables as
parameters. The size of the program to be partially evaluated (i.e., interpreter)
is 86,326 bytes (2,240 lines) while the size of the data (i.e., bytecode represen-
tation) is 16,677 bytes (101 lines) of jvmlr. The partial evaluator has different
options for tuning the level of specialization. For this example, we have used local
and global control strategies based on homeomorphic embedding (see [11]).

We show in Fig. 4 the residual program resulting of such automatic PE. The
parameters A, B and C of expMain/5 represent the numerator, denominator and
exponent, respectively. The fourth and fifth parameters represent, respectively,
the top of the stack and the heap where the method result (i.e., an object of
type Rational in the bytecode) will be returned. In particular, the result corre-
sponds to the second element, ref(loc(2)), in the heap. Note that this object
is represented in our LP program as a list of two atoms, the first one corresponds
to attribute num and the second one to den. The first two rules for expMain/5

are the base cases for exponents C = 0 and C = 1, respectively. The third rule,
for C > 1, uses an auxiliary recursive predicate execute/6 which computes AC+1

132 E. Albert et al.

expMain(A,B,C,ref(loc(2)),heap([[num(int(A)),num(int(B))],

[num(int(1)),num(int(1))]])) :- C=<0 .

expMain(A,B,C,ref(loc(2)),heap([[num(int(A)),num(int(B))],

[num(int(A)),num(int(B))]])) :- C>0, F is C-1, F=<0 .

expMain(A,B,C,D,E) :- C>0, H is C-1, H>0, I is A*A,

J is B*B, K is H-1, execute(A,B,K,I,J,E,D) .

execute(A,B,C,D,E,heap([[num(int(A)),num(int(B))],

[num(int(D)),num(int(E))]]),ref(loc(2))) :- C=<0 .

execute(A,B,C,D,E,G,L) :- C>0, N is D*A, O is E*B, P is C-1,

execute(A,B,P,N,O,G,L) .

Fig. 4. Residual Exponential Program without Trace

and BC+1 and returns the result in the second element of the heap. It should be
noted that our PE tool has done a very good job by transforming a rather large
interpreter into a small residual program (where all the interpretation overhead
has been removed). The most relevant point to notice about the residual pro-
gram is that we have converted low level jumps into a recursive behavior and
achieved a very satisfactory translation from the Java bytecode method expMain.
Indeed, it is not very different from the Ciao version one could have written by
hand, provided that we need to store the result in the fifth argument of predicate
expMain/5 as an object in the heap, using the corresponding syntax.

While the above LP program can be of a lot of interest when reasoning about
functional properties of the code, it is also of great importance to augment the
interpreter with an additional argument which computes a trace (see Def. 3) in
order to capture the computation history. The residual program which computes
execution traces is expMain/4, which on success contains in the fourth argument
the execution trace at the level of Java bytecode (rather than the top of the
stack and the heap). Below, we show the recursive rule of predicate execute/8
whose last argument represents the trace (and corresponds to the second rule of
execute/7 without trace in Fig. 4):

execute(B,C,D,E,F,G,I,[goto_step_ok,iload_step,if0_step_continue,

iload_step,aload_step_ok,getfield_step_ok,ibinop_step_ok,

istore_step_ok,iload_step,aload_step_ok,getfield_step_ok,

ibinop_step_ok,istore_step_ok,iinc_step|H]) :-

D>0, I is E*B, J is F*C, K is D-1, execute(B,C,K,I,J,G,I,H) .

As we will see in the next section, this trace will allow observing a good number
of interesting properties about the program.

5 Verification of Java Bytecode Using LP Analysis Tools

Having obtained an LP representation of a Java bytecode program, the next
task is to use existing analysis tools for LP in order to infer and verify prop-
erties about the original bytecode program. We now recall some basic notions

Verification of Java Bytecode Using Analysis and Transformation 133

on abstract interpretation [3]. Abstract interpretation provides a general for-
mal framework for computing safe approximations of program behaviour. In
this framework, programs are interpreted using abstract values instead of con-
crete values. An abstract value is a finite representation of a, possibly infinite,
set of concrete values in the concrete domain D. The set of all possible ab-
stract values constitutes the abstract domain, denoted Dα, which is usually a
complete lattice or cpo which is ascending chain finite. Abstract values and
sets of concrete values are related by an abstraction function α : 2D → Dα,
and a concretization function γ : Dα → 2D. The concrete and abstract do-
mains must be related in such a way that the following condition holds [3]:
∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general, the compari-
son in Dα, written ⊑, is induced by ⊆ and α.

We rely on a generic analysis algorithm (in the style of [9]) defined as a
function analyzer: Prog×AAtom ×ADom → AApprox which takes a program
P ∈ Prog, an abstract domain Dα ∈ ADom and a set of abstract atoms Sα ∈
AAtom which are descriptions of the entries (or calling modes) into the program
and returns Approxα ∈ AApprox . Correctness of analysis ensures that Approxα

safely approximates the semantics of P . We denote that Sα and Approxα are
abstract semantic values in Dα by using the same subscript α.

In order to verify the program, the user has to provide the intended se-
mantics Assertα (or specification) as a semantic value in Dα in terms of as-
sertions (these are linguistic constructions which allow expressing properties
of programs) [16]. This intended semantics embodies the requirements as an
expression of the user’s expectations. The verifier has to compare the (ac-
tual) inferred semantics Approxα w.r.t. Assertα. We use the abstract inter-
pretation-based verifier integrated in CiaoPP. It is dealt here as a function
ai verifier: Prog × AAtom × ADom × AAssert → boolean which for a given
program P ∈ Prog, a set of abstract atoms Sα ∈ AAtom, an abstract domain
Dα ∈ ADom and an intended semantics Assertα in Dα succeeds if the approx-
imation computed by analyzer(P, Sα, Dα)=Approxα entails that P satisfies
Assertα, i.e., Approxα ⊑ Assertα.

Definition 5 (verified bytecode). Let IP ∈ Prog be an LP residual pro-
gram for jvmlr int w.r.t. C1, . . . , Cn ∈ Class and M ∈ mis (see Def. 3).
Let Dα ∈ ADom be an abstract domain, Sα ∈ AAtom be a set of abstract
atoms and Assertα ∈ Dα be the abstract intended semantics of IP . We say
that (C1, . . . , Cn, M) is verified w.r.t. Assertα in ADom if ai verifier(IP ,
Sα, Dα, Assertα) succeeds.

In principle, any of the considerable number of abstract domains developed for
abstract interpretation of logic programs can be applied to residual programs, as
well as to any other program. In addition, arguably, analysis of logic programs
is inherently simpler than that of Java bytecode since the bytecode programs
decompiled into logic programs no longer contain an operand stack for arithmetic
and execution flow is transformed from jumps (since loops in the Java program
are compiled into conditional and unconditional jumps) into recursion.

134 E. Albert et al.

5.1 Run-Time Error Freeness Analysis

The use of objects in Ex. 1 could in principle issue exceptions of type NullPoin-
terException. Clearly, the execution of the expMain method will not produce
any exception, as the unique object used is created within the method. However,
the JVM is unaware of this and has to perform the corresponding run-time test.
We illustrate that by using our approach we can statically verify that the previous
code cannot issue such an exception (nor any other kind of run-time error).

First, we proceed to specify in Ciao the property “goodtrace” which encodes
the fact that a bytecode program is run-time error free in the sense that its
execution does not issue NullPointerException nor any other kind of run-time
error (e.g., ArrayIndexOutOfBoundsException, etc). As this property is not
predefined in Ciao, we declare it as a regular type using the regtype declarations
in CiaoPP. Formally, we define this property as a regular unary logic program,
see [5]. The following regular type goodtrace defines this notion of safety for
our example (for conciseness, we omit the bytecode instructions which do not
appear in our program):

:- regtype goodtrace/1.
goodtrace(T) :- list(T,goodstep).

:- regtype goodstep/1.
goodstep(iinc_step). goodstep(aload_step_ok). goodstep(invokevirtual_step_ok).

goodstep(iload_step). goodstep(if0_step_jump). goodstep(invokestatic_step_ok).
goodstep(normal_end). goodstep(const_step_ok). goodstep(if0_step_continue).

goodstep(new_step_ok). goodstep(return_step_ok). goodstep(if_icmp_step_jump).
goodstep(pop_step_ok). goodstep(astore_step_ok). goodstep(putfield_step_ok).
goodstep(dup_step_ok). goodstep(istore_step_ok). goodstep(getfield_step_ok).

goodstep(goto_step_ok). goodstep(ibinop_step_ok). goodstep(if_icmp_step_continue).
goodstep(areturn_step_ok). goodstep(invokespecial_step_here_ok).

Next, the version with traces of the residual program in Fig. 4 is extended with
the following assertions:

:-entryexpMain(Num,Den,Exp,Trace):(num(Num),num(Den),num(Exp),var(Trace)).

:- check success expMain(Num,Den,Exp,Trace) => goodtrace(Trace).

The entry assertion describes the valid external queries to predicate expMain/4,
where the first three parameters are of type num and the fourth one is a variable.
We use the “success” assertion as a way to provide a partial specification of
the program. It should be interpreted as: for all calls to expMain(Num,Den,Exp,

Trace), if the call succeeds, then Trace must be a goodtrace.
Finally, we use CiaoPP to perform regular type analysis using the eterms

domain [18]. This allows computing safe approximations of the success states of
all predicates. After this, CiaoPP performs compile-time checking of the success
assertion above, comparing it with the assertions inferred by the analysis, and
produces as output the following assertion:

:- checked success expMain(Num,Den,Exp,Trace) => goodtrace(Trace).

Thus, the provided assertion has been validated (marked as checked).

Verification of Java Bytecode Using Analysis and Transformation 135

5.2 Cost Analysis and Termination

As mentioned before, abstract interpretation-based program analysis techniques
allow inferring very rich information including also resource-related issues. For
example, CiaoPP can compute upper and lower bounds on the number of exe-
cution steps required by the computation [9,4]. Such bounds are expressed as
functions on the sizes of the input arguments. Various metrics are used for the
“size” of an input, such as list-length, term-size, term-depth, integer-value, etc.
Types, modes, and size measures are first automatically inferred by the analyzers
and then used in the size and cost analysis.

Let us illustrate the cost analysis in CiaoPP on our running example. We
consider a slightly modified version of the residual program in Fig. 4 in which
we have eliminated the accumulating parameter due to a current limitation of the
cost analysis in CiaoPP. The cost analysis can then infer the following property
of the recursive predicate execute/5 (and a similar one of expMain/4) using the
same entry assertion as in Sect. 5.1:

:- true pred execute(A,B,C,D,E): (num(A),num(B),num(C),var(D),var(E))

=> (num(A), num(B), num(C), num(D), num(E),

size_ub(A,int(A)), size_ub(B,int(B)), size_ub(C,int(C)),

size_ub(D,expMain(int(A),int(C)+1)+int(A)),

size_ub(E,expMain(int(B),int(C)+1)+int(B)))

+ steps_ub(int(C)+1).

which states that execute/5 is called in this program with the first three pa-
rameters being of type num (i.e., bound to numbers) and two variables. The part
of the assertion after the => symbol indicates that on success of the predicate all
five parameters are bound to numbers. This is used by the cost analysis in order
to set the integer-value as size-metric for all five arguments. The first three argu-
ments are input to the procedure and thus their size (value) is fixed. The last two
arguments are output and their size (value) is a function on the value of (some
of) the first three arguments. The upper bound computed by the analysis for D
(i.e., the fourth argument) is AC+1 +A. Note that this is a correct upper bound,
though the most accurate one is indeed AC+1. A similar situation occurs with
the upper bound for the fifth argument (E). Finally, the part of the assertion
after the + symbol indicates that an upper bound on the number of execution
steps is C + 1, which corresponds to a linear algorithmic complexity. This is
indeed the most accurate upper bound possible, since predicate execute/5 is
called C +1 times until C becomes zero. Note that, in this case, we do not mean
the number of JVM steps in Def. 1, but the number of computational steps.

CiaoPP’s termination analysis relies on the cost analysis described in the pre-
vious section. In particular, it is able to prove termination of a program pro-
vided it obtains a non-infinite upper bound of its cost. Following the example
of Sect. 5.2, CiaoPP is able to turn into checked status the following assertion
(and the similar one for expMain/4): “:- check comp execute(A,B,C,D,E) +

terminates”. which ensures that the execution of the recursive predicate always
terminates w.r.t. the previous entry.

136 E. Albert et al.

6 Experiments and Discussion

We have implemented and performed a preliminary experimental evaluation of our
framework within the CiaoPP preprocessor [9], where we have available a partial
evaluator and a generic analysis engine with a good number of abstract domains,
including the ones illustrated in the previous section. Our interpretative approach
has required the implementation in Ciao of two new packages: the class reader

(1141 lines of code) which parses the .class files into Ciao and the jvmlr int

interpreter for the jvmlr (3216 lines). These tools, together with a collection of
examples, are available at: http://cliplab.org/Systems/jvm-by-pe.

Table 1 studies two crucial points for the practicality of our proposal: the
size of the residual program and the relative efficiency of the full transforma-
tion+analysis process. As mentioned before, the algorithms are parametric w.r.t.
the abstract domain. In our experiments we use eterms, an abstract domain
based on regular types, that is very useful for reasoning about functional prop-
erties of the code, run-time errors, etc., which are crucial aspects for the safety of
the Java bytecode. The system is implemented in Ciao 1.13 [2] with compilation
to WAM bytecode. The experiments have been performed on an Intel P4 Xeon
2 GHz with 4 GB of RAM, running GNU Linux FC-2, 2.6.9.

The input “program” to be partially evaluated is the jvmlr int interpreter in
all the examples. Then, the first group of columns Bytecode shows information
about the input “data” to the partial evaluator, i.e., about the .class files. The
columns Class and Size show the names of the classes used for the experiments
and their sizes in bytes, respectively. The second column Method refers to the
name of the method within each class which is going to form the mis, i.e., to be
the starting point for PE and context-sensitive program analysis. We use a set
of classical algorithms as benchmarks. The first 9 methods belong to programs
with iterations and static methods but without object-oriented features, where
mod, fact, gcd and lcm, compute respectively the modulo, factorial, greatest-
common-divisor and least-common-multiple (two versions); the Combinatory
class has different methods for computing the number of selections of subsets
given a set of elements for every ordering/repetition combination. The next two
benchmarks, LinearSearch and BinarySearch, deal with arrays and corre-
spond to the classic linear and binary search algorithms. Finally, the last four
benchmarks correspond to programs which make extensive use of object-oriented
features such as instance method invocation, field accessing and setting, object
creation and initialization, etc.

The information about the “output” of the PE process appears in the second
group of columns, Residual. The columns Size and NUnfs show the size in
bytes of each residual program and the number of unfolding steps performed
by the partial evaluator to generate it, respectively. We can observe that the
partial evaluator has done a good job in all examples by transforming a rather
large interpreter (86,326 bytes) in relatively small residual programs. The sizes
range from 317 bytes for m2 (99.4% reduction) to 4.911 for Lcm2 (83.6 %). The
number of required unfolding steps explains the high PE times, as we discuss

Verification of Java Bytecode Using Analysis and Transformation 137

Table 1. Sizes of residual programs and transformation and analysis times

Bytecode Residual Times (ms)

Class Size Method Size NUnfs Trans PE Ana Total

Mod 314 mod 956 1645 18 1244 59 1322

Fact 324 fact 1007 1537 19 1432 74 1525

Gcd 265 gcd 940 1273 18 1160 125 1303

Lcm 299 lcm 2260 4025 21 5832 817 6670

Lcm2 547 lcm2 4911 3724 26 3963 1185 5174

Combinatory 703 varNoRep 1314 1503 32 1837 87 1955

Combinatory 703 combNoRep 2177 2491 34 3676 150 3860

Combinatory 703 combRep 2151 3033 29 5331 950 6310

Combinatory 703 perm 1022 1256 29 1234 65 1328

LinearSearch 318 search 3114 8832 22 45228 296 45546

BinarySearch 412 search 3670 14117 23 72945 313 73282

Np 387 m2 317 527 20 502 12 534

ExpFact 890 main 2266 8353 35 23773 95 23903

Rational 559 expMain 3131 6613 31 13692 16 13739

Date 602 forward 11046 26982 36 80960 218 81213

below. A relevant point to note is that, for most programs, the size of the LP
translation is larger than the original bytecode. This can be justified by the fact
that the resulting program does not only represent the bytecode program but
it also makes explicit some internal machinery of the JVM. This is the case,
for instance, of the exception handling. As there are no Ciao exceptions in the
residual program, the implicit exceptions in jvml have been made explicit in LP.
Furthermore, the Java bytecode has been designed to be really compact, while
the LP version has been designed to be easier to read by human beings and
contains type information that must be inferred on the jvml. It should not be
difficult to reduce the size of the residual bytecode if so required by, for example,
simply using short identifiers.

The final part of the table provides the times for performing the transfor-
mations and the analysis process. Execution times are given in milliseconds
and measure runtime. They are computed as the arithmetic mean of five runs.
For each benchmark, Trans, PE and Ana are the times for executing the
class reader, the partial evaluator and the analyzer, respectively. The col-
umn Total accumulates all the previous times. We can observe that most of
the time is due to the partial evaluation phase (and this time is directly related
to the number of unfolding steps performed). This is to be expected because
the specialization of a large program (i.e., the interpreter) requires to perform
many unfolding steps in all the examples (ranging from 14.117 steps for search
in BinarySearch to 527 for m2), plus many additional generalization steps
which are not shown in the table. The analysis time is then relatively low, as
the residual programs to be analyzed are significantly smaller than the program
to be partially evaluated.

138 E. Albert et al.

As for future work, we plan to obtain accurate bounds on resource consump-
tion by considering the traces that the residual program contains and the con-
crete cost of each bytecode instruction. Also, we are in the process of studying
the scalability of our approach to the verification of larger Java bytecode pro-
grams. We also plan to exploit the advanced features of the partial evaluator
which integrates abstract interpretation [15] in order to handle recursion.

Acknowledgments. This work was funded in part by the Information Society
Technologies program of the European Commission, Future and Emerging Tech-
nologies under the IST-15905 MOBIUS project, by the Spanish Ministry (TIN-
2005-09207 MERIT), and the Madrid Regional Government (S-0505/TIC/0407
PROMESAS). The authors would like to thank David Pichardie and Samir
Genaim for useful discussions on the Bicolano JVM specification and on termi-
nation analysis, respectively.

References

1. B. Barras et al. The Coq proof assistant reference manual: Version 6.1. Technical
Report RT-0203, 1997. citeseer.ist.psu.edu/barras97coq.html.

2. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López, and G. Puebla (Eds.).
The Ciao System. (v1.13). At http://clip.dia.fi.upm.es/Software/Ciao/.

3. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

4. S. Debray, P. López, M. Hermenegildo, and N. Lin. Estimating the Computational
Cost of Logic Programs. Proc. of SAS’94, LNCS 864, pp. 255–265. Springer.

5. T. Früwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic programs as types for
logic programs. In Proc. LICS’91, pages 300–309, 1991.

6. Yoshihiko Futamura. Partial evaluation of computation process - an approach to
a compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

7. J. Gallagher. Transforming logic programs by specializing interpreters. In Proc. of
the 7th. European Conference on Artificial Intelligence, 1986.

8. Kim S. Henriksen and John P. Gallagher. Analysis and specialisation of a pic
processor. In SMC (2), pages 1131–1135. IEEE, 2004.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López. Integrated Program De-
bugging, Verification, and Optimization Using Abstract Interpretation. Science of
Computer Programming, 58(1–2):115–140, October 2005.

10. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall, New York, 1993.

11. M. Leuschel. On the power of homeomorphic embedding for online termination.
Proc. of SAS’98, pages 230–245, 1998. Springer-Verlag.

12. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. A-W, 1996.
13. J.C. Peralta, J. Gallagher, and H. Sağlam. Analysis of imperative programs through

analysis of CLP. In Proc. of SAS’98, LNCS 1503, pp. 246–261, 1998.
14. D. Pichardie. Bicolano (Byte Code Language in cOq). http://www-sop.inria.fr/

everest/personnel/David.Pichardie/bicolano/main.html.
15. G. Puebla, E. Albert, and M. Hermenegildo. Abstract Interpretation with Special-

ized Definitions. In Proc. of SAS’06, LNCS. Springer, 2006. To appear.

Verification of Java Bytecode Using Analysis and Transformation 139

16. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for CLP. In
Analysis and Visualization Tools for CP, pages 23–61. Springer LNCS 1870, 2000.

17. Brian J. Ross. The partial evaluation of imperative programs using prolog. In
META, pages 341–363, 1988.

18. C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In Proc. of SAS’02, pages 102–116. Springer LNCS 2477, 2002.

Improving the Decompilation of Java

Bytecode to Prolog by Partial Evaluation

Miguel Gómez-Zamalloa1 Elvira Albert1 Germán Puebla2

1 DSIC, Complutense University of Madrid, {mzamalloa,elvira}@fdi.ucm.es

2 Technical University of Madrid, german@fi.upm.es

Abstract

The interpretative approach to compilation allows compiling programs by partially evaluating an interpreter
w.r.t. a source program. This approach, though very attractive in principle, has not been widely applied
in practice mainly because of the difficulty in finding a partial evaluation strategy which always obtain
“quality” compiled programs. In spite of this, in recent work we have performed a proof of concept of
that, at least for some examples, this approach can be applied to decompile Java bytecode into Prolog.
This allows applying existing advanced tools for analysis of logic programs in order to verify Java bytecode.
However, successful partial evaluation of an interpreter for (a realistic subset of) Java bytecode is a rather
challenging problem. The aim of this work is to improve the performance of the decompilation process
above in two respects. First, we would like to obtain quality decompiled programs, i.e., simple and small.
We refer to this as the effectiveness of the decompilation. Second, we would like the decompilation process
to be as efficient as possible, both in terms of time and memory usage, in order to scale up in practice.
We refer to this as the efficiency of the decompilation. With this aim, we propose several techniques for
improving the partial evaluation strategy. We argue that our experimental results show that we are able to
improve significantly the efficiency and effectiveness of the decompilation process.

Keywords: Java bytecode, decompilation, partial evaluation

1 Introduction

Partial evaluation [12] is a semantics-based program transformation technique whose

main purpose is to optimize programs by specializing them w.r.t. part of their input

(the static data)—hence it is also known as program specialization. Essentially, given

a program P and a static data s, a partial evaluator returns a residual program Ps

which is a specialized version of P w.r.t. the static data s such that P (s, d) = Ps(d)

for all dynamic (i.e., not static) data d. The development of partial evaluation tech-

niques [12] has led to the so-called “interpretative approach” to compilation, also

known as first Futamura projection [5]. In this approach, compilation of a source

program P from a source language LS to a target language LO can in principle be

performed by specializing an interpreter Int for LS written in LO w.r.t. P . The

Electronic Notes in Theoretical Computer Science 190 (2007) 85–101

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.02.062

mailto:mzamalloa@fdi.ucm.es
mailto:elvira@fdi.ucm.es
mailto:german@fi.upm.es
http://www.elsevier.com/locate/entcs

program IntP thus obtained can be akin to the result CompO
S (P) of direct com-

pilation of P using a compiler CompO
S from LS to LO. When LS is Java bytecode

and LO is Prolog, we theoretically obtain a “decompilation” from (low-level) Java

bytecode to (high-level) Prolog programs [1]. The motivation for obtaining a high

level logic representation of the Java bytecode is clear: we can apply advanced tools

developed for high level languages to the resulting programs without having to deal

with the complicated unstructured control flow of the bytecode, the use of the stack,

the exception handling, its object-oriented features, etc. In particular, for logic pro-

gramming, we have available generic analysis tools which are incremental [10] and

modular [4] that we will be able to directly use [1]. The motivations for using the

interpretative approach to decompilation rather than implementing a compiler from

Java bytecode to LP include: 1) flexibility, in the sense that it is easy to modify

the interpreter in order to observe new properties of interest, 2) easy of trust, in

the sense that it is rather difficult to prove (or trust) that the compiler preserves

the program semantics and, it is also complicated to explicitly specify what the

semantics used is, 3) easier to maintain, new changes in the JVM semantics can be

easily reflected in the interpreter, and 4) easier to implement, provided a powerful

partial evaluator for LP is available.

The success of the interpretative approach highly depends on eliminating the

overhead of parsing the program, fetching instructions, etc., thus obtaining pro-

grams which are akin to those obtained by a traditional compiler. When both the

LS and LO languages are the same, fully getting rid of the layer of interpretation is

known as “Jones optimality” [11,12] and intuitively means that the result of special-

izing an interpreter Int w.r.t a program P should be basically the same as P , i.e.,

IntP ≈ P . Specializing interpreters has been a subject of research for many years,

especially in the logic programming community (see, e.g., [22,23,15] and their ref-

erences). However, despite these efforts, achieving Jones optimality in a systematic

way is not straightforward since, given a program P , there are an infinite number

of residual programs IntP which can be obtained, and only a small fraction of them

are akin to the results of direct compilation. As a result, only partial success has

been achieved to date, such as in the specialization of a simple Vanilla interpreter,

of the same interpreter extended with a debugger, and of a lambda interpreter [15].

The first requirement for achieving effective decompilation is to have a par-

tial evaluator which is powerful (or “aggressive” in partial evaluation terminology)

enough so as to remove the overhead of the interpretation level from the residual

program. In a sense, the work in [1] shows that our partial evaluator [20,2] is aggres-

sive enough for being used in the interpretative approach. The next two questions

we need to answer, and which are addressed in this work are: is the control strat-

egy used too aggressive in some cases? If so, it is possible to fix this problem?

Note that the consequences of the strategy being too aggressive can be rather neg-

ative: it can introduce non-termination in the decompilation process and, even if

the process terminates, it can result in inefficient decompilation (both in terms of

time and memory) and in unnecessarily large residual programs. It should be noted

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–10186

....
residual

program

jvml

interpreter

(LP)

class 1

class n

class files

jvml program

READER

CLASS

PARTIAL

EVALUATOR

multivaria

control

 filter

annot .

.

Fig. 1. Decompilation of Java Bytecode into Prolog by online PE w/ offline annotations

that memory efficiency of the decompilation process is quite important since it can

happen that the decompiler fails to generate a residual program because the partial

evaluator runs out of memory.

2 An Overview of the Decompilation Process

Figure 1 shows an overview of the interpretative decompilation process originally

proposed in [1] and followed in this paper. Initially, given a set of .class files

{class 1,. . ., class n}, a program called class reader, returns a representation of

them in Ciao Prolog [3]. We use a slightly modified JVM language where some

bytecode instructions are factorized and which contains some other minor simpli-

fications (see [1]). Then, we have a JVML interpreter written in Ciao which cap-

tures the JVM semantics. The decompilation process consists in specializing the

JVML interpreter w.r.t. the LP representation of the classes. In this work, we will

improve the decompilation by introducing two new elements (which appear within

a dashed box in the figure): an improved multi-variance control within the partial

evaluator and filter annotations to refine the control of the partial evaluator .

2.1 The LP Representation of the Bytecode

The LP (Ciao) program generated by the class reader contains the bytecode in-

structions for all methods in {class 1,. . ., class n}. They are represented as a set

of facts bytecode; and also, a single fact class obtained by putting together all the

other information available in the .class files (class name, methods and fields signa-

tures, etc.). Each bytecode fact is of the form bytecode(PC, MethodID, Class, Inst,

Size), where Class and MethodID, respectively, identify the class and the method

to which the instruction Inst belongs. PC corresponds to the program counter and

Size to the number of bytes of the instruction in order to be able to compute the

next value of the program counter. The form of the fact class is not relevant to

this work but it can be observed in [1].

Example 2.1 [LP representation] Our running example consists of the single Java

class LinearSearch, which appears in Fig 2. To the right, we show the bytecode

facts corresponding to the method search identified with number “0” (second ar-

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–101 87

class LinearSearch{
static int search(int[] xs,int x){

int size = xs.length;
boolean found = false;
int i = 0;
while ((i<size)&&(!found)){
if (xs[i] == x) found = true;
else i++;

}
return i;

}

bytecode(0,’0’,1,aload(0),1).
bytecode(1,’0’,1,arraylength,1).
bytecode(2,’0’,1,istore(2),1).
bytecode(3,’0’,1,const(

primitiveType(int),0),1).
bytecode(4,’0’,1,istore(3),1).
bytecode(5,’0’,1,const(

primitiveType(int),0),1).
bytecode(6,’0’,1,istore(4),2).
bytecode(8,’0’,1,iload(4),2).
bytecode(10,’0’,1,iload(2),1).
bytecode(11,’0’,1,if_icmp(geInt,26),3).
bytecode(14,’0’,1,iload(3),1).
bytecode(15,’0’,1,if0(neInt,22),3).
bytecode(18,’0’,1,aload(0),1).
bytecode(19,’0’,1,iload(4),2).
bytecode(21,’0’,1,iaload,1).
bytecode(22,’0’,1,iload(1),1).
bytecode(23,’0’,1,if_icmp(neInt,8),3).
bytecode(26,’0’,1,const(

primitiveType(int),1),1).
bytecode(27,’0’,1,istore(3),1).
bytecode(28,’0’,1,goto(-20),3).
bytecode(31,’0’,1,iinc(4,1),3).
bytecode(34,’0’,1,goto(-26),3).
bytecode(37,’0’,1,iload(4),2).
bytecode(39,’0’,1,ireturn,1).

Fig. 2. Java code and LP representation of Running Example

gument) of class number “1” (third argument). Bytecodes labeled from 0 to 6 (first

argument) correspond to the first three initialization instructions in the Java pro-

gram. Then, if the first conjunct in the while condition does not hold (bytecodes

8-11), the PC moves 26 positions downwards (i.e., to bytecode 37). Otherwise, the

second conjunct is checked and similarly the PC can be increased in 22 positions

(i.e., to bytecode 37). The condition in the if instruction corresponds to bytecodes

18-23, the then branch to 26-28 and the else branch to 31-34. Finally, bytecodes

37-39 represent the return.

2.2 The JVML Interpreter

The JVML interpreter expresses the JVM semantics in Ciao following the formal

specification in Bicolano [19]. In our specification, a state is modeled by a term of the

form st(Heap, Frame, StackFrame) which represents the machine’s state where:

Heap represents the contents of the heap, Frame represents the execution state of

the current Method and StackFrame is a list of frames corresponding to the call

stack. Each frame is of the form fr(Method, PC,OperandStack, LocalV ar) and

contains the stack of operands OperandStack and the values of the local variables

LocalV ar at the program point PC of the method Method. Note that, whenever we

are at an exception state, the state and the frames will be represented accordingly

as stE and frE terms resp., with the same arguments as their homologous st and

fr, except for the OperandStack which will be a location number (instead of a list)

referencing the corresponding exception object in the heap.

Fig. 3 shows a fragment of the Ciao JVML interpreter. Given the program

and the current state, its main predicate execute first calls predicate step, which

produces the state after executing the corresponding bytecode. The process iterates

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–10188

execute(Program,State,FinalState) :-
step(_,Program,State,NextState),
execute(Program,NextState,FinalState).

execute(_P,State,State) :-
check_return(State).

execute(Program,State,NextState) :-
State=stE(Heap,frE(Method,PC,Loc,_),[]),
NextState=st(Heap,fr(Method,PC,[ref(Loc)],_),[]),
not_handled_exception(Program,State).

check_return(st(_H,fr(Method,PC,_Stack,_L),[])) :-
instructionAt(Method,PC,return).

check_return(st(_H,fr(Method,PC,[num(int(_I))|_Stack],_L),[])) :-
instructionAt(Method,PC,ireturn).

check_return(st(_H,fr(Method,PC,[ref(loc(_I))|_Stack],_L),[])) :-
instructionAt(Method,PC,areturn).

step(goto_step_ok,_P,st(H,fr(M,PC,S,L),SF),st(H,fr(M,PCb,S,L),SF)) :-
instructionAt(M,PC,goto(O)),
PCb is PC+O.

...

Fig. 3. Fragment of the JVML interpreter

with a recursive call to predicate execute with the new state until one of the

following conditions holds: 1) we reach a return instruction (i.e. return, ireturn

or areturn), with the JVM call stack being empty, 2) we are in an exception state

for which no suitable exception handler has been found, with the JVM call stack

being empty, 3) there is no bytecode instruction at the current PC. The latter should

never occur for a valid bytecode program. The whole interpreter, together with a

collection of examples, are available at: http://cliplab.org/Systems/jvm-by-pe.

3 Basics of Online Partial Evaluation of Logic Programs

We assume familiarity with basic notions of logic programming [18]. Executing

a logic program P for an atom A consists in building a so-called SLD tree for

P ∪ {A} and then extracting the computed answer substitutions from every non-

failing branch of the tree. Online partial evaluation builds upon the execution

approach of logic programs with two main differences:

• In order to guarantee termination of the unfolding process, when building the

SLD-trees, it is possible to choose not to further unfold a goal, and rather leave

a leaf in the tree with a non-empty, possibly non-failing, goal. The resulting SLD

is called a partial SLD tree. Note that even if the SLD trees for all possible

queries are finite, the SLD to be built during partial evaluation may be infinite.

The reason for this is that since dynamic values are not known at specialization

time, the specialization SLD tree can have more branches (in particular, infinite

branches) than the actual SLD tree at run-time. Which atom to select from each

resolvent and when to stop unfolding is determined by the unfolding rule.

• The partial evaluator may have to build several SLD-trees to ensure that all atoms

left in the leaves are “covered” by the root of some tree (this is known as the

closeness condition of partial evaluation [17]). The so-called abstraction operator

performs “generalizations” on the atoms that have to be partially evaluated in

order to avoid computing partial SLD trees for an infinite number of atoms. When

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–101 89

Input: a program P and a set of atoms S
Output: a set of atoms T

Initialization: i := 0; S0 := S
Repeat

1. T := unfold(Si, P);
2. Si+1 := abstract(Si,Tcalls);
3. i := i + 1;

Until Si = Si−1 (modulo renaming)
Return T := Si

Fig. 4. Partial Evaluation Algorithm

all atoms are covered, then there is no need to build more trees and the process

finishes. Details on abstraction operators appear in Section 4.

The essence of most algorithms for on-line partial evaluation of logic programs (see

e.g. [8]) can be viewed in the algorithm shown in Figure 4, which is parametric

w.r.t. the unfolding rule, unfold, and the abstraction operator, abstract. It starts

from a program P and an initial set of atoms S. At each iteration, the local control

is performed by the unfold rule which takes the current set of atoms Si and the

program and constructs partial SLD trees for the atoms in Si. In the global control,

when some calls in the leaves of the trees (named Tcalls in the algorithm) are not

properly covered, the operator abstract adds them to the new set of atoms to be

partially evaluated in a proper “generalized” form such that termination is ensured

(i.e., the condition Si = Si−1 is reached). Thus, basically, the algorithm iteratively

constructs partial SLD trees until all their leaves are covered by the root nodes.

A partial evaluation of P w.r.t. S can then be systematically extracted from the

resulting set of atoms T . The notion of resultant is used to generate a program rule

associated to each root-to-leaf derivation of the SLD-trees for the final set of atoms

T . In particular, given an SLD derivation of P ∪ {A} with A ∈ T ending in B and

θ the composition of the mgu’s in the derivation step, then the rule θ(A) : −B is

called the resultant of the derivation. A partial evaluation is then defined as the

sequence of resultants associated to the derivations of the constructed partial SLD

trees for all P ∪ {A} with A ∈ T .

4 Challenges in Specialization of JVM Interpreter

In order to achieve an effective decompilation, one of the crucial requirements is

to have available control strategies (i.e., unfold and abstract operators) which are

powerful enough to remove the interpreter overhead. For this reason, the exper-

iments in [1] have been performed by using “aggressive” control strategies based

on homeomorphic embedding [13,14]. In local control, by aggressiveness we mean

unfolding rules which compute derivations as long as possible provided there are

no termination problems. In global control, it denotes abstraction operators which

generalize in as few situations as possible without endangering termination.

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–10190

4.1 A Challenging Example

The example in Fig. 5 is instrumental to show the challenges which appear in the

specialization of the JVM interpreter in Section 2.2. The specialization process

starts by running the PE algorithm of Section 3 for the initial program P being the

JVM interpreter and the following initial atom:

execute(Prog,st(heap([array(locationArray(_,primitiveType(int)),_)]),

fr(method(’int LinearSearch.search(int[],int)’),

0,[],[ref(1),_,0,0,0]),

[]),_)

where “Prog” would be instantiated to the constant term representing the corre-

sponding JVM program of Sect. 2.1, and a “ ” represents a logical variable. Let us

note that this initial state has been built from a “method invocation specification”

(MIS), i.e., a high level description specifying the method we want to decompile and

its arguments values. In our case, we want to decompile a method for computing

a linear search for any array of integers and any value as argument. Thus, we use

“int LinearSearch.search(int[] ,int)”as MIS.

In the figure, we depict (a reduced version of) one of the SLD trees that lead to

an effective decompilation of our running example. In order to focus the attention

to the relevant arguments only, each atom of the form execute(Program, st(Heap,

fr(Method, PC, Stack, LocalVar), CallStack), FinalState) is represented in the fig-

ure as execute(PC, LocalVar) to show only its two key arguments. Indeed, the ar-

gument Program and Method are always constants, the Stack is not relevant and the

Heap is not used in this example. The CallStack is always the empty list since the

considered method does not invoke any other method (nor itself) and FinalState

is always a fresh variable. Another simplification in the figure is that each arrow

involves the application of several unfolding steps. In particular, the execution of

the step predicate can be considered as a black box during unfolding, in the sense

that it performs all the operations (i.e., a number of unfolding steps) and returns

the corresponding state. Therefore, we can ignore the intermediate steps produced

in order to unfold the calls to step and view each of the derivations as a sequence

of the form execute, step, execute, step, . . . (in the figure actually we only

show one step). Some of the statements within the body of each step operation

can stay as residual when they involve data which is not known at specialization

time. The computation rule during unfolding is able to residualize calls which are

not-sufficiently instantiated and select non-leftmost atoms in a safe way [2], in par-

ticular, further calls to execute.

4.2 Control Strategies based on Embedding

The interested reader is referred to Leuschel’s work [16] where a detailed descrip-

tion of the embedding relation can be found. Informally, atom t1 embeds atom

t2, written t2�t1, if t2 can be obtained from t1 by deleting some operators, e.g.,

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–101 91

execute(0, [ref, , , 0, 0])

��

step(. . .), . . .

��

execute(1, [ref, , , 0, 0])
��

������� execute(8,[ref, , ,0,0])

��

��� � � � � � � � � �

execute(11, [ref, , , 0, 0])

��������

��������

execute(39, [ref, , , 0, 0])

��

execute(15, [ref, , , 0, 0])

��

true execute(23, [ref, , , 0, 0])

��������

��������

execute(34, [ref, , , 0, 1])
��

execute(28, [ref, , , 1, 0])
����

���
�

�

�

�

�

�

�

�

�

�

execute(8,[ref, , ,0,1])� � � �

��

execute(8,[ref, , ,1,0])

��

�	�
�

�

�

�

�

�

�

�

�

�

∞

Fig. 5. Partial SLD Tree of Specialization of JVM Interpreter

s(s(U+W)×(U+s(V))) embeds s(U× (U+V)). By relying on the embedding relation,

the following strategies can be defined (they correspond to those used in [1]):

4.2.1 Local Control

Unfolding operators based on the homeomorphic embedding �, denoted unfold�,

allow the expansion of derivations until reaching an atom which embeds some of

the previous atoms in its sequence of covering ancestors (see e.g., [20]). The intu-

ition is that reaching larger (or equal) atoms in the same derivation can endanger

termination and hence the computation has to be stopped. Furthermore, in order

to achieve the required level of aggressiveness it is also required to be able to ac-

curately handle builtin predicates and to safely perform non-leftmost unfolding [2].

However, in the presence of an infinite signature (e.g., integers) as we have in the

JVM interpreter, this unfolding rule can lead to non-terminating computations.

Consider, for example, a sequence of atoms of the form: execute(8, [ref, , , 0, 0]),

execute(8, [ref, , , 0, 1]), execute(8, [ref, , , 0, 2]) . . . , which can grow infinitely

and which the homeomorphic embedding does not flag as potentially dangerous.

As a result, by considering the usual homeomorphic embedding relation, the sec-

ond branch of the partial SLD in Figure 5 is not flagged as dangerous and un-

folding does not terminate. This is indicated in the figure by the ∞ symbol as

continuation of the second branch. A possible relatively straightforward solution

for avoiding this nonterminating behavior of unfolding is to use a slight adaptation

of the original homeomorphic relation in which any number embeds any other num-

ber, denoted �num. Under this relation the atom execute(8, [ref, , , 0, 1]) embeds

execute(8, [ref, , , 0, 0]) (and vice-versa). Unfortunately, this modification to the

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–10192

homeomorphic embedding relation, although it guarantees termination of the par-

tial evaluation process is a too coarse approximation and leads to excessive precision

loss. It turns out not to be an acceptable alternative for specialization of our inter-

preter since in virtually all cases the residual program contains the full interpreter,

i.e., we have not been able to eliminate the interpretation layer.

4.2.2 Global Control

The homeomorphic embedding ordering � can also be used at the global control level

within the abstract operator abstract� in order to decide when to generalize (i.e., to

apply the most specific generalization) before proceeding to build (possibly partial)

SLD trees. Basically, for each new atom A, it checks whether it is larger than (i.e.,

it embeds) any of the atoms in the set Si (which contains the atoms in the roots

of the partial trees which have already been built). If A does not embed any atom

in Si, it is added to the set; otherwise, the two atoms are generalized by using the

msg operator. For instance, if we have execute(8, [ref, , , 0, 0]) in Si and we want

to add the atom execute(8, [ref, , , 1, 0]), by using the original homeomorphic

embedding relation, no danger is flagged. Thus, in order to guarantee termination at

the global control level we also need to modify the relation to be used when infinite

signatures (numbers) are considered. By using the modified embedding relation

with numbers �num, the latter atom is generalized into execute(8, [ref, , , X, 0])

before being introduced in Si.

Regarding the efficiency of the PE process, it should be noted that the use of

control strategies based on embedding introduces a significant overhead, as we need

to keep track of the ancestors (see, e.g., [20]) and to perform expensive embedding

checks for each of the atom arguments.

5 Partial Evaluation Types for Decompilation

As we have seen in the previous section, in the presence of an infinite signature, like

the integers, neither � nor �num alone can achieve effective and efficient decompila-

tions. In particular, the use of “�” can be too aggressive in the sense that it leads to

too long derivations (even endangering termination), which prevents from a quality

decompilation. In contrast, the use of “�num” is definitely too conservative in the

sense that stops derivations too early, which causes the loss of essential information

to get a quality decompiled program. In this section, we propose to use the partial

evaluation types of [9] in order to provide additional information to the PE process

and improve the results achieved by using previous techniques based on the above

embedding orderings. Such additional information is program-dependent and thus,

it makes sense to compute it when we are interested in repeatedly partially evalu-

ating a program. This is obviously the case in our approach to decompilation, since

we are repeatedly specializing the interpreter w.r.t. different bytecode programs.

This information is provided by means of optional partial evaluation types as de-

fined in [9]. They will allow us to give a selective, context-dependent treatment to

arguments at PE time. In particular, the following basic types are distinguished:

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–101 93

• dyn: which stands for dynamic. This type is used to avoid too aggressive strate-

gies. It denotes that the user thinks it is a good idea to lose the information stored

in the corresponding argument as soon as a discrepancy is found w.r.t. another

“similar” atom. Note that unless such information is lost, increased polyvariance

is required in order to maintain separate call patterns with the corresponding val-

ues of the discrepant information. This results in higher specialization cost and

in a larger residual program. An example of an argument which can be marked

as dynamic is Loc (local variables) in our running example.

• f sig: which stands for finite signature. Literally, this means that the number of

functors and constant names which may appear is finite. Thus, for arguments of

this type, � guarantees termination. The motivation for considering this type is

that it avoids the need for using �num for arguments which may contain numbers.

The user can use this type for those arguments which are guaranteed to contain

a finite set of numbers only. This is the case, for instance, of the argument PC in

our example. Though it is natural to use numbers to represent program counters,

given a fixed program, the set of instructions is fixed and finite. This is a key

observation which is required to obtain the results presented in this paper.

• const: which stands for constant. The motivation for introducing this type is just

efficiency of the specialization process. Of course, it should only be applied to

arguments which we know will always be instantiated to the same value during

specialization time. Its usage does not affect the control strategy at all, but it

allows avoiding testing the embedding relation over and over again on arguments

which never change. This is the case, for instance, of the argument Program

which remains constant all over the decompilation process.

• term: which stands for term. This the the most general type which includes

all possible terms, including partially instantiated terms. This is the default

type which is assumed unless the user explicitly provides a more precise pe type.

For programs containing arithmetic (such as our JVM interpreter), the default

embedding relation we use is �num since otherwise termination is not guaranteed.

In order to allow the use of the above basic types at any depth within arguments and,

also, allow the possibility of having disjunctive types with distinctive functors for

which we can declare different types, the notion of partial evaluation types, pe type,

is defined [9] as a regular type [6] combined with the above basic types.

Let us explain the intuition behind the above pe type’s. The first argument of

execute is Program, which is clearly constant because during each partial evaluation

there is exactly one fixed program and there is no need to ever generalize this

argument. The third argument is the final (output) State which is always a variable

before the call and thus it can be given the type term. The type of the current State

in the second argument is disjunctive and we declare it by means of two rules, one

for each functor. The first one corresponds to a normal state st and the second

one to an exception state stE. The most relevant points to note are: 1) The types

of the heap and the call stack are declared as dyn as we do not mind “losing”

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–10194

all information about them during partial evaluation when decompiling a method

if needed. Intuitively, this is to say that we do not want to generate multiple

decompiled versions of a method depending on the state of the heap or the call

stack. Instead, as it happens in standard compilation, the decompilation of the

method should be independent from the context from which it is called (and hence

this information should be ignored). 2) Again, we distinguish two types of Frames

for normal (fr) and exception behavior (frE). The important point here is that

both the PC and Method can be instantiated only to a finite number of values, since

given a fixed program, the number of methods and the number of different program

counters is finite. Therefore, they can be safely declared as f sig, which prevents

from important information loss. Finally, we declare the set of local variables Loc

and stack positions Stack as dyn as they threaten termination as we have seen in the

example. Note that termination of the partial evaluation requires that the pe type’s

provided are safe. For this it is required that any sub(argument) marked as f sig

actually has a finite signature.

The importance of pe type declarations is that they can be used at PE time

to disregard, to filter or to keep the information available in each argument, as

explained above. The embedding relation which makes use of pe type declarations

is called embedding relation with pe type’s and written as �pt [9]. As the tradi-

tional embedding relation, it is used to steer the PE process both at the local and

global control by means of the corresponding unfold�pt
and abstract�pt

operators,

respectively.

6 Reducing Polyvariance in Global Control

In the previous section we have seen how the use of suitable partial evaluation types

allows keeping the termination guarantees of �num, both at the local and global

control levels, while at the same time being aggressive enough so as to get rid of

the interpretation layer.

However, though the decompiled programs thus obtained are acceptable, careful

inspection of such residual programs shows that relatively often, useless specializa-

tion has been performed. At the local control level, performing more unfolding than

necessary often results in residual predicates defined by many clauses. At the global

control level, trying to be too precise results in producing too many predicates in

the residual program.

The question is whether there is any way to take the previous generalization

history into account when abstracting an atom at the global control. The intuition

is to keep track of the information which we have been forced to forget during

the partial evaluation process and proceed to forget it straight away for all new

atoms which are similar to the previously handled ones under some criteria. The

motivation for doing so is that since it seems likely that we will end up being

forced to forgetting such info, the sooner we forget such info, the better, both in

terms of specialization times and size of the residual program. We now propose

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–101 95

a technique based on the ideas above, which can be included inside the standard

partial evaluation algorithm, by means of an improved abstraction operator. In

order to do that, first, we need to give some preliminary definitions.

A term T is a generalization of S (or S is an instance of T), denoted by T ≤ S,

if ∃σ. Tσ = S. Two terms T and T ′ are variants, denoted T ≡ T ′, if both T ≤ T ′

and T ′ ≤ T . If T and T ′ are variants then there exists a renaming ρ such that

Tρ = T ′. A generalization of a set of terms {T1, . . . , Tn} is another term T such

that ∃σ1, . . . , σn with Ti = Tσi, i = 1, . . . , n. A generalization T is the most

specific generalization (msg) of {T1, . . . , Tn} if for every other term T ′ s.t. T ′ is a

generalization of {T1, . . . , Tn}, T ′ ≤ T . We also say that two atoms are homologous,

written as A ≈ B, if filter(A, pe typeA) ≡ filter(B, pe typeB).

Definition 6.1 [HintsTable] We define a HintsTable as a set of pairs of atoms

〈A,G〉, s.t. G ≤ A (i.e., G is a generalization of A).

We refer to these pairs of atoms as hints because they provide suggestions on

how to forget useless information during the abstraction performed at the global

control level. Next, we need to define a set of operations over the HintsTable,

which will be used later throughout the partial evaluation algorithm both to add

and to recover information from the table.

• addHint : HintsTable × 〈Atom,Atom〉 → HintsTable

addHint(HT, 〈A,G〉) = HT ∪ 〈A,G〉

• applyHint≡: HintsTable× Atom → Atom

applyHint≡(HT,A) = msg(Gs ∪ A)

where Gs = {G | 〈B,G〉 ∈ HintsTable, A ≡ B}

• applyHint≈: HintsTable× Atom → Atom

applyHint≈(HT,A) = msg(Gs ∪ A)

where Gs = {G | 〈B,G〉 ∈ HintsTable, A ≈ B}

Now, we can define the abstract�pt+gen⊚
operator by relying on the definitions

and operators given above.

Definition 6.2 [abstract�pt+gen⊚
] The abstraction operator abstract�pt+gen⊚

is de-

fined in terms of the abstract�pt
operator as follows:

abstract�pt+gen⊚
(Si,Tcalls,HT) = abstract�pt

(Si,AT calls)

where AT calls = {H |H = applyHint⊚(HT,A), ∀A ∈ Tcalls, ⊚ ∈ {≡,≈}}

Let us note that the abstract�pt+gen⊚
operator definition is parametric w.r.t.

“⊚”, and it represents two different abstraction operators, namely abstract�pt+gen≡

and abstract�pt+gen≈
, depending on which applyHint operator to use.

After discussing how hints-tables can be exploited during global control, the

main question is how exactly we populate such table with the required entries. We

propose to simply instrument the �pt test during partial evaluation in such a way

that whenever it flags possible problems between two atoms A and B, i.e., if the

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–10196

main([[ref(loc(1)),num(int(_))],heap([array(B,A)])],[num(int(0))]) :- 0>=B.
main([[ref(loc(1)),num(int(A))],heap([array(B,[num(int(D))|C])])],[E]) :-

0<B, D\=A, execute([num(int(D))|C],B,A,0,1,F,E).
main([[ref(loc(1)),num(int(A))],heap([array(B,[num(int(A))|C])])],[D]) :-

0<B, execute([num(int(A))|C],B,A,1,0,E,D).
main([[null,num(int(_))],heap([])],[ref(loc(1))]).

execute(A,B,C,D,E,heap([array(B,A)]),num(int(E))) :- E>=B.
execute(A,B,C,D,E,heap([array(B,A)]),num(int(E))) :- E<B, D\=0.
execute(A,B,C,0,D,E,J) :-

D<B, 0=<D, L is D+1, nth(L,A,num(int(M))), M\=C,
N is D+1, execute(A,B,C,0,N,E,J).

execute(A,B,C,0,D,E,J) :-
D<B, 0=<D, L is D+1, nth(L,A,num(int(C))),
execute(A,B,C,1,D,E,J).

Fig. 6. Decompiled version of the linear search program

relation A�ptB holds, in addition to returning the value true, it also stores the pair

〈A,msg(A,B)〉 into the hints-table.

Example 6.3 Now, let us consider again the SLD tree in Fig. 5. We start with

an empty table of hints HT = {}. First, in the middle branch, once we reach the

embedded atom execute(8, [ref, , , 0, 1]), a new hint will be added to the table

by making a call to the addHint operator. Similarly, another hint will be added in

the right branch. Thus, after building the first unfolding tree, the table has the

following two entries:

HT =

{

〈execute(8, [ref, , , 0, 1]), execute(8, [ref, , , 0, Y])〉,
〈execute(8, [ref, , , 1, 0]), execute(8, [ref, , ,X, 0])〉

}

Once the unfolding process has finished (see the partial evaluation algorithm in

section 3) the following call to the abstract operator will be made:

abstract�pt+gen⊚
({}, {execute(8, [ref, , , 0, 1]), execute(8, [ref, , , 1, 0])},HT)

Now, let us explain the effects of the application of each of the different abstract

operators:

• Using abstract�pt+gen≡
. The applyHint≡ operator simply returns the corre-

sponding generalized version for each of the atoms. Thus, the standard ab-

stract operator will be called with abstract�pt
({}, {execute(8, [ref, , , 0, Y]),

execute(8, [ref, , ,X, 0])}). Note that, although we keep the same number of

different atoms, polyvariance has been potentially reduced as we have generalized

a numeric argument, avoiding the possibility of appearing new different versions

of the same atom with different numeric values in the corresponding argument.

• Using abstract�pt+gen≈
. In this case, polyvariance will be immediately re-

duced since, as we will see, both atoms will collapse into the same general-

ized version. This is due to the generalizations between homologous atoms

performed inside the applyHint≈ operator, which will give rise to the following

call to the standard abstract operator abstract�pt
({}, {execute(8, [ref, , ,X, Y]),

execute(8, [ref, , ,X, Y])})

In Fig. 6 we can see the residual code we have obtained taking advantage of the

newly introduced techniques, by partial evaluating the JVML interpreter w.r.t. the

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–101 97

Benchmark ⊳ ⊳pt Gains

Name Size Tm Mem Unf/Eval Size Tm Mem Unf/Eval Size Tm Size

exp 0.33 1.56 712 1393/227 0.96 0.63 547 1092/187 0.78 2.49 1.23

gcd 0.27 1.19 566 1118/144 0.79 0.48 329 837/110 0.62 2.48 1.26

lcm 0.61 4.15 969 3211/367 2.50 1.39 471 2509/297 2.28 2.98 1.09

combNR 0.33 3.34 1332 2179/287 2.00 0.92 729 1623/216 1.47 3.64 1.36

combR 0.39 5.82 1733 2750/285 2.45 1.47 1203 2131/227 1.78 3.95 1.38

perm 0.28 1.52 562 1099/148 0.85 0.60 321 818/114 0.68 2.53 1.25

add 0.80 29.75 5980 9083/1115 23.15 7.03 3823 6757/830 18.18 4.23 1.27

exp 0.41 8.44 2027 3570/559 4.57 1.22 1079 2444/382 3.16 6.92 1.45

simplify 0.70 14.60 3076 6205/897 8.70 2.87 1917 4774/697 7.26 5.08 1.20

binarySrch 0.42 38.80 9867 10740/1571 29.91 6.00 3361 4837/727 11.53 6.46 2.59

forward 0.60 62.87 4106 14714/2256 16.30 9.20 4108 14714/2256 16.30 6.83 1.00

fib 0.28 — — –/– — 0.64 338 1421/191 1.10 ∞ ∞

linearSrch 0.32 — — –/– — 1.80 478 2610/394 16.09 ∞ ∞

signs 0.33 — — –/– — 3.98 1052 4401/702 11.40 ∞ ∞

Table 1
Measuring the effects of the pe types

bytecode program of our running example (see Fig. 2). Thus, we have used the �pt

as embedding relation (instrumented to add hints when embedding is flagged) and

the abstract�pt+gen≈
operator. Note that the entry call is main(In,Out), where In

will be instantiated to the list of argument values specified for the method, together

with the input heap, and Out will be instantiated to the top of the stack at the end

of the execution. This main predicate is responsible for first obtaining the initial

state and the JVML program and then calling for the first time to the execute

predicate of the interpreter (represented in the SLD tree in Fig. 5).

In the residual code, we see four rules for predicate main, three of them cor-

respond to the three branches represented in the SLD tree, and the fourth one

represents the trivial case where the input array is null (which, for simplicity, is

not represented in the SLD tree). As it can be seen, we have successfully got rid

of the interpretation layer as we only have calls to: 1) arithmetic builtins, 2) list

builtins (nth in this case for accessing the contents of the array) and 3) recursive

calls to the execute predicate, which represents, in essence, recursive calls to the

basic blocks in the control flow graph of the bytecode program.

7 Experimental Results

Table 1 shows the benefits that we can obtain by using pe type’s. We use a set

of classical algorithms as benchmarks. We have benchmarks belonging to iterative

programs without object-oriented features, thus, exp, gcd, lcm and fib compute

respectively the exponential, greatest-common-divisor, least-common-multiple and

Fibonacci; while combNoRep, CombRep and perm are methods for computing

different combinatorial functions. Also, we have some benchmarks using integer

arrays, such as linearSearch and binarySearch which implement the classic linear

and binary search over an array; and Signs which given an integer array, computes

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–10198

Benchmark abstract⊳pt+gen≡
abstract⊳pt+gen≈

Name Tm Mem Unf/Eval Size Tm Mem Unf/Eval Size

lcm 1.38 1.00 1.46/1.43 1.79 1.41 1.00 1.46/1.43 1.79

add 1.50 1.00 1.56/1.56 1.42 1.25 1.00 1.56/1.56 1.42

simplify 1.37 1.00 1.47/1.46 1.44 1.35 1.00 1.47/1.46 1.44

binarySearch 0.99 1.00 1.00/1.00 1.00 1.10 1.00 1.26/1.22 1.24

linearSearch 1.25 0.98 1.28/1.28 1.11 1.49 0.98 1.80/1.81 4.58

signs 1.24 1.00 1.30/1.30 1.28 1.86 1.00 1.88/1.90 2.15

Table 2
Measuring the effects of the abstract⊳pt+gen

the number of pairs of numbers with different sign. Finally, we have used four

benchmarks which make extensive use of object-oriented features such as instance

method invocation, field accessing and setting, object creation and initialization,

etc. Thus, add, exp and simp compute different operations over rational numbers

(represented as objects), while forward is invoked over an object representing a

date and forwards one day.

For each benchmark, the column Name shows the name of the method which

is the starting point for the decompilation, and the column Size shows its size.

All sizes are in KBytes and execution times in seconds. The next four columns,

labeled �, provide information about specialization using the original homeomor-

phic embedding. The first three of them show some data about the specialization

process, whereas the fourth one shows the Size of the residual program. The as-

pects which have been measured for the specialization process are Tm, which is

the time required by partial evaluation, Mem which is its memory consumption,

and Unf/Eval which shows the number of derivation steps together with the num-

ber of evaluations steps (i.e., where an eval assertion has been applied, see[20])

performed during the partial evaluation process. Similarly, the next four columns

provide information about specialization using our proposed combination of embed-

ding with pe type’s. Finally, the last two columns show the gains (in terms of time

and size) we obtain with the new embedding definition �pt based on pe type’s and

it is computed as Old-Cost/New-Cost. The last three benchmarks do not present

data for the � columns because the partial evaluation process does not terminate

for them. As it can be seen in the table, our proposed �pt specialization is able to

handle them. It can also be seen that for all other programs, the use of �pt results

in important gains both in terms of time and size. In terms of time, they range

from 2.49 in exp to 6.83 times faster in the case of forward. The gains in terms

of size range from obtaining a similar sized program in forward to a program 2.59

times smaller in the case of binarySearch.

The goal of Table 2 is to study the practical benefits that can be obtained by

using the new abstraction operator abstract�pt+gen⊚
proposed in Section 6. As in

Table 1, for each specialization approach we show four columns, with the same

meaning as before. However, in this case, rather than the absolute data we show

just the gains obtained w.r.t. the behavior of �pt, which is shown in absolute

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–101 99

terms in Table 1. We have two groups of columns, labeled as abstract�pt+gen≡
and

abstract�pt+gen≈
, each of them shows the gains of using respectively such abstraction

operator when compared to using �pt.

As it can be seen, the new global control never introduces relevant overhead.

Furthermore, in most cases it introduces relevant speedups, which go as high as 1.5

for the case of abstract�pt+gen≡
and 1.86 in the case of abstract�pt+gen≈

.

8 Conclusions

In this paper we have studied new mechanisms for achieving “quality” decompila-

tion from Java Bytecode to Prolog while at the same time ensuring termination of

the partial evaluation process by using a state-of-the-art online partial evaluator.

In addition to improving the quality of the residual programs, the techniques we

propose provide important efficiency gains during partial evaluation. In particular,

we use partial evaluation types to provide safe approximations of the values which

the arguments of predicates can take during partial evaluation time. Such partial

evaluation types are then used by the partial evaluator in order to steer the spe-

cialization process, both at the local and global control levels. Besides, we present

novel techniques to control the polyvariance of the PE process, i.e., to avoid having

too many (redundant) specialized versions of some predicates. As we have showed

in our experiments, both proposals improve not only the effectiveness but also the

efficiency of the decompilation process which, at the same time, widens the class of

programs that can be handled by using our interpretative approach. It remains as

future work to improve the precision of our techniques to achieve effective decom-

pilation of recursive procedures [7]. To do this, we plan to use more advanced PE

techniques [21] which integrate abstract interpretation.

Acknowledgement

This work was funded in part by the Information Society Technologies program of

the European Commission, Future and Emerging Technologies under the IST-15905

MOBIUS project, by the Spanish Ministry of Education under the TIN-2005-09207

MERIT project, and the Madrid Regional Government under the S-0505/TIC/0407

PROMESAS project.

References

[1] E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java Bytecode using Analysis
and Transformation of Logic Programs. In Proc. PADL, LNCS. Springer-Verlag, 2007. To appear.

[2] E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Unfolding in Partial Evaluation of Logic
Programs with Impure Predicates. In Proc. of LOPSTR’05. Springer LNCS 3901, April 2006.

[3] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla (Eds.). The
Ciao System. Reference Manual (v1.13). Technical report, School of Computer Science (UPM), 2006.
Available at http://www.ciaohome.org .

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–101100

http://www.ciaohome.org

[4] G. Puebla et al. A Generic Framework for Context-Sensitive Analysis of Modular Programs. In
M. Bruynooghe and K. Lau editors, Program Development in Computational Logic, A Decade of
Research Advances in Logic-Based Program Development, 3049 in LNCS, pages 234–261. August 2004.

[5] Yoshihiko Futamura. Program evaluation and generalized partial computation. In International
Conference on Fifth Generation Computer Systems - Proceedings, pages 1–8, Tokyo, Japan, 1988.

[6] J. Gallagher and D. de Waal. Fast and Precise Regular Approximations of Logic Programs. In Proc.
of ICLP’94, pages 599–613. MIT Press, 1994.

[7] J. P. Gallagher and J. C. Peralta. Regular tree languages as an abstract domain in program
specialisation. HOSC, 14(2,3):143–172, 2001.

[8] J.P. Gallagher. Tutorial on specialisation of logic programs. In Proc. of PEPM’93, pages 88–98. ACM
Press, 1993.

[9] M. Gómez-Zamalloa, E. Albert, and G. Puebla. Partial Evaluation Types for Improving the
Decompilation of Java Bytecode to Prolog. Technical Report CLIP1/2007.0, School of Computer
Science, UPM, February 2007.

[10] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Constraint Logic
Programs. ACM TOPLAS, 22(2):187–223, March 2000.

[11] N. D. Jones. Partial evaluation, self-application and types. In Proc. of ICALP’90, volume 443 of LNCS,
pages 639–659. Springer, 1990.

[12] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice Hall, New York, 1993.

[13] J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the
American Mathematical Society, 95:210–225, 1960.

[14] M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction: Control
issues. Theory and Practice of Logic Programming, 2(4 & 5):461–515, July & September 2002.

[15] M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof. Specialising interpreters using offline
partial deduction. In Program Development in Computational Logic, volume 3049 of Lecture Notes
in Computer Science, pages 340–375. Springer, 2004.

[16] Michael Leuschel. On the power of homeomorphic embedding for online termination. In Giorgio Levi,
editor, Static Analysis. Proceedings of SAS’98, LNCS 1503, pages 230–245, Pisa, Italy, September 1998.
Springer-Verlag.

[17] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The Journal of Logic
Programming, 11:217–242, 1991.

[18] J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd Ext. Ed., 1987.

[19] D. Pichardie. Bicolano (Byte Code Language in cOq).
http://www-sop.inria.fr/everest/personnel/David.Pichardie/bicolano/main.html .

[20] G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with Ancestor Stacks for Full
Prolog. In Proc. of LOPSTR’04, pages 149–165. Springer LNCS 3573, 2005.

[21] G. Puebla, E. Albert, and M. Hermenegildo. Abstract Interpretation with Specialized Definitions. In
Proc. of SAS’06, number 4134 in LNCS. Springer, 2006.

[22] A. Takeuchi and K. Furukawa. Partial evaluation of prolog programs and its application to meta
programming. In Proc. IFIP ’86, pages 415–420. North-Holland, 1986.

[23] W. Vanhoof, M. Bruynooghe, and M. Leuschel. Binding-time analysis for mercury. In Program
Development in Computational Logic, volume 3049 of LNCS, pages 189–232. Springer, 2004.

M. Gómez-Zamalloa et al. / Electronic Notes in Theoretical Computer Science 190 (2007) 85–101 101

http://www-sop.inria.fr/everest/personnel/David.Pichardie/bicolano/main.html

Type-Based Homeomorphic Embedding and Its

Applications to Online Partial Evaluation

Elvira Albert1, John Gallagher2, Miguel Gómez-Zamalloa1,
and Germán Puebla3

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CBIT, Roskilde University, DK-4000 Roskilde, Denmark

3 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. Homeomorphic Embedding (HEm) has proven to be very
powerful for supervising termination of computations, provided that such
computations are performed over a finite signature, i.e., the number of
constants and function symbols involved is finite. However, there are
situations, for example numeric computations, which involve an infinite
(or too large) signature, in which HEm does not guarantee termination.
Some extensions to HEm for the case of infinite signatures have been
proposed which guarantee termination, but they either do not provide
systematic means for generating such extensions or the extensions are
too simplistic and do not produce the expected results in practice. We
introduce Type-based Homeomorphic Embedding (TbHEm) as an exten-
sion of the standard, untyped HEm to deal with infinite signatures. In
the paper, we show how TbHEm can be used to improve the accuracy
of online partial evaluation. For this purpose, we propose an approach
to constructing suitable types for partial evaluation automatically based
on existing analysis tools for constraint logic programs. We also present
useful properties of types which allow us to take full advantage of Tb-

HEm in practice. Experimental results are reported which show that our
work improves the state of the practice of online partial evaluation.

1 Introduction

The homeomorphic embedding (HEm) relation [10,11,12] has become very pop-
ular to ensure online termination of symbolic transformation and specialization
methods and it is essential to obtain powerful optimizations, for instance, in the
context of online Partial Evaluation (PE) [9]. Intuitively, HEm is a structural
ordering under which an expression t1 is greater than, i.e., it embeds, another
expression t2, written as t2� t1, if t2 can be obtained from t1 by deleting some
parts, e.g., s(s(U + W)×(U+s(V))) embeds s(U× (U + V)). The HEm relation can
be used to guarantee termination because, provided the set of constants and
functors is finite, every infinite sequence of expressions t1, t2, . . . , contains at
least a pair of elements ti and tj with i < j s.t. ti� tj . Therefore, when it-
eratively computing a sequence t1, t2, . . . , tn, finiteness of the sequence can be
guaranteed by using HEm as a whistle. Whenever a new expression tn+1 is to

King, A. (Ed.): LOPSTR 2007, LNCS 4915, pp. 23–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

24 E. Albert et al.

be added to a finite sequence t1, . . . , tn, we first check whether tn+1 embeds any
of the expressions already in the sequence. If that is the case, we say that HEm

whistles, i.e., it has detected (potential) non-termination and the computation
has to be stopped. Otherwise, tn+1 can be safely added to the sequence and the
computation can proceed.

Two key features for the success of HEm as an approach for guaranteeing on-
line termination are i) in the case of finite sequences, it often allows sequences
to grow considerably large before the whistle blows, to the point that in a good
number of cases the full sequence can be computed without the whistle blow-
ing at all; ii) in the case of infinite sequences, it often identifies (potential)
non-termination quickly, and the whistle blows without unnecessarily further
expanding the sequence.

While HEm has been proved very powerful for symbolic computations, some
difficulties remain in the presence of infinite signatures, such as the numbers. In
the case of logic programs, infinite signatures appear as soon as certain Prolog
built-ins such is/2, functor/3 name/2, =../2, atom codes/2, etc. are used.
Some extensions to HEm over infinite signatures have been defined and used in
practice (e.g. [11,2]), but they are often too ad-hoc, i.e., they only allow constants
which appear explicitly in the program, regardless of which part of the program
(predicate, argument position) they appear. As the approach is purely syntactic,
it sometimes turns out to be too conservative (“whistling” too early) in practice,
breaking feature i) above; while it can also be too aggressive, thus also sometimes
breaking feature ii) above.

In this paper, we introduce the type-based homeomorphic embedding (TbHEm)
relation which by taking information about the behavior of the program into
account, provides more precise results in the presence of infinite signatures. In
a sense, whereas [11,2] take a simple syntactic approach to extending the HEm

relation, we propose a semantic approach for such extension. To achieve this,
our typed relation is defined on types structured in two parts: a finite component
and an infinite component. Intuitively, TbHEm allows expanding sequences as
long as, whenever we compare two terms of a given type, the actual symbols
which appear in such terms belong to the finite component of the type.

We illustrate the benefits of TbHEm in the context of online Partial Evaluation
(PE) [9]. In particular, we use a simplified interpreter for an imperative, stack-
based bytecode language written in Prolog whose specialization (if successful)
allows decompiling bytecode programs to Prolog. We show how to automatically
construct typings by relying on existing analysis techniques for the inference of
well-typings [5]. Moreover, we present the property of a type being of finite
signature (resp. infinite signature) which guarantees that all terms in the type
are built out of a finite (resp. infinite) number of constant and functor symbols.
We also outline how analysis of numeric bounds can be used to infer finite
signature properties of types. In the case of finite signature, we can safely apply
traditional HEm. We report on experimental results which compare TbHEm with
previous proposals and show the benefits of our approach for the specialization
of logic programs with infinite signatures.

Type-Based Homeomorphic Embedding 25

The rest of the paper is organized as follows. Sect. 2 recalls some basic notions
of PE, with special emphasis on the role of embedding. In Sect. 3, we review
existing proposals in specialization of interpreters. In Sect. 4, we introduce Tb-

HEm and prove its correctness. Sect. 5 proposes the use of well-typings as suitable
types for the application of TbHEm in online PE and reports some experiments.
Sect. 6 presents interesting properties of types to use TbHEm in practice, to-
gether with some experimental results. Finally, Sect. 7 discusses related work
and concludes.

2 Basics on Embedding in Partial Evaluation

We assume familiarity with the basic concepts of logic programming and partial
evaluation, as they are presented in e.g. [16,9]. We start by recalling the definition
of HEm, which can be found for instance in Leuschel’s work [14].

Definition 1 (�). Given two atoms A = p(t1, . . . , tn) and B = p(s1, . . . , sn),
we say that B embeds A, written A � B, if ti � si for all i s.t. 1 ≤ i ≤ n. The
embedding relation over terms, also written �, is defined by the following rules:

1. Y � X for all variables X, Y .
2. s� f(t1, . . . , tn) if s � ti for some i.
3. f(s1, . . . , sn)� f(t1, . . . , tn) if si � ti for all i, 1 ≤ i ≤ n.

We now explain the role that HEm plays in online PE (see e.g. [9,12,14]), which
is a semantics-based program transformation technique which specializes a pro-
gram w.r.t. given input data, hence, it is often called program specialization.
Essentially, partial evaluators are non-standard interpreters which evaluate goals
as long as termination is guaranteed and specialization is considered profitable.
Given a program P and an atom S, partial evaluation produces a new program
PS which is a specialization of P for S. In logic programming, the underlying
technique is to construct (possibly) incomplete SLD trees for the set of atoms to
be specialized. In an incomplete tree, it is possible to choose not to further un-
fold a goal. Therefore, the tree may contain three kinds of leaves: failure nodes,
success nodes (which contain the empty goal), and non-empty goals which are
not further unfolded. The latter are required in order to guarantee termination
of the partial evaluation process, since the SLD being built may be infinite. Even
if the SLD trees for fully instantiated initial atoms (as regards the input argu-
ments) are finite, the SLD trees produced for partially instantiated initial atoms
may be infinite. This is because the SLD for partially instantiated atoms can
have (infinitely many) more branches than the actual SLD tree at run-time.

HEm in local control. The role of local control is to determine how to construct
the (incomplete) SLD trees. In particular, the unfolding rule decides, for each
resolvent, whether to stop unfolding or to continue unfolding it and, if so, which
atom to select from the resolvent. Unfolding is continued only if termination
is not endangered and specialization is considered profitable. Therefore, it is

26 E. Albert et al.

desirable to have a mechanism for guaranteeing termination which whistles as
late as possible. State of the art local control rules based on HEm do not check for
embedding against all previously selected atoms but rather only against those
in its sequence of covering ancestors (see e.g., [18]). This increases both the
efficiency of the checking and whistling later.

HEm in global control. Partial evaluators need to compute SLD-trees for a num-
ber of atoms in order to ensure that all atoms which appear in non-failing leaves
of incomplete SLD trees are “covered” by the root of some tree (this is known as
the closedness condition of partial evaluation [15]). The role of the global control
is to ensure that we do not try to compute SLD trees for an infinite number of
atoms. The usual way of achieving this is by applying an abstraction operator
which performs “generalizations” on the atoms for which SLD trees are to be
built. HEm can also be used at the global control level in order to decide when to
generalize (i.e., to apply the most specific generalization) before proceeding to
build SLD trees. Basically, for each new atom A, global control checks whether
A is larger than (i.e., it embeds) any of the atoms in the set Ti (which contains
the atoms in the roots of the partial trees which have already been built). If A
does not embed any atom in Ti, it is added to the set; otherwise, A is generalized
into msg(A, A′), where A′ ∈ Ti and A′�A. At the global control level, HEm can
be combined with other techniques such as global trees, characteristic trees, trace
terms, etc. See e.g. [12] and its references.

Partial evaluation and Code Generation. As discussed above, the global control
returns a set of atoms T . Finally, a partial evaluation of P w.r.t. S can then
be systematically extracted from the set T . As notation, we refer to each root-
to-leaf path in an SLD tree as derivation. The notion of resultant is used to
generate a program rule associated with each non-failing derivation in an SLD
tree. In particular, given a derivation for P ∪ {A} with A ∈ T ending in B and
θ the composition of the mgus in the derivation steps, then the rule Aθ ← B is
called the resultant of the derivation. A partial evaluation is then defined as the
union of the sets of resultants associated to the SLD trees for all atoms in T .

3 Embedding with Infinite Signatures: Motivating
Example

In Fig. 1 we show a fragment of a simplified imperative bytecode interpreter
implemented in Prolog. If the partial evaluator is powerful enough, given a byte-
code program we can obtain a decompiled version of it in Prolog (see e.g. [1]
for an object-oriented stack-based interpreter). For brevity, we omit the code of
some predicates like build init state/2 (whose purpose is explained below)
and localVar update/4 which simply updates the value of a local variable. We
only show the definition of step/3 for a reduced set of instructions. The byte-
code to be decompiled is represented as a set of facts bytecode(PC,Inst)where
PC contains a program counter and Inst the corresponding bytecode instruc-
tion. A state is of the form st(PC,OStack,LocalV) where OStack represents

Type-Based Homeomorphic Embedding 27

main(InArgs,Top) :-

build_init_state(InArgs,S0),

execute(S0,st(_,[Top|_],_)).

execute(S,S):-

S = st(PC,_,_),

bytecode(PC,return).

execute(S1,Sf) :-

S1 = st(PC,_,_),

bytecode(PC,Inst),

step(Inst,S1,S2),

execute(S2,Sf).

step(const(_T,Z),st(PC,S,L),S2) :-

PCp is PC + 1,

S2 = st(PCp,[Z|S],L).

step(istore(X),st(PC,[I|S],L),S2) :-

PCp is PC + 1,

localVar_update(L,X,I,Lb),

S2 = st(PCp,S,Lb).

step(goto(O),st(PC,S,L),S2) :-

PCp is PC+O,

S2 = st(PCp,S,L).

....

Fig. 1. Fragment of simplified bytecode interpreter

the operand stack and LocalV the list of local variables. The predicate main/2,
given the input method arguments InArgs, first builds the initial state by means
of predicate build init state/2 and then calls predicate execute/2. In turn,
execute/2 first calls predicate step/3, which produces S2, the state after execut-
ing the corresponding bytecode, and then calls predicate execute/2 recursively
with S2 until we reach a return instruction.

Consider the count method which appears in the left hand side of Fig. 2,
represented as a set of facts. For clarity of the presentation, on the right hand
side of Fig. 2 we show a Java source program which can be compiled into the
corresponding bytecode. However, it is important to note that the decompilation
is performed directly from the bytecode and that the decompiler does not have
access to the source. It can be seen that count receives an integer and executes
a loop where a counter initialized to “0” (in bytecodes 0 and 1) is incremented
by one at each iteration (bytecode 5) until the counter reaches the value of the
input parameter (checking the condition comprises bytecodes 2, 3 and 4). The
method returns the value of the counter in bytecodes 7 and 8. For decompiling
the count method, we partially evaluate the interpreter w.r.t. the bytecode facts
which appear to the left of the figure by specializing the atom: main(N,I), where
N is the input parameter and I represents the return value (i.e., the top of the
stack at the end of the computation).

In Figure 3, we depict (a reduced version of) one of the SLD trees that leads
to an effective decompilation of our running example and that we will refer to
in the next sections. For simplicity, apart from the entry atom main/2, we only
show atoms for execute/2, as it is the only recursive predicate in the program.
Thus, each arrow in the tree involves the application of several unfolding steps.
Note that some of the statements within the body of each step operation can
remain residual when they involve data which is not known at specialization
time. The computation rule used in the unfolding operator is able to residualize
calls which are not sufficiently instantiated and select non-leftmost atoms in a
safe way [3], in particular, further calls to execute can be selected. We represent
such residual calls as labels in the arrows of the tree.

28 E. Albert et al.

bytecode(0,const(int,0)).

bytecode(1,istore(1)).

bytecode(2,iload(1)).

bytecode(3,iload(0)).

bytecode(4,if_icmp(geInt,3)).

bytecode(5,iinc(1,1)).

bytecode(6,goto(-4)).

bytecode(7,iload(1)).

bytecode(8,return).

static int count(int n){
int i = 0;

while (i < n)

i++;

return i;

}

Fig. 2. Object program for working example

main(N, I)

��

execute(st(0, [], [N, 0]), Sf)

��

execute(st(1, [0], [N, 0]), Sf)

��� � � � � � � � � � � � ��

�

�

�

� � � � � � � � � � � � �

execute(st(2, [], [N, 0]),Sf)(1)

��

execute(st(4, [N, 0], [N, 0]), Sf)
{0≥N}

���������
{0<N}

���������

execute(st(8, [0], [N, 0]), Sf)

{I/0}
��

execute(st(6, [], [N, 1]), Sf)

��

true
� � � � � � � � � � � � ��

�

�

�

� � � � � � � � � � � � �

execute(st(2, [], [N,1]), Sf)(2)

(1) �T (2), (1) ��∗

S
(2)

��

∞ (with �)

main(N,0) :- 0>=N.

main(N,I) :- 0<N,

sp execute(N,1,I).

sp execute(N,I,I) :- I>=N.

sp execute(N,A,I) :- A<N, A’ is A+1,

sp execute(N,A’,I).

Fig. 3. Partial unfolding SLD tree and residual code of working example

3.1 Using the Original Homeomorphic Embedding

Let us first consider an online partial evaluator (which is able to accurately
handle built-in predicates and to safely perform non-leftmost and) which uses
HEm to control termination both at the local and global control levels. As
it can be seen in the figure, the PC value “2” corresponds to the loop en-
try. By applying HEm, the evaluation contains a subsequence of atoms of the
form: execute(st(2, [], [N, 0]), Sf), execute(st(2, [], [N, 1]), Sf), execute(st(2, [],
[N, 2]), Sf), . . . marked within dashed frames in the figure, which correspond to
consecutive iterations of the loop in which the control returns to the loop head
(PC value 2 in the first position of the state) with a value for the loop counter

Type-Based Homeomorphic Embedding 29

(local variable at the second position in the resulting state) increased by one.
This sequence can grow infinitely, as the HEm does not flag it as potentially
dangerous, which is marked by ∞ (with �) in the figure. This is because the
interpreter uses Prolog’s arithmetic (i.e., the is/2 predicate), which breaks the
finite signature property featured by pure logic programs.

In order to get a quality decompilation, we need to filter out the value of the
counter (local variable 1) but not that of the PC. As shown in the figure, this re-
quires stopping the derivation when we hit the atom execute(st(2, [], [N, 1]), Sf)
(marked as (1)�T (2)) and generalize it w.r.t. the above atom within a dashed
frame, resulting in execute(st(2, [], [N, X]), Sf).

3.2 Recovering Termination: Embedding with Number Filtering

In programs which contain Prolog arithmetic but do not generate an infinite
number of functors via functor/3, =../2, etc., a relatively straightforward
solution in order to recover termination is to use the �num relation, which is an
adaptation of HEm which filters out numeric values, i.e., any number embeds any
other number. The atom execute(st(2, [], [N, 1]), Sf) embeds execute(st(2, [],
[N, 0]), Sf) under �num and therefore we avoid non-termination. Unfortunately,
this modification to HEm, is far too conservative, and leads to excessive preci-
sion loss. For instance, in the specialization of main(N, I), the first two atoms
for execute/2 are execute(st(0, [], [N, 0]), Sf) and execute(st(1, [0], [N, 0]), Sf).
By using �num, the whistle blows at this point and unfolding has to stop.
Furthermore, the latter atom is generalized at the global control level into
execute(st(X, Y, [N, 0]), Sf) before proceeding with the specialization. This turns
out not to be acceptable for the specialization of our interpreter, since we lose
track of which the next instruction to execute is—which prevents us from elim-
inating the interpretation layer—and in many cases the residual program ends
up containing the whole original interpreter.

3.3 Increasing Accuracy: Static Symbols in the Program

A simple syntactic way of increasing the accuracy while preserving termination,
as proposed in [11], consists in considering two sets of symbols: those which appear
explicitly in the program and goal, which is obviously finite, and another infinite
set which contains all other symbols. In the following, this relation is denoted as
�∗

S . When comparing two terms we keep those symbols which belong to the finite
set and filter out all other ones. Under this relation, the atom execute(st(1, [0],
[N, 0]), Sf) does not embed the atom execute(st(0, [], [N, 0]), Sf) in the figure, as
the numbers 0 and 1 are different static symbols which occur in the program.
Hence, we are not forced to generalize them and we can keep the PC value.

Unfortunately, the �∗
S relation turns out not to be optimal in our case either

since execute(st(2, [], [N, 1]), Sf) does not embed execute(st(2, [], [N, 0]), Sf).
This means that unfolding proceeds with a second iteration of the loop. The
process is guaranteed to terminate, we will unfold at most as many iterations of
the loop as distinct numbers appear in the program. However, we are not able to

30 E. Albert et al.

achieve the quality decompilation which appears at the bottom of Figure 3. For
obtaining such good decompilation, we need to generalize the loop counter, i.e.,
the atom execute(st(2, [], [N, 1]), Sf) has to embed execute(st(2, [], [N, 0]), Sf).
Intuitively, the reason why this relation does not behave optimally is because
the fact that many symbols appear explicitly in the program for one argument
(in our case the PC counter) should somehow not affect the set of symbols which
we should consider as static for other arguments (the list of local variables).

Note that the use of characteristic trees [13] to control the degree of poly-
variance does not lead to an optimal decompilation in this example either. The
reason is that characteristic trees concern only global and not local control.
Therefore, as already mentioned above, they do not stop the local derivation
which may perform as many unrollings of the loop as different values for the
loop counter there are in the program. Once the local control stops this unfold-
ing process, the value of the counter will be generalized by the global control.
However, the characteristic tree of this generalized term is clearly not equivalent
to the one of the previous unrolling for the different values in the counter. There-
fore, the decompilation of the loop body for the static values remains residual
in the specialized code as well.

4 Type-Based Homeomorphic Embedding

In the presence of infinite signatures, a general method of defining homeomor-
phic embedding relations exists; an extended homeomorphic embedding relation
is defined in [11] based on previous results by Kruskal [10] and by Dershowitz
[6]. This solution defines a family of embedding relations, where a subsidiary
ordering on function symbols plays an essential role. However, we argue that
this does not really solve the practical problem of finding an effective embedding
relation, since there is no automated mechanism for finding the “right” ordering
relation on the function symbols in the signature.

In this section, we propose typed-based homeomorphic embedding (TbHEm for
short), a relation which improves HEm by making use of additional information
provided in the form of types. We outline how this approach can be seen as a
way of generating instances of extended HEm as defined by Leuschel, including
the possibility of taking into account the program semantics. The types required
for guiding TbHEm can be provided manually or, interestingly, be automatically
inferred by program analysis, as we will see in Section 5.

4.1 Types: Preliminaries and Notation

In the following, let P be a program and ΣP be a (possibly infinite) signature
including the functions and constants appearing in P and goals for P as well as
in computations of P . We adopt the syntax of Mercury [20] for type definitions.
Type expressions (types), elements of T , are constructed from an infinite set of
type variables (parameters) VT and an alphabet of ranked type symbols ΣT ;
these are disjoint from the set of variables V and the alphabet of functors ΣP

of a given program P respectively.

Type-Based Homeomorphic Embedding 31

Definition 2 (type definition). A type rule for a type symbol h/n ∈ ΣT is of
the form h(T̄) −→ f1(τ̄1); . . . ; fk(τ̄k); . . . (k ≥ 1) where T̄ is a n-tuple of distinct
type variables, f1, . . . , fk, . . . are distinct function symbols from ΣP , τ̄i (i ≥ 1)
are tuples of corresponding arity from T , and type variables in the right hand
side, if any, are from T̄ (a condition known as transparency [17,8]). A type
definition is a finite set of type rules where no two rules contain the same type
symbol on the left hand side, and there is a rule for each type symbol occurring
in the type rules.

We write t : τ to mean that term t is of type τ . As in Mercury [20], a function
symbol can occur in several type rules. In the definition above we allow type
rules containing an infinite number of cases. Thus, standard infinite types such
as integer are permitted, defined by a rule with an infinite number of cases
containing the numeric constants. In order to define TbHEm we introduce some
extra annotation into type rules. We consider the right hand side of each type
rule to consist of two disjoint components, each possibly empty. More precisely,
we will structure a type rule as h(T̄) −→ F ; I, where the union F ∪I are the cases
in the type rule, F ∪ I is non-empty, F is either empty or finite and I is either
empty or infinite. We say that a type τ ∈ T is of infinite component if I is non-
empty in the rule defining τ . Otherwise it is said to be of finite component. Note
that for types of infinite component there are infinitely many ways of splitting
them into type rules; for example nat −→ F ; I where F = ∅ and I = N, or
F = {0, 1, 2} and I = N \ {0, 1, 2}, etc.

A predicate signature for an n-ary predicate p is of the form p(τ̄) and de-
clares a type τi ∈ T for each argument of the predicate p/n. Programs are
assumed to be well-typed in the usual sense, namely that every atom and term
in a clause can be assigned types consistent with the type declarations such that
the type assigned to each head atom is a variant of the signature for its predicate,
the types of the body atoms are instances of the corresponding signatures, and
multiple occurrences of the same variable in the clause are assigned the same
type. Furthermore, we disallow polymorphic recursion; body atoms for recursive
predicates are assigned a type that is a variant of the signature. The relevant
consequences of well-typing for our purpose are firstly that a well-typed program
and goal generate only well-typed atoms in computations and secondly that only
a finite number of types arise during a computation. An infinite set of different
types such as h(T), h(h(T)), h(h(h(T))), . . . cannot arise in a computation, due
to the absence of polymorphic recursion.

4.2 Type-Based Homeomorphic Embedding

We now define TbHEm (�T). It follows closely the definition of the extended
HEm relation defined in [11] on untyped terms; here we define a relation on
typed terms. As in the definition in [11], two subsidiary relations
F and
S

are needed. The first,
F , is a relation on function symbols paired with their
associated types, and it refers to the infinite component of type rules described
above.

32 E. Albert et al.

Definition 3. Let
F be the following relation on the set of pairs ΣP × T .
(f1, τ1)
F (f2, τ2) iff (1) the rules defining τi are of form hi(V̄i) −→ Fi; Ii, for
i = 1, 2 and (2) either f1 = f2 ∧ τ1 = τ2 or f2 is in the infinite component I2 of
the rule for τ2.

For instance, given τ −→ F ; I with F = {1, 2} and I = N \ {1, 2} then (1, τ) �
F

(2, τ) and (1, τ)
F (5, τ). The other relation,
S , is a relation on sequences of
typed terms, and for our purposes here we can take it to be true for all pairs of
sequences of typed terms. In general this relation can be defined to allow more
refined treatment of associative operators, among other things; as noted in [11],
whether ∧(a, b, c) is embedded in ∧(a, b, c, d) depends on the nested structure of
the expressions, if ∧ is taken as a binary functor. Though we do not use it here,
we include the relation
S in the following definition for uniformity with [11],
so that our notion of typed embedding becomes an instance of the extended
homeomorphic embedded defined there.

Definition 4 (�T). Given two typed atoms A = p(t1, . . . , tn) and B = p(s1,
. . . , sn), with predicate signature p(τ1, . . . , τn), we say that B embeds A, written
A �T B, if ti : τi �T si : τi for all i s.t. 1 ≤ i ≤ n. The embedding relation over
typed terms, also written �T , is defined by the following rules:

1. Y :τY �T X:τX for all variables X, Y .
2. s :τ �T f(t1, . . . , tn) :τ ′ if s :τ �T ti :τ

′
i for some i, where τ ′

1, . . . , τ
′
n are the

respective types of t1, . . . , tn.
3. f(s1, . . . , sn) :τ �T g(t1, . . . , tm) :τ ′ if

(a) (f, τ)
F (g, τ ′),
(b) (s1 :τ1, . . . , sn :τn)
S (t1 :τ ′

1, . . . , tm :τ ′
m), and

(c) ∃i1, . . . , in such that 1 ≤ i1 < · · · < in ≤ m and ∀j ∈ {1, . . . , n},
sj :τj �T tij

:τ ′
ij
,

where τ1, . . . , τn, τ ′
1, . . . , τ

′
m are the respective types of s1, . . . sn, t1, . . . , tm.

Rule 3 of the definition specifies that embedding can occur between terms with
different function symbols, where the function symbol of the “larger” term using
the
F relation is from the I component of its type. However, as long as we
compare distinct terms from an infinite type and remain within the finite com-
ponent F of the type, no embedding (using rule 3) occurs since the condition
(f, τ1)
F (g, τ2) does not hold. For instance, consider the following predicate
signature and type definition, p(τ) and τ −→ F ; I. We have that p(1) �T p(2)
if F = ∅ and I = N. However, p(1) ��T p(2) if F = {0, 1, 2} and I = N \ {0, 1, 2}.

Proposition 1. Given a program P that is well-typed with respect to a type
definition and set of signatures, there is no infinite sequence of well-typed atoms
A1, A2, . . . in a computation for P such that for all i, j where i < j, Ai ��T Aj .

Proof. First note that, by the assumption that polymorphic recursion is disal-
lowed, only a finite number of types (up to renaming of type variables) arises in a
computation. The proposition follows from the fact that is a �T well quasi order
(wqo) on typed atoms over a finite set of types. A binary relation ≤: D × D is a

Type-Based Homeomorphic Embedding 33

wqo if (i) it is reflexive and transitive, and (ii) for all infinite sequences d0, d1, . . .
of elements of D, ∃i < j such that di ≤ dj . By Theorem 4 from [11], this in turn
follows if both
F and
s are wqos on their respective domains, which we now
prove.

The proof that
S is a wqo is trivial. For
F , it can easily be verified that
the relation is reflexive and transitive. To prove the wqo property (ii) assume
that there is an infinite sequence of pairs from ΣP × T , (f0, τ0), (f1, τ1),
First assume there is only a finite number of function symbols occurring in the
sequence; in this case, since there is also a finite number of types, there must
exist i and j, i < j, such that fi = fj ∧ τi = τj and hence (fi, τi)
F (fj , τj).
Secondly, assume that there is an infinite set of function symbols occurring in
the sequence; since the number of types is finite there must exist some j > 0,
such that fj is in the infinite component of the type rule for τj , in which case
(fi, τi)
F (fj , τj) for all i < j. Hence,
F is a wqo.

Proposition 1 ensures that partial evaluation using TbHEm terminates. The idea
of using a typed homeomorphic embedding generalises an idea sketched in [11] to
build an extended homeomorphic embedding based on a distinction between the
finite number of symbols actually occurring in the program and goal (the static
symbols), and the rest (the dynamic symbols). This could be reconstructed as
a TbHEm using a single type rule term −→ F ; I where F contains cases of the
form f(term,, term) where f is a static symbol, and I contains the infinite
number of cases where f is not static.The predicate signatures would allocate
the type term to all arguments. As discussed in Section 3.3, that approach lacks
control over the different contexts in which static symbols occur in the program.
Sometimes a static symbol should block embedding but other times it should
not.

5 Automatic Inference of Well-Typings

In this section, we outline and experimentally evaluate an approach which, given
an untyped program and a goal or set of goals, automatically infers suitable
types to be used in online partial evaluation in combination with TbHEm. The
approach is based on existing analysis tools for constraint logic programs.

We note first that the problem does not allow a precise, computable solution.
Determining the exact set of symbols that can appear at run-time at a specific
program point, and in particular determining whether the set is finite, is closely
related to termination detection and is thus undecidable. However, the better
the derived types are, the more aggressive partial evaluation can be without
risking non-termination. If the derived types have finite components that are
too small, then over-generalization is likely to result; if they are too large, then
specialization might be over-aggressive, producing unnecessary versions.

A procedure for constructing a monomorphic well-typing of an arbitrary logic
program was described by Bruynooghe et al. [5]1. The procedure scales well

1 Available on-line at http://saft.ruc.dk/Tattoo/

34 E. Albert et al.

(roughly linear in program size) and is robust, in that every program has a
well-typing, and the procedure works with partial programs (modules). We first
apply this procedure to illustrate the use of well-typings in the context of our
running example and, then, we perform an experimental evaluation to assess the
gains that we achieve in the specialization of interpreters by using well-typings
in combination with TbHEm.

5.1 Well-Typings for Working Example

In the original type inference procedure, an externally defined predicate such as
is/2 is treated as if defined by a clause X is Y :- true and is thus implicitly
assumed not to generate any symbols not occurring elsewhere in the program.
In deriving types for partial evaluation, we provide a type for such built-ins in
the form of a dummy additional “fact” for is/2, namely num is num :- true.
The constant num (assumed not to occur elsewhere in the program) will thus
propagate during type inference into those types that unify with the types of the
is predicate arguments. In the resulting inferred types, we interpret occurrences
of the constant num as being an abbreviation for an infinite set of cases.

Example 1. A type is inferred for the interpreter sketched in Figure 1, together
with the particular bytecode program of Fig. 2. Note that the program counter
is sometimes computed in the interpreter using the predicate is/2 as an offset
from the current program counter value and hence its type is in principle any
number. When the extra fact num is num :- true is added to the program,
the inferred type τPC for the program counter argument PC is as follows.

τPC --> -4; 0; 1; 2; 3; 4; 5; 6; 7; 8; num

Type τPC can be naturally interpreted as consisting of a finite part (the named
constants) and an infinite part (the numbers other than the named constants).
In other words, the partition F of the rule is {−4, 0, 1, 2, . . . , 8} and I = num\F .
Using the rule structured in this way, TbHEm ensures that the program counter
is never abstracted away during partial evaluation, so long as its value re-
mains in the expected range (the named constants). The atom execute(st(1, [0],
[N, 0]), Sf) does not embed execute(st(0, [], [N, 0]), Sf) by using the type defi-
nition above, thus, the derivation can proceed. This avoids the need for gen-
eralizing the PC what would prevent us from having a quality specialization
(decompilation) as explained in Sect. 2. The derivation will either eventually end
or the PC value will be repeated due to a backwards jump in the code (loops).
In this case, �T will flag the relevant atom as dangerous, e.g., execute(st(2,
[], [N, 0]), Sf) �T execute(st(2, [], [N, 1]), Sf), as can be seen in Fig. 3. If, however,
a different value arose, perhaps due to an addressing error, the infinite part of
the type rule num is encountered and embedding (followed by generalization of
the program counter argument) would take place.

The decompiled program that we obtain using the inferred well-typings and
combined with TbHEm is shown at the bottom of Fig. 3. We can observe that
the decompilation is optimal in the sense that the interpretation layer has been
completely removed and there is no superfluous residual code. Note that a more

Type-Based Homeomorphic Embedding 35

sophisticated analysis could infer that τPC becomes of finite component, i.e., I = ∅
by taking F = {−4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This can be done by com-
puting all combinations of bytecode indeces and offsets present in the program. In
fact, F = {0, 1, 2, 3, 4, 5, 6, 7, 8} is also a correct finite component. Though this in-
formation indicates that τPC is of finite signature (see Section 6 below), the quality
of the decompiled program does not require this extra accuracy.

5.2 Experimental Results

We have implemented the proposed TbHEm embedding relation within the par-
tial evaluator available in CiaoPP [19] and combined it with the results obtained
from the well-typing analyzer in [5]. Table 1 shows the practical benefits that we
can obtain in the context of the specialization of interpreters. Each row in the
table corresponds to the specialization of a bytecode interpreter w.r.t. different
bytecode programs. Counter corresponds to the program presented in Fig. 2.
We use a set of classical iterative algorithms as additional benchmarks: Exp,
Gcd and Fib compute respectively the exponential, greatest-common-divisor
and Fibonacci, and ExpAlt corresponds to a different implementation of the
exponential. The last two benchmarks, LinSearch and BinSearch, compute
respectively the classical linear and binary searches over integer arrays. There-
fore, to handle them, we use an extended version of our bytecode interpreter
which handles integer array manipulation. Thus, it includes a heap in the state
as well as the bytecode instructions required to manipulate arrays. We have ex-
perimented as well extending the interpreter with more advanced features such
as exception handling, object orientation, etc. We believe that the results ob-
tained are generalizable to interpreters which manipulates numbers in general,
and in particular to low-level language interpreters.

For each benchmark, we study the behavior of �T w.r.t. �, �num and �∗
S

by measuring two aspects which are crucial in the specialization of interpreters,
the specialization time and the residual program size. Both aspects are directly
related to the quality of the decompilation. Then, from left to right, the first two
columns, Name and Size, show the name of the benchmark and the size (in
KBytes) of the Prolog representation of the bytecode program. The following
9 columns show specialization times (in seconds) and residual program sizes
(in KBytes) for the different strategies �, �num, �∗

S and �T . We write “-”
when the specialization does not terminate. Note that, in the group of columns
corresponding to �T , we have an additional column Twt which shows the time
taken by the well-typing analysis which should be added to the specialization
time in order to obtain a proper evaluation of �T . It should be noted also that
the usage of �∗

S would require a preprocessing time currently not being taken
into account which should be no more than the times in Twt. Since we do not
have an implementation of �∗

S the results obtained for it have been obtained
using the TbHEm writing by hand the corresponding types. Finally, the last two
columns show the gains (in terms of time and size) of the embedding relation
�T w.r.t. �num (in column T/S(�num)) and �∗

S (in column T/S(�∗

S
)). The

gain is computed as Old-Cost/New-Cost. As we can observe in the table, �T

36 E. Albert et al.

Table 1. Measuring the effects of �T with the bytecode interpreter

Benchmark � �num �
∗
S �T Gains

Name Size Tm Size Tm Size Tm Size Twt Tm Size T/S(�num) T/S(�∗

S
)

Counter 0.27 - - 0.12 1.79 0.60 1.26 0.03 0.09 0.28 1.4/6.3 6.7/4.4

Exp 0.39 0.14 0.50 0.24 5.51 0.14 0.50 0.03 0.14 0.50 1.7/11.0 1.0/1.0

Gcd 0.35 0.13 0.38 0.23 4.80 0.14 0.38 0.03 0.11 0.29 2.2/16.3 1.4/1.3

ExpAlt 0.44 - - 0.26 6.13 3.75 4.50 0.03 0.13 0.34 2.0/17.8 29.0/13.1

Fib 0.52 - - 0.49 10.72 0.99 1.41 0.03 0.15 0.51 3.2/21.2 6.6/2.8

LinSearch 0.70 - - 0.54 13.69 3.99 9.04 0.04 0.25 1.70 2.1/8.1 15.7/5.3

BinSearch 2.00 3.14 9.26 5.05 112.50 3.20 9.26 0.04 1.59 5.51 3.2/20.4 2.0/1.7

guarantees termination and behaves significantly better than �num and �∗
S both

in time and size. Furthermore, �T behaves as well as � in the examples in which
� terminates, even after adding the additional cost taken by the well-typing
analysis. An important observation as regards the gains w.r.t. �∗

S is that for some
benchmarks such gains are large while for others they are almost insignificant.
The reason for this lack of improvement is that in the corresponding atoms, the
local variables within the state are not instantiated to concrete values almost
from the beginning. Therefore, the over-specialization problem of �∗

S pointed in
Sect. 3.3 is not exposed. In fact, note that these cases correspond precisely to
the cases where � terminates (due to the same reason).

6 Type-Based Homeomorphic Embedding in Practice

An important observation is that, in order to take full advantage of TbHEm in
practice, it is not always necessary to know the actual type definitions, but only
sufficient information for the relations
F and
S proposed in Sect. 4.2 to be
well defined. In particular it suffices to know whether the infinite component
of type rules is (transitively) empty or not. Moreover, it would be desirable to
define a condition on types specifying that a type and all the types on which
it depends are defined over a finite signature. In this case, we can safely revert
to the simpler HEm applied directly to terms of such types. In the following we
define such a condition.

Definition 5 (finite signature). Given a type τ defined by a type rule τ −→
F ; ∅ we say that τ is of finite signature, denoted f sig(τ), iff F = {f1(τ11,
. . . , τ1k1

), . . . , fn(τn1, . . . , τnkn
)} and all types τ11, . . . , τnkn

are of finite
signature.

Hence, if a type τ is of finite signature the (possibly infinite) set of terms of type
τ contains only a finite set of functors. As the following Proposition implies, we
can then use � instead of �T when comparing terms in the context of finite
signatures.

Proposition 2. Given two typed terms t1 : τ1 and t2 : τ2, if f sig(τ2) holds then
t1 :τ1 �T t2 :τ2 ⇔ t1 � t2.

Type-Based Homeomorphic Embedding 37

In the following, for every type τ for which f sig(τ) holds, we simply write f sig

instead of the particular type. We now propose an extension to the definition of
�T to consider f sig types. This is done simply by adding the following rule to
Def. 4: 4. s :τ1 �T t : f sig if s � t.

In order to put these ideas into practice it is convenient to also have the type
i sig which is assigned to an argument when we cannot guarantee it is of finite
signature and we do not have further information available about its type. Note
that we are assuming a scenario where infinite signatures can include functors
as well as numbers.

Definition 6 (i sig). The type i sig is defined by the following type rule: i sig −→
∅; I where I = {f1(τ11, . . . , τ1k1

), . . . , fn(τn1, . . . , τnkn
), . . .} and fi are all possi-

ble functors and all types τ11, . . . , τnkn
are i sig.

Note that since every case of the type rule belongs to the infinite component
then s : τ �T t : i sig will always hold (as
F holds for every s, τ and t). Hence,
termination is trivially guaranteed for terms of type i sig. In practice, in programs
with infinite signatures, unless the user (or an automatic analysis) explicitly
writes more concrete type declarations, a default typing will be assumed such
that all predicates p/n of a program have the predicate signature p(τ1, . . . , τn)
with τi = i sig, (0 ≤ i ≤ n). Then, more concrete declarations are allowed both
by declaring particular types and signatures (always preserving the well-typing
assumption, see Sect. 4) or by using the special type f sig.

Example 2. Consider again the interpreter in our motivating example. Though
it is natural to use integer numbers to represent program counters, the set of
instructions is finite in any bytecode program. Therefore the PC can be safely
declared as f sig. Thus we may write the following predicate signature and type
definition:

execute(τst, τst).
τst −→ {st(f sig, i sig, i sig)}; ∅.

With this type declaration we are able to obtain the same results as in Sect 5.1 in
a more efficient way, as we can get rid of the overhead produced by the compar-
isons checking that the current PC belongs to the finite part of the corresponding
type. In addition, the type declaration holds for all input programs, whereas be-
fore a separate type inference was needed for each input object program.

Another interesting observation is that the relation �∗
S may be defined as a

particular case of TbHEm by simply declaring the following particular type and
assuming that every argument of every predicate is of this type: s symb −→ F ; I
where F = {f1(τ11, . . . , τ1k1

), . . . , fn(τn1, . . . , τnkn
)} with f1, . . . , fk being all the

functor symbols which explicitly occur in the program text plus initial goal(s)
and the types τ11, . . . , τnkn

, . . . are s symb. I contains the infinite set of all other
possible functors, with auxiliary types i sig in all cases.

6.1 Automatic Inference of Finite Signature

If, in a program with builtins, we can use some static analysis which allows us
to determine that the type of an argument has a finite signature, we can provide

38 E. Albert et al.

this information to the partial evaluator as an f sig declaration, without having
to specify the exact type. E.g., given a logic program processing numeric val-
ues, analyses exist that make over-approximations of the set of values that the
program arguments can have. Polyhedral analyses are perhaps the most widely
known of these and they have successfully been applied to constraint logic pro-
grams [4]. Let us assume for the sake of this discussion that a polyhedral analysis
can return, for a given program and goal, an approximation to the set of calls to
each n-ary predicate p, in the form: p(X1, . . . , Xn) ← c(X1, . . . , Xn), where the
expression c(X1, . . . , Xn) is a set of linear constraints (describing a possibly not
closed polyhedron). From this information it can be determined whether each
argument Xi is bounded or not by projecting c(X1, . . . , Xn) onto Xi. If it is
bounded (from above and below), and it is known that the ith argument takes
on integral values, then it can take only a finite set of values and thus can be
declared as f sig.

Example 3. Consider the following clauses defining a procedure for computing
an exponential.

exp(Base,Exp,Res) : − exp (Base,Exp,1,Res).

exp (,0,Ac,Ac).

exp (Base,Exp,Ac,Res) : − Exp > 0, Exp′ is Exp-1, Ac′ is Ac*Base,

exp (Base,Exp′,Ac′,Res)

Type inference yields the following signature for the predicate exp /4: exp

(t24,t24, t24,t24) with the type t24 --> 0; 1; num. A polyhedral analysis
of the same program with respect to the goal exp(Base,10,Res) yields the fol-
lowing approximation to the queries to exp /4: exp (Base,Exp,Ac,Res) :- Exp >

-1, Exp =< 10. Combining this with the inferred type, and assuming that the
second argument can take only integer values. the second argument (Exp) can be
declared as f sig, and hence we can revert to HEm and do not abstract away the
value of the second argument of exp /4. This allows maximum specialization to
be achieved.

6.2 Experimental Results

We have incorporated the proposed predefined types f sig and i sig within our
partial evaluator and instrumented TbHEm to properly handle them as proposed
above. Table 2 shows the practical benefits that we obtain on a set of numeric
programs which we make extensive use of the arithmetic builtin is/2. exp and
fib correspond to the iterative implementations (using accumulators) of the ex-
ponential and Fibonacci functions respectively. vnr computes a combinatorial
function, in this case without accumulators. list exp takes a list of numbers
and an exponent and computes a list in which every element is powered to the
corresponding exponent (using the predicate exp/3 defined in exp) and also
computes the length of the list by using an accumulator. Finally, dfs performs
a depth-first search avoiding state repetitions in a two dimensional space. Pred-
icate path/4 computes the path and its cost (using an accumulator) given the
initial and final states.

Type-Based Homeomorphic Embedding 39

Table 2. Measuring the effects of �T with numeric programs

Bench Entry Torig Tres� Tres�num PE-type Tres�T

exp
exp(11,1000,) 19.60 14.60 19.20

exp (i sig,f sig,i sig,i sig)
14.20

exp(11, ,) 19.20 - 19.20 19.00

fib
fib(1000,) 17.20 14.20 16.00

fib (f sig,i sig,i sig,i sig)
14.00

fib(,) 16.80 - 16.00 15.60

vnr
vnr(10000,1000,) 31.80 14.20 32.40

vnr(i sig,f sig,i sig)
14.00

vnr(10000, ,) 30.00 - 30.00 32.20

dfs
path((1,1),(4,4), ,) 49.79 15.60 43.39

path (f sig,f sig,i sig,i sig,...)
15.80

path(, , ,) 43.39 - 39.79 42.19

list exp
lel([1,...,40|],200, ,) 32.40 - 32.40

lel (i sig,i sig,i sig,i sig)
14.40

lel(,200, ,) 31.80 - 31.60 26.80

In this case, in order to measure the quality of the specialization we com-
pare the execution times of the specialized programs (Tres) with the execution
times of the original programs (Torig) for sufficiently large inputs. From left to
right, the first two columns, Bench and Entry, show respectively the name of
the benchmark and the entry for which the program will be specialized. Then,
for each pair benchmark-entry, we show the execution times (in seconds) of the
original programs in Torig and of the corresponding residual programs, by using
the three relations Tres�, Tres�num

and Tres�T
. We also show the particular

type definition which has been used to guide �T . Note that in this case we do
not consider �∗

S since it does not produce any significant improvement w.r.t.
�num (constants do not play any role in the involved terms). All times have
been computed as the arithmetic means of five runs. For each run, in order to
accurately compare the involved programs we run five consecutive times the call
findall(, Goal,). The particular goals used for measuring the execution times
have been chosen to match the entries proposed for each benchmark. As it can
be seen, �T guarantees termination and outperforms significantly �num. As ex-
pected, � exposes termination problems for some entries as showed in column
Tres�. In the examples in which � terminates, �T behaves as well as �. In
some examples, no improvements are obtained in the residual programs. This is
explained by the fact that the corresponding entries do not provide static infor-
mation to be used in the specialization. In these examples, it is usual to observe
the (unnecessary) over-aggressive nature of � (even endangering termination in
presence of infinite signatures) while, we can see, that the particular type decla-
rations can prevent such undesired behavior in �T . An interesting observation
is that, although many of the examples in this table may be handled in offline
PE (by providing the corresponding annotations), there are cases, as dfs, where
it is not possible to obtain a ranking function for the key arguments. Luckily,
we may infer boundedness which is a sufficient condition to effectively use our
TbHEm.

40 E. Albert et al.

7 Discussion and Related Work

Guaranteeing termination is essential in a number of tasks which have to deal
with possibly infinite computations. These tasks include PE, abstract model
checking, rewriting, etc. Broadly speaking, guaranteeing termination can be tack-
led in an offline or an online fashion. The main difference between these two
perspectives is that in offline termination we aim at statically determining ter-
mination. This means that we do not have the concrete values of arguments at
each point of the computation but rather just abstractions of them. Tradition-
ally, these abstractions refer to the size of values under some measure such as list
length, term size, numeric value for natural numbers, etc. In contrast, in online
termination, we aim at dynamically guaranteeing termination by supervising the
computation in such a way that it is not allowed to proceed as soon as we can
no longer guarantee termination. The main advantage of the offline approach
is that if we can prove termination statically, there is no longer any need to
supervise the computation for termination, which results in important perfor-
mance gains. However, the online approach is potentially more precise, since we
have the concrete values at hand. In offline PE, the problem of termination of
local unfolding has been tackled by annotating arguments as “bounded static”.
The work of Glenstrup and Jones [7] is the main reference, though the idea of
bounded static variation goes back a long way. To detect bounded static argu-
ments it is necessary to prove some decrease in well-founded ordering (e.g. using
size-change techniques). Quasi-termination is weaker than standard termination
but still quite hard to prove. Recent work on this has been done by Vidal [21]
and by Glenstrup and Jones [7]. On the other hand, ensuring termination in
online PE is easier because we can use “dynamic” termination detection based
on supervisors of the computations such as for example embeddings. This means
that we do not need any well-founded orderings but only well-quasi-orderings. In
effect, in our technique it is only necessary to show boundedness of an argument’s
values instead of decrease.

In the context of online PE, we have compared TbHEm with the extension of
the embedding relation to deal with infinite signatures explained in [11], known
as extended embedding with static symbols in Sect. 3.3, which is based on a dis-
tinction between the different static symbols which occur in the program. As we
have shown in the paper, the main advantage of TbHEm is that it achieves a
more refined treatment, as it allows treating different arguments in a different
way depending on their particular types, which can be automatically inferred by
semantic-based analysis, while previous proposals are purely syntactic. Addition-
ally, we have shown that TbHEm can be applied to the specialization of numeric
programs, by means of finite signature annotations, in which static constants do
not play any role.

Acknowledgments. The authors would like to thank the anonymous referees
for their useful comments. This work was funded in part by the Information
Society Technologies program of the European Commission, Future and Emerg-
ing Technologies under the IST-15905 MOBIUS project, by the Danish Natural

Type-Based Homeomorphic Embedding 41

Science Research Council under the FNU-272-06-0574 SAFT project, by the
Spanish Ministry of Education under the TIN-2005-09207 MERIT project, and
by the Madrid Regional Government under the S-0505/TIC/0407 PROMESAS
project.

References

1. Albert, E., Gómez-Zamalloa, M., Hubert, L., Puebla, G.: Verification of Java Byte-
code Using Analysis and Transformation of Logic Programs. In: Hanus, M. (ed.)
PADL 2007. LNCS, vol. 4354, pp. 124–139. Springer, Heidelberg (2007)

2. Albert, E., Hanus, M., Vidal, G.: A practical partial evaluation scheme for
multi-paradigm declarative languages. Journal of Functional and Logic Program-
ming 2002(1) (2002)

3. Albert, E., Puebla, G., Gallagher, J.: Non-leftmost Unfolding in Partial Evaluation
of Logic Programs with Impure Predicates. In: Hill, P.M. (ed.) LOPSTR 2005.
LNCS, vol. 3901, pp. 115–132. Springer, Heidelberg (2006)

4. Benoy, F., King, A.: Inferring argument size relationships with CLP(R). In: Gal-
lagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 204–223. Springer, Heidel-
berg (1996)

5. Bruynooghe, M., Gallagher, J.P., Van Humbeeck, W.: Inference of Well-Typings
for Logic Programs with Application to Termination Analysis. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 35–51. Springer, Heidelberg
(2005)

6. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, Vol. B, pp. 243–320. Elsevier, Amsterdam
(1990)

7. Glenstrup, A.J., Jones, N.D.: Termination analysis and specialization-point inser-
tion in offline partial evaluation. ACM Trans. Program. Lang. Syst. 27(6), 1147–
1215 (2005)

8. Hill, P.M., Topor, R.W.: A semantics for typed logic programs. In: Pfenning, F.
(ed.) Types in Logic Programming, pp. 1–62. MIT Press, Cambridge (1992)

9. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York (1993)

10. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society 95, 210–225 (1960)

11. Leuschel, M.A.: Homeomorphic Embedding for Online Termination of Symbolic
Methods. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 379–403. Springer, Heidelberg (2002)

12. Leuschel, M., Bruynooghe, M.: Logic program specialisation through partial deduc-
tion: Control issues. Theory and Practice of Logic Programming 2(4&5), 461–515
(2002)

13. Leuschel, M., Martens, B., De Schreye, D.: Controlling Generalisation and Poly-
variance in Partial Deduction of Normal Logic Programs. ACM Transactions on
Programming Languages and Systems 20(1), 208–258 (1998)

14. Leuschel, M.: On the power of homeomorphic embedding for online termination.
In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 230–245. Springer, Heidelberg
(1998)

15. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. The Jour-
nal of Logic Programming 11, 217–242 (1991)

42 E. Albert et al.

16. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987) (sec-
ond, extended edition)

17. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for Prolog. Artif. In-
tell. 23(3), 295–307 (1984)

18. Puebla, G., Albert, E., Hermenegildo, M.: Efficient Local Unfolding with Ancestor
Stacks for Full Prolog. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp.
149–165. Springer, Heidelberg (2005)

19. Puebla, G., Albert, E., Hermenegildo, M.: Abstract Interpretation with Specialized
Definitions. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 107–126. Springer,
Heidelberg (2006)

20. Somogyi, Z., Henderson, F., Conway, T.: The Execution Algorithm of Mercury: an
Efficient Purely Declarative Logic Programming Language. JLP 3 (October 1996)

21. Vidal, G.: Quasi-Terminating Logic Programs for Ensuring the Termination of
Partial Evaluation. In: Proc. of the ACM SIGPLAN 2007 Workshop on Partial
Evaluation and Program Manipulation (PEPM 2007), pp. 51–60. ACM Press, New
York (2007)

Information Processing Letters 109 (2009) 879–886

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Type-based homeomorphic embedding for online termination

Elvira Albert a, John Gallagher b,d, Miguel Gómez-Zamalloa a,∗, Germán Puebla c

a DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
b CBIT, Roskilde University, DK-4000 Roskilde, Denmark
c CLIP, DLSIIS, Technical University of Madrid, E-28660 Boadilla del Monte, Spain
d IMDEA Software, E-28660 Boadilla del Monte, Spain

a r t i c l e i n f o a b s t r a c t

Article history:

Received 7 August 2008

Available online 24 April 2009

Communicated by D. Basin

Keywords:

Analysis of algorithms

Formal methods

Termination

Well-quasi orders

Homeomorphic embedding

Program transformation

Partial evaluation

Online termination techniques dynamically guarantee termination of computations by

supervising them in such a way that computations whose termination can no longer be

guaranteed are stopped. Homeomorphic Embedding (HEm) has proven to be very useful for

online termination provided that the computations supervised are performed over a finite

signature, i.e., the number of constants and function symbols involved is finite. However,

there are many situations, for example numeric computations, which involve an infinite

signature and thus HEm does not guarantee termination. Some extensions to HEm for the

case of infinite signatures have been proposed which guarantee termination. However, the

existing techniques either do not provide systematic means for generating such extensions

or the extensions are too simplistic and do not produce the expected results in practice.

We propose Type-based Homeomorphic Embedding (TbHEm) as an extension of the standard,

untyped, HEm. By taking static information about the behavior of the computation into

account, expressed as types, TbHEm allows obtaining more precise results than those of

the previous extensions to HEm for the case of infinite signatures. We show that the

existing extensions to HEm which are currently used in state-of-the-art specialization tools

can be reconstructed as instances of TbHEm. We illustrate the applicability of our proposal

in a realistic case study: partial evaluation of an interpreter. We argue that the results

obtained provide empirical evidence of the interest of our proposal.

 2009 Elsevier B.V. All rights reserved.

1. Introduction

Guaranteeing termination is a key aspect of areas of

computer science which have to deal with possibly infinite

computations, namely in all areas of automatic program

analysis, synthesis, verification, specialization and transfor-

mation. Broadly speaking, guaranteeing termination can be

tackled in an offline or an online fashion. The main differ-

ence between these is that in offline termination we aim at

statically determining termination. This means that we do

not have the concrete values of arguments at each point

of the computation but rather just abstractions of them.

Usually these abstractions refer to the size of values under

* Corresponding author.

E-mail address: mzamalloa@clip.dia.fi.upm.es (M. Gómez-Zamalloa).

some measure, such as list length, term size, numeric value

for natural numbers, etc. In contrast, in online termination,

we guarantee termination by supervising the computation

and stopping it as soon as we can no longer guarantee ter-

mination.

The main advantage of the offline approach is that if

we can prove termination statically, there is no longer any

need to supervise the computation for termination, which

results in performance gains. In the offline setting, pow-

erful semi-automated termination proof techniques have

been developed in the context of term rewrite systems

(TRS), the most popular one being the recursive path order-

ing [6].

On the other hand, the online approach is more pre-

cise, since we have the concrete values at hand and thus

we can compare actual values instead of abstractions of

values. Thus, the online approach is of interest in applica-

0020-0190/$ – see front matter 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.ipl.2009.04.016

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:mzamalloa@clip.dia.fi.upm.es
http://dx.doi.org/10.1016/j.ipl.2009.04.016

880 E. Albert et al. / Information Processing Letters 109 (2009) 879–886

tions where precision is of great importance and where the

offline approach tends to behave too conservatively in or-

der to guarantee termination. Another advantage of online

techniques is that they are usually simpler to implement

than offline techniques, which are based on sophisticated

static analyses. As a result, which of the two approaches

to take greatly depends on the application area. For ex-

ample, in the context of online supervision of symbolic

computations, well-founded orders (wfos) [18] and especially

well-quasi orders (wqos) [4,21] have become widely used.

In order theory, a wqo is a quasi-order with an addi-

tional restriction on sequences that ensures that for any

infinite sequence x1, x2, . . . , there exists i < j with xi � x j .

In this article, we focus on the homeomorphic embedding

(HEm) relation [11,13,14], a wqo used in state-of-the-art

online specialization tools. Intuitively, HEm is a structural

ordering under which an expression e2 is greater than or

equal to another expression e1 , written as e1 � e2 , if e1
can be obtained from e2 by deleting some parts of e2 . Un-

der these circumstances we say that e2 embeds e1 . E.g.,

s(s(U+ W)×(U+s(V))) embeds s(U× (U+ V)).

The HEm relation was first defined over strings by

Higman [9] and later extended by Kruskal [11] to or-

dered trees (and thus symbolic expressions). Since then,

HEm has been used for many applications. Arguably, the

heaviest use of HEm within computer science was made

in the context of TRS [7], to automatically derive well-

founded orders for static termination analysis. The useful-

ness of HEm in the context of online partial evaluation

was first discovered and advocated by Marlet [17]. It was

later, independently, rediscovered and adapted for super-

compilation by Sørensen and Glück [23]. Later on, Leuschel

and Martens [15,16] demonstrated that HEm provides a

mathematically simpler and still more powerful way of en-

suring termination of partial deduction than existing wfos

and wqos. The latter was then witnessed by Leuschel [12].

A survey on the theory and practice of HEm can be found

in [13].

The HEm relation can be used to guarantee termination

when computing a sequence e1, e2, . . . , by using HEm as a

whistle. Whenever a new expression en+1 is to be added to

a finite sequence e1, . . . , en , we first check whether en+1

embeds any of the expressions already in the sequence.

If that is the case, we say that HEm whistles, i.e., it has

detected (potential) non-termination and the computation

has to be stopped. If HEm does not whistle en+1 can be

safely added to the sequence and the computation can pro-

ceed without endangering termination.

The reason for the success of HEm as an approach for

guaranteeing online termination is twofold. (i) It often al-

lows sequences to grow quite large before the whistle

blows, to the point that in a good number of finite se-

quences the full sequence can be computed without the

whistle blowing at all. This is essential for instance, in

program specialization, as allowing a larger sequence im-

plies further propagation of information and hence, as we

will see in the paper, a better specialization can often

be obtained. (ii) It often identifies redundant computa-

tions quickly, and the whistle blows without unnecessarily

further expanding the sequence, thus avoiding irrelevant

computations. This is also essential in program specializa-

tion both for efficiency of the specialization process and

for quality of the resulting program.

While HEm has proven to be very useful for symbolic

computations (as required by program specialization and

analysis techniques, see [12]), some difficulties remain in

the presence of infinite signatures, such as the numbers.

For instance, the is/2 Prolog built-in is used to evaluate

arithmetic expressions; given two numbers, it can produce

as output a number which does not appear in the pro-

gram text. If this can be infinitely repeated, we need to

handle an infinite signature. As further examples, in the

case of logic programs, infinite signatures appear as soon

as certain built-ins such as functor/3, name/2, =../2,

atom_codes/2, etc. are used, since they allow creating

fresh constants and function symbols. Some extensions to

HEm over infinite signatures have been defined and used

in practice (e.g. [2,13]), but they are often too ad hoc; for

instance, they only handle constants which appear explic-

itly in the program, regardless of which part of the pro-

gram (function, argument position) they appear. As such

approaches are purely syntactic, in practice they sometimes

turn out to be too conservative (“whistling” too early) or

else too aggressive, and thus do not have either of the fea-

tures (i) or (ii) above.

In essence, while other works [2,13] take a simple syn-

tactic approach to extending the HEm relation, we pro-

pose a semantic approach for such extension. In particu-

lar, we introduce the type-based homeomorphic embedding

(TbHEm) relation which, by taking information about the

behavior of the computation into account, provides more

precise results in the presence of infinite signatures. For

this, our typed relation is defined on types structured into

a (possibly empty) finite part and a (possibly empty) infi-

nite part. TbHEm allows expanding sequences as long as

the concrete values which appear in the expression remain

within the finite part of the type. Note that in computa-

tions with a finite signature it is always possible to obtain

types whose infinite part is empty, which produces the

same effect as the traditional HEm. Intuitively, this allows

us to achieve (i) and (ii) simultaneously as: (i) finite se-

quences are expected to have an empty infinite partition,

or non-empty but with a large finite part, and hence they

can grow considerably before the whistle blows; (ii) in-

finite sequences will have a non-empty partition which

forces the whistle to blow.

HEm has been extensively used for supervising par-

tial evaluation of logic programs. However, it is important

to stress that both the HEm and TbHEm relations are of

interest for supervising any computation which manipu-

lates acyclic data structures, such as lists (or equivalently,

acyclic linked lists), trees, etc. which can grow indefinitely

large. This is so regardless of the programming language in

which such computation is implemented.

The rest of the article is organized as follows. Section 2

recalls some basic notions and introduces notation. In Sec-

tion 3, we introduce TbHEm, as a novel extension to un-

typed HEm, and prove its soundness. Section 5 shows how

TbHEm generalizes existing relations used in current sys-

tems. In Section 6 we present some experimental results.

Finally, Section 7 discusses the practicality of TbHEm in the

context of online termination approaches and concludes.

E. Albert et al. / Information Processing Letters 109 (2009) 879–886 881

2. Preliminaries and notation

We recall some preliminary concepts, in particular on

the HEm relation, and introduce some notation.

2.1. Symbolic expressions

For the sake of generality we consider the language of

symbolic expressions (first-order terms). Its alphabet consists

of the following classes of symbols: (1) variables (V) and

(2) function symbols (Σ). Function symbols have an associ-

ated arity. Constants are function symbols with arity 0. We

refer to the set of functions in an alphabet as its signature.

Definition 1 (Symbolic expressions). The set of symbolic ex-

pressions E over some given alphabet, Σ ∪ V , is inductively

defined as follows:

(i) a variable v ∈ V is an expression,

(ii) a function symbol f ∈ Σ of arity n � 0 applied to a se-

quence e1, . . . , en of expressions, denoted f (e1, . . . , en),

is also an expression.

We will adhere to the following syntactical conven-

tions: Variables are denoted by upper-case letters like

X, Y , Z , . . . , constants by lower-case letters like a,b, c, . . . ,

and non-constant function symbols by lower-case letters

like f , g,h,

2.2. Homeomorphic embedding

We now introduce some auxiliary definitions on orders

which are required to define the HEm relation.

Definition 2 (Quasi-order). A quasi-order is a reflexive and

transitive binary relation on E .

A well-quasi order is a well-binary relation which is also

a quasi-order, as stated below.

Definition 3 (wbr, wqo). Let � be a binary relation on E .

We say that � is a well-binary relation (wbr) iff for any in-

finite sequence e1, e2, . . . of expressions, ∃i, j: i < j ∧ ei �

e j . If � is also a quasi-order then � is called a well-quasi

order (wqo).

The next definition recalls the HEm relation on expres-

sions, as presented by Leuschel [12].

Definition 4 (HEm,�). The homeomorphic embedding re-

lation over expressions, written �, is defined by the fol-

lowing rules:

(i) Y � X for all variables X, Y .

(ii) s � f (t1, . . . , tn) if s � ti for some i.

(iii) f (s1, . . . , sn) � f (t1, . . . , tn) if si � ti for all i, 1 � i �

n.

As already discussed, e1 � e2 iff e1 can be obtained

from e2 by removing some symbols. Hence, the structure

of e1 , split in parts, reappears within e2 . For finite signa-

tures, HEm is a wqo (see, e.g., [12]).

2.3. Types

We adopt the syntax of Mercury [22] for type defi-

nitions. The set of type expressions (types), denoted T , is

constructed from an infinite set V T of type variables (pa-

rameters) and a set ΣT of type symbols with their associ-

ated arities; these are disjoint from the set of variables V

and the signature Σ . Types and symbolic expressions are

related by means of type definitions.

Definition 5 (Type definition). A type rule for a type symbol

h with arity n in ΣT is of one of these two forms:

h(T̄) → f1(τ̄1); . . . ; fk(τ̄k) (k � 1), or

h(T̄) → f1(τ̄1); . . . (infinite sequence),

where the following conditions hold:

(i) T̄ is an n-tuple of distinct type variables,

(ii) f1, . . . , fk, . . . are distinct function symbols from Σ ,

(iii) each τ̄i (i � 1) is an m-tuple from T , where m is the

arity of the corresponding f i ,

(iv) type variables in the right-hand side, if any, are from

T̄ .

We say that f1(τ̄1); . . . ; fk(τ̄k) or f1(τ̄1); . . . are the, possi-

bly infinite, set of cases of the type.

A type definition is a finite set of type rules where no

two rules contain the same type symbol on the left-hand

side, and there is a rule for each type symbol occurring in

the type rules.

Example 6. The following type natlist characterizes lists of

natural numbers:

natlist → nil; cons(nat,natlist)

nat → 0;1;2; . . .

A variable typing is a mapping σ : V → T . An expres-

sion t ∈ E is of type τ ∈ T with respect to a given type

definition and a variable typing, written t : τ , if (i) t ∈ V

and σ (t) = τ , or (ii) t = f (t1, . . . , tn), and there is an in-

stance of a type rule, τ → . . . ; f (τ1, . . . ,τn); . . . , and ti : τi ,
1 � i � n.

Definition 5 permits overloading – a function symbol

can occur in several type rules. Thus, a given expression

may be of more than one type. We also allow type rules

containing an infinite number of distinct function symbols

on the right-hand side. Thus, standard infinite types such

as integer are permitted, defined by a rule with an infinite

number of cases containing the numeric constants.

In order to define TbHEm we need to handle types with

an infinite number of cases. This can be done simply by us-

ing some sort of intensional notation for them (e.g., N for

natural numbers). However, at the same time we need to

distinguish some finite number of elements of the type.

Hence, we introduce the following extra annotation into

882 E. Albert et al. / Information Processing Letters 109 (2009) 879–886

type rules. The right-hand side of each type rule consists of

two disjoint components, each possibly empty. More pre-

cisely, type rules are of the form h(T̄) → F ; I , where the

union F ∪ I are the cases in the type rule, F ∪ I is non-

empty, F is either empty or finite and I is either empty

or infinite. We say that a type τ ∈ T is of infinite compo-

nent if I is non-empty in the rule defining τ . Otherwise

it is said to be of finite component. Thus, for types of infi-

nite component there are infinitely many ways of splitting

them into type rules; for example nat → F ; I where F = ∅

and I = N, or F = {0,1,2} and I = N \ {0,1,2}, etc. The

way in which infinite components are split affects the be-

havior of TbHEm.

3. Type-based homeomorphic embedding

HEm turns out to be unsatisfactory, due to the restric-

tion to finite signatures. Most real-life programs involve

infinite signatures. These, for example, appear quite eas-

ily if the program performs arithmetic operations. Indeed,

the fully general definition of HEm which dates back to the

1960s [11,7], referred to as the extended homeomorphic em-

bedding (�∗), allows infinite signatures. It is based on two

generic relations, 	Σ and 	S on function symbols and se-

quences of expressions respectively. It can be shown that if

these relations are wbrs (resp. wqos) then �∗ is a wbr (resp.

wqo). The next definition is adapted from Leuschel [13],

but we use the symbol 	Σ instead of 	F .

Definition 7 (Extended HEm,�∗). Given a wqo 	Σ on the

function symbols and a wqo 	S on sequences of expres-

sions, the extended homeomorphic embedding on expres-

sions is defined by the following rules:

(i) X �∗ Y if X and Y are variables,

(ii) s �∗ f (t1, . . . , tn) if s �∗ ti for some i,

(iii) f (s1, . . . , sn) �∗ g(t1, . . . , tm) if

(a) f 	Σ g ,

(b) 〈s1, . . . , sn〉 	S 〈t1, . . . , tm〉, and

(c) ∃i1, . . . , in such that 1 � i1 < · · · < in �m and ∀ j ∈

{1, . . . ,n}: s j �
∗ ti j .

The most important point in the above definition is

that, in contrast to Definition 4, the left- and right-hand

expressions in rule (iii) do not have to have the same func-

tion symbol. The two function symbols are instead com-

pared by using the relation 	Σ . Furthermore, the expres-

sions do not have to be of the same arity; the left-hand

side expression can have fewer arguments than the right-

hand expression. In this case, m − n arguments from the

right-hand expression are ignored.

We do not use the full generality of this definition here;

in particular the relation 	S will be taken as the rela-

tion that is always true, in which case condition (iii.b) is

trivially satisfied. As noted by Leuschel [13], the relation

	S could be used to give a more refined treatment of

variables as well as a more refined treatment of associa-

tive operators. For example, it would be natural to have

∧(a,b, c) embedded in ∧(a,b, c,d), but if ∧ is taken as

a binary functor then the embedding relation depends on

the nested structure of the expressions.

The above definition establishes a family of embedding

relations but leaves open the practical problem of finding

an effective embedding relation, since there is no auto-

mated mechanism for finding a “good” ordering relation

	Σ on the function symbols in the signature to ensure ef-

fective termination control. This is the problem we address

in the next section, where we propose using types in order

to define the 	Σ relation.

3.1. The type-based relation

We now introduce type-based homeomorphic embedding

(TbHEm). We outline how TbHEm can provide a way of

generating instances of extended HEm based on given

type definitions. Note that this allows taking into account

program-specific factors by using the type definition asso-

ciated to a given program. The types required for guiding

TbHEm can be automatically inferred by program analysis,

as discussed in Section 7, or be provided manually.

Intuitively, termination control using TbHEm is based

on the following idea: embedding occurs between typed

expressions with different function symbols, if the func-

tion symbol of the “larger” expression is from the infinite

component of its type. However, as long as we compare

distinct expressions from an infinite type whose function

symbols are from the finite component of the type, we

can safely use essentially the standard embedding relation.

This motivates the definition of the relation 	Σ,D , which

plays the role of 	Σ in Definition 7.

Definition 8 (Σ,D). Given a type definition D , let 	Σ,D

be the following relation on the set of pairs Σ × T .

(f1,τ1) 	Σ,D (f2,τ2) iff

– f1 = f2 ∧ τ1 � τ2 , or
– f2 appears in the infinite component of some type

rule in D .

Here the relation � is the embedding relation (Defini-

tion 4) applied to types. For example, list(A) � list(list(A))

where list/1 is a type symbol. As another example, given

D containing τ → F ; I with F = {1,2} and I = N \ {1,2}

then (1,τ) �Σ,D (2,τ) and (1,τ) 	Σ,D (5,τ).

Lemma1. Let D be a type definition,Σ a set of function symbols

and ΣT a finite set of type symbols. Assume that every function

symbol in Σ appears in some type rule in D, and that every type

symbol in ΣT appears on the left of some rule in D. Then 	Σ,D

is a wqo on the set Σ × T .

Proof. It can easily be verified that 	Σ,D is reflexive and

transitive, as required by Definition 2. Now, we prove the

wbr property (Definition 3). The proof is by contradiction.

Assume that there is an infinite sequence of pairs from

Σ × T of the form (f0,τ0), (f1,τ1), . . . , and for all i, j,

i < j → (f i,τi) �Σ,D (f j,τ j). We distinguish two cases:

(i) First, assume that there is a finite number of function

symbols from Σ occurring in the sequence. Then there

must exist some f occurring infinitely often in the se-

quence, say (f ,τk1), (f ,τk2), The relation � is a

E. Albert et al. / Information Processing Letters 109 (2009) 879–886 883

wqo on T since ΣT is finite. Hence there must exist

i, j such that i < j and τki � τk j
. Hence (f ,τki) 	Σ,D

(f ,τk j
) which contradicts the assumption.

(ii) Second, assume that there is an infinite set of func-

tion symbols from Σ occurring in the sequence. Then

there must exist some j > 0, such that f j is in the

infinite component of some type rule in D , in which

case (f i,τi) 	Σ (f j,τ j) for all i < j which contradicts

the assumption.

Hence, there are no such infinite sequences and together

with reflexivity and transitivity this establishes that 	Σ,D

is a wqo. �

The next definition presents our notion of type-based

homeomorphic embedding, �T , based on the above rela-

tion 	Σ,D . Since we assume that the relation 	S is true

for all arguments, we omit it together with its associated

condition (which is trivially true) in the definition below.

Definition 9 (TbHEm, �T). Given a type definition D and

the relation 	Σ,D , the embedding relation over typed ex-

pressions, written �T , is defined by the following rules:

(i) Y : τY �T X : τX for all variables X, Y ;

(ii) s : τ �T f (t1, . . . , tn) : τ ′ if s : τ �T ti : τ ′
i
for some i,

where τ ′ → . . . ; f (τ ′
1, . . . ,τ

′
n); . . . is an instance of a

type rule in D;

(iii) f (s1, . . . , sn) : τ �T g(t1, . . . , tm) : τ ′ if

(a) (f ,τ) 	Σ,D (g,τ ′) and

(b) ∃i1, . . . , in such that 1 � i1 < · · · < in � m and

∀ j ∈ {1, . . . ,n}, s j : τ j �T ti j : τ ′
i j
, where τ1, . . . ,τn

(resp. τ ′
i1
, . . . ,τ ′

in
) are the types of s1, . . . , sn (resp.

ti1 , . . . , tin).

The following theorem states the soundness of TbHEm.

Informally, it states that infinite sequences cannot be built

when the TbHEm relation is used to blow the whistle. This

guarantees that TbHEm can be safely used in online tools

(see Section 1).

Theorem 10 (Soundness). For all infinite sequences e1 : τ1,
e2 : τ2, . . . of typed expressions with respect to a type defini-

tion D there exists i < j such that ei : τi �T e j : τ j .

Proof. The proof amounts to demonstrating that �T is a

wqo (see Definition 3) on typed expressions. By Theorem 4

from [13], this in turn follows if 	Σ,D is a wqo. As the se-

quence consists of typed terms with respect to some type

definition D , all the types occurring in the sequence are

constructed from the finite set of type symbols occurring

in D and hence 	Σ,D is a wqo by Lemma 1. Hence the

main result follows. �

4. A case-study in online partial evaluation

Partial evaluation (PE) [10] is a semantics-based pro-

gram transformation technique whose purpose is to spe-

cialize a program with respect to the part of its input

data which is known at specialization time. Essentially, a

partial evaluator dynamically expands program states to

propagate the known input data, giving rise to a (possibly

infinite) sequence of expressions which represent states.

HEm has proven to be very effective in practice to con-

trol PE: not only does it ensure termination, it often allows

sequences to grow sufficiently large to obtain accurate re-

sults while at the same time stopping the computation as

soon as potential redundancy is detected.

This section presents as case-study a classical and non-

trivial application of online PE: the specialization of in-

terpreters. In particular, we consider an interpreter (im-

plemented in Prolog) for a simple, imperative, bytecode

language. In theory [8], the specialization of such an in-

terpreter with respect to a particular bytecode program

allows transforming the bytecode program into a seman-

tically equivalent version written in Prolog. In practice, the

quality and usefulness of the transformation depends on

the particular techniques used to control the process. We

have implemented the proposed TbHEm relation within a

partial evaluator of logic programs [19], together with the

procedure for constructing a monomorphic well-typing de-

vised by Bruynooghe et al. [5] to automatically infer the

types.

In PE of interpreters, termination problems occur as

soon as the bytecode program with respect to which we

are specializing the interpreter has a loop or a recursion

whose termination condition is undecidable at specializa-

tion time. Let us consider the bytecode program fragment

below, which corresponds to the simple loop “for(i = 0;

i < n; i++){}”:

0:push(0); 1:store(i); 2:load(i);

3:load(n); 4:ifge(7); 5:inc(i);

6:goto(2); 7:...

The two instructions at program counters 0 and 1 initialize

i to 0. Note that the bytecode language is stack-based, e.g.,

to perform the operation i < n variables i and n are first

pushed on the stack (2,3) so that the conditional branch-

ing ifge (i.e. if greater or equal) uses them. To understand

the problem, it is enough to know that the interpreter ma-

nipulates an environment of the form s(PC, LV) where PC is

the program counter and LV is the list of local variables, in

this case [N, I]. In the following we ignore variable N and

the list constructor for simplicity, thus we write s(PC, I).

Given a program, the PC can only take a finite number of

values, while the local variables can, in general, change in-

finitely. The well-typing analysis of [5] allocates the type τ
to every s(PC, I) expression such that:

τ → s(τ1,τ2),

τ1 → F ; I with F = {0,1, . . . ,7} and I = N \ F ,

τ2 → ∅;N.

During the specialization of the interpreter with respect

to this particular program, the partial evaluator expands

the interpreter states to propagate the information known

from the bytecode program. The following (infinite) se-

quence of expressions arises . . . , s(2,0), s(3,0), s(4,0),

s(5,0), s(6,0), s(2,1), s(3,1), . . . , s(6,1), s(2,2), s(3,2),

884 E. Albert et al. / Information Processing Letters 109 (2009) 879–886

The program counter loops in the interval [2..6], while

variable I is infinitely incremented by one after each loop

iteration. An optimal strategy should only expand the

above sequence until the underlined expression s(2,1) ap-

pears, which actually corresponds to a loop in the program.

This allows transforming the loop into the Prolog code:

p(I,N) :- I >= N.

p(I,N) :- I < N, I1 is I+1, p(I1,N).

Such an optimal behavior is achievable by using TbHEm in

combination with the above (automatically inferred) types.

Note that s(2,0) : τ �T s(3,0) : τ as 2 : τ1 �T 3 : τ1 while

s(2,0) : τ �T s(2,1) : τ as 0 : τ2 �T 1 : τ2 .
However, stopping the derivation later causes unnec-

essary unrollings of the loop, thus producing an over-

specialized program. E.g., this program is obtained when

the sequence is stopped at s(2,2) (two loop unrollings):

p(I,N) :- I >= N.

p(I,N) :- I < N, I1 is I+1, I1 >= N.

p(I,N) :- I < N, I1 is I+1, I1 < N,

I2 is I1+1, p(I2,N).

This often highly degrades both the efficiency of the spe-

cialization process and the quality of the specialized pro-

gram. Experimental evidence for this is shown in Section 6

below.

On the other hand, stopping the derivation earlier, e.g.,

at s(3,0), as other techniques would do, results in a very

poor specialization. Note that, in the limit, we could per-

form a single unfolding step per atom. This basically re-

sults in obtaining exactly the same interpreter we started

from. Therefore, no gains have been achieved at all and

PE does not remove the interpretation layer. Also, if we

stop too early, many atoms will be filtered out in order to

guarantee termination. This may result in an important in-

formation loss. Due to space limitations, we do not present

a full algorithm for PE of logic programs here (see, e.g., [14]

for more details). Note that as soon as we filter away the

value of the PC, execution could proceed by any of the in-

structions in the bytecode program, which results in large

specialization times and in residual programs with plenty

of useless code.

5. Instances of type-based embedding

This section shows that existing relations based on em-

bedding, which are currently used in state-of-the-art spe-

cialization tools (e.g., [2,14,13]) can be reconstructed as

instances of TbHEm just by providing a particular type. Let

us make a distinction between the static symbols occur-

ring in the program and the goal, and the remaining ones,

called the dynamic symbols. We use Sτ to denote the set

of all f (τ , . . . ,τ) where f is a static symbol.

5.1. Embedding with number filtering

In programs which contain arithmetic as the only way

of generating an infinite number of symbols, a relatively

straightforward solution in order to recover termination is

to use the �num relation. It is an adaptation of HEm which

filters out numeric values, i.e., any number embeds any

other number. The �num relation could be reconstructed

as a TbHEm assuming that every argument in every predi-

cate is of type τnum which is defined as:

τnum → Sτnum \ num;num,

where num is the infinite set of all numbers.

Example 11. Let us re-consider the example in Section 4.

The behavior of �num is obtained using �T by allocating

the type τ to every expression of the form s(PC, I), where:

τ → s(τnum,τnum),

τnum → ∅;N.

Unfortunately, this modification to HEm is far too conser-

vative and leads to excessive precision loss.

Example 12. The sequence in Section 4 is stopped too early

by �num as s(2,0) �num s(3,0), thus breaking feature (i)

in Section 1.

5.2. Static vs. dynamic symbols

TbHEm generalizes an idea sketched by Leuschel [13]

to build an extended homeomorphic embedding based on

a distinction between the static and the dynamic sym-

bols. This relation is denoted in the following as �∗
S . We

introduce the following extra notation. We use Dyn to de-

note the infinite number of cases of the form f (τd, . . . ,τd)
where f is a dynamic symbol and τd → ∅;Dyn.

Then, �∗
S can be reconstructed as a TbHEm assuming

that every argument in every predicate is of type τS which

is defined as:

τS → SτS ;Dyn.

Example 13. For our working example, every expression

s(PC, I) would be allocated the type τ :

τ → s(τS ,τS),

τS → F ; I with F = {0,1, . . . ,7} and I = N \ F .

As discussed in Section 1, this relation lacks control

over the different contexts in which static symbols occur in

the program. For example, this relation makes no distinc-

tion between the set of values which an argument can take

with respect to the set of values for other arguments: all

static symbols in the program are put in the same set, re-

gardless of where they come from or where they are used.

Furthermore, the result of specializing a piece of code de-

pends on whether in the same compilation unit there is a

lot of (dead) code or not, since all static symbols, even if

they appear in the context of completely unrelated subpro-

grams will be considered as part of the finite component.

Example 14. Let us re-consider the situation in Section 4.

Unlike �num , in this case we have that s(2,0) �∗
S s(3,0).

E. Albert et al. / Information Processing Letters 109 (2009) 879–886 885

However, as both argument positions are given the same

type, as opposed to the type given in Section 4, the loop

will not be detected until an atom containing a num-

ber not occurring in the program arises in the sequence,

namely s(2,8), since s(2,0) �∗
S s(2,8). As explained in Sec-

tion 4, this over expansion can highly degrade the effi-

ciency of the specialization and the quality of the special-

ized programs.

6. Experimental evaluation

In order to measure the performance of TbHEm, we ex-

perimentally evaluated our case-study using TbHEm and

compared the results against those obtained using �, �num

and �∗
S . We measured two aspects which are crucial in the

specialization of interpreters, the specialization time and

the residual program size. Both aspects are directly related

to the quality of the decompilation.

From the experiments we conclude that �T always

guarantees termination (unlike �) and behaves signifi-

cantly better than �num and �∗
S . We compute the gain

as Old-Cost/New-Cost and obtain an average gain of 2.3

in time and 14.4 in size with respect to �num , and 8.9

in time and 4.23 in size with respect to �∗
S . Further-

more, �T behaves at least as well as � in the examples

in which � terminates, even after adding the additional

cost taken by the well-typing analysis. We have observed

that the largest gains are obtained when the sets of num-

bers in the different contexts do not intersect. In these

cases, our method benefits from the context-sensitivity of

TbHEm which directly contributes to obtaining smaller de-

compiled programs and times. As an example, for a linear

search algorithm, we produce a 1.7 KB Prolog program in

about 300 ms using �T , while we obtain a 9 KB Prolog

program in 4 s using �∗
S . For this one, �num gets a 13.7 KB

Prolog program in about 540 ms while � does not termi-

nate.

7. Discussion

This note presents a novel, type-based, homeomorphic

embedding relation (TbHEm) and proves its soundness. We

show that existing approaches which extend the untyped

embedding relation to handle infinite signatures can be re-

constructed as instances of our TbHEm relation.

The practicality of our approach heavily depends on au-

tomatically being able to infer suitable types to be used in

combination with TbHEm. We note first that the problem

does not allow a precise, computable solution. Determin-

ing the exact set of symbols that can appear at run-time

at a specific program point, and in particular determining

whether the set is finite, is closely related to termination

detection. Let us briefly describe existing methods devel-

oped in the context of logic programming to infer the re-

quired types. As pointed out in Section 6, a well-typing

analysis for logic programs was described by Bruynooghe

et al. [5]. The procedure scales well (roughly linear in pro-

gram size) and is robust, in that every program has a well-

typing. We have seen in Section 6 that one can first apply

this analysis to infer well-typings and then achieve good

specializations by using the well-typings in combination

with TbHEm.

An important observation is that, in order to take full

advantage of TbHEm in practice, it is not always neces-

sary to know the actual type definitions. In particular it

suffices to know whether the infinite component of type

rules is (transitively) empty or not. As another way to in-

fer the types, in a program with built-ins, we can use

existing static analyses which allow determining that the

type of an argument has a finite signature. We can pro-

vide this information without having to specify the exact

type. A similar idea has been recently outlined by Ruggieri

and Mesnard [20], where a type system for linear con-

straints and its use in mode analysis of CLP programs is

presented.

Analyses exist that make over-approximations of the set

of values that a program’s numeric arguments can have.

Polyhedral analyses and interval analyses are perhaps the

most widely known of these and they have successfully

been applied to constraint logic programs [3]. Such analy-

ses can determine upper and lower bounds for arguments.

If an argument is bounded from above and below, and

it is known that such argument takes on integral val-

ues, then it can only take a finite set of values. In gen-

eral, the better the derived types are, the further the se-

quences can be extended without risking non-termination.

If the derived types have finite components that are too

small, then it is more likely that sequences will be stopped

too early; if they are too large, then sequences could

be expanded too far, producing an unnecessary expan-

sion.

Though we have outlined procedures to infer types in

the context of logic programming, our type-based relation

is not tied to any programming paradigm. Moreover, it can

be used for a wide range of applications (as those men-

tioned in Section 1).

Acknowledgements

We gratefully thank the anonymous referees for many

useful comments and suggestions. Preliminary material of

this note appeared in the Proc. of LOPSTR 2007 [1]. This

work was funded in part by the IST program of the Euro-

pean Commission, Future and Emerging Technologies un-

der the IST-231620 HATS project, by the Spanish Ministry

of Education (MEC) under the TIN-2005-09207 MERIT and

TIN-2008-05624 DOVES projects, the Madrid Regional Gov-

ernment under the S-0505/TIC/0407 PROMESAS project and

the Danish Natural Science Research Council under grant

FNU 272-06-0574 (SAFT).

References

[1] E. Albert, J. Gallagher, M. Gómez-Zamalloa, G. Puebla, Type-based

homeomorphic embedding and its applications to online partial

evaluation, in: 17th International Symposium on Logic-based Pro-

gram Synthesis and Transformation (LOPSTR’07), in: LNCS, vol. 4915,

Springer-Verlag, 2008, pp. 23–42.

[2] E. Albert, M. Hanus, G. Vidal, A practical partial evaluation scheme

for multi-paradigm declarative languages, Journal of Functional and

Logic Programming 2002 (1) (2002).

886 E. Albert et al. / Information Processing Letters 109 (2009) 879–886

[3] F. Benoy, A. King, Inferring argument size relationships with CLP(R),

in: P.J. Gallagher (Ed.), Logic-Based Program Synthesis and Trans-

formation (LOPSTR’96), in: LNCS, vol. 1207, Springer-Verlag, 1996,

pp. 204–223.

[4] R. Bol, Loop checking in partial deduction, Journal of Logic Program-

ming 16 (1–2) (1993) 25–46.

[5] M. Bruynooghe, J. Gallagher, W. Van Humbeeck, Inference of well-

typings for logic programs with application to termination analysis,

in: 12th International Static Analysis Symposium (SAS’05), in: LNCS,

vol. 3672, Springer-Verlag, 2005, pp. 35–51.

[6] N. Dershowitz, Orderings for term-rewriting systems, Theoretical

Computer Science 17 (1982) 279–301.

[7] N. Dershowitz, J.P. Jouannaud, Rewrite systems, in: J. van Leeuwen

(Ed.), Handbook of Theoretical Computer Science, vol. B, Elsevier,

1990, pp. 243–320.

[8] Y. Futamura, Partial evaluation of computation process – An approach

to a compiler–compiler, Systems, Computers, Controls 2 (5) (1971)

45–50.

[9] G. Higman, Ordering by divisibility in abstract algebras, Proc. London

Math. Soc. 2 (1952) 326–336.

[10] N.D. Jones, C.K. Gomard, P. Sestoft, Partial Evaluation and Automatic

Program Generation, Prentice-Hall, New York, 1993.

[11] J.B. Kruskal, Well-quasi-ordering, the tree theorem, and Vazsonyi’s

conjecture, Transactions of the American Mathematical Society 95

(1960) 210–225.

[12] M. Leuschel, On the power of homeomorphic embedding for on-

line termination, in: G. Levi (Ed.), Proceedings of SAS’98, in: LNCS,

vol. 1503, Springer-Verlag, 1998, pp. 230–245.

[13] M. Leuschel, Homeomorphic embedding for online termination of

symbolic methods, in: The Essence of Computation, in: LNCS,

vol. 2566, Springer, 2002, pp. 379–403.

[14] M. Leuschel, M. Bruynooghe, Logic program specialisation through

partial deduction: Control issues, Theory and Practice of Logic Pro-

gramming 2 (4–5) (2002) 461–515.

[15] M. Leuschel, B. Martens, Global control for partial deduction through

characteristic atoms and global trees, in: 1996 Dagstuhl Seminar

on Partial Evaluation, in: LNCS, vol. 1110, Schloß Dagstuhl, 1996,

pp. 263–283.

[16] M. Leuschel, B. Martens, D. De Schreye, Controlling generalisation

and polyvariance in partial deduction of normal logic programs, ACM

Transactions on Programming Languages and Systems 20 (1) (1998)

208–258.

[17] R. Marlet, Vers une formalisation de l’èvaluation partielle. PhD thesis,

Universitè de Nice - Sophia Antipolis, December 1994.

[18] B. Martens, D. De Schreye, Automatic finite unfolding using well-

founded measures, Journal of Logic Programming 28 (2) (1996) 89–

146.

[19] G. Puebla, E. Albert, M. Hermenegildo, Efficient local unfolding with

ancestor stacks for full Prolog, in: Proc. of LOPSTR’04, in: LNCS,

vol. 3573, Springer, 2005, pp. 149–165.

[20] S. Ruggieri, F. Mesnard, Typing linear constraints for moding CLP(r)

programs, in: 14th International Symposium on Static Analysis, in:

LNCS, vol. 5079, Springer, 2008, pp. 128–143.

[21] D. Sahlin, Mixtus: An automatic partial evaluator for full Prolog, New

Generation Computing 12 (1) (1993) 7–51.

[22] Z. Somogyi, F. Henderson, T. Conway, The execution algorithm of

Mercury: An efficient purely declarative logic programming language,

Journal of Logic Programming 29 (1–3) (1996) 17–64.

[23] M.H. Sørensen, R. Glück, An algorithm of generalization in positive

supercompilation, in: Proc. of ILPS’95, The MIT Press, 1995, pp. 465–

479.

Modular Decompilation of Low-Level Code by Partial Evaluation∗

Miguel Gómez-Zamalloa

DSIC, Complutense University of Madrid

mzamalloa@fdi.ucm.es

Elvira Albert

DSIC, Complutense University of Madrid

elvira@fdi.ucm.es

Germán Puebla

CLIP, Technical University of Madrid

german@fi.upm.es

Abstract

Decompiling low-level code to a high-level intermedi-

ate representation facilitates the development of analyzers,

model checkers, etc. which reason about properties of the

low-level code (e.g., bytecode, .NET). Interpretive decom-

pilation consists in partially evaluating an interpreter for

the low-level language (written in the high-level language)

w.r.t. the code to be decompiled. There have been proofs-of-

concept that interpretive decompilation is feasible, but there

remain important open issues when it comes to decompile

a real language: does the approach scale up? is the qual-

ity of decompiled programs comparable to that obtained by

ad-hoc decompilers? do decompiled programs preserve the

structure of the original programs? This paper addresses

these issues by presenting, to the best of our knowledge, the

first modular scheme to enable interpretive decompilation

of low-level code to a high-level representation, namely, we

decompile bytecode into Prolog. We introduce two notions

of optimality. The first one requires that each method/block

is decompiled just once. The second one requires that each

program point is traversed at most once during decompila-

tion. We demonstrate the impact of our modular approach

and optimality issues on a series of realistic benchmarks.

Decompilation times and decompiled program sizes are lin-

ear with the size of the input bytecode program. This de-

mostrates empirically the scalability of modular decompi-

lation of low-level code by partial evaluation.

1. Introduction

Decompilation of low-level code (e.g., bytecode) to an

intermediate representation has become a usual practice

nowadays within the development of analyzers, verifiers,

model checkers, etc. For instance, in the context of mo-

∗This work was funded in part by the Information Society Technologies

program of the European Commission, Future and Emerging Technologies

under the IST-15905 MOBIUS project, by the Spanish Ministry of Educa-

tion (MEC) under the TIN-2005-09207 MERIT project, and the Madrid

Regional Government under the S-0505/TIC/0407 PROMESAS project.

bile code, as the source code is not available, decompilation

facilitates the reuse of existing analysis and model check-

ing tools. In general, high-level intermediate representa-

tions allow abstracting away the particular language fea-

tures and developing the tools on simpler representations.

As a representative example, Java bytecode is decompiled

to a rule-based representation in [1], to clause-based pro-

grams in [18], to a three-address code view of bytecodes in

Soot [20] and to the typed procedural language BoogiePL in

[5]. Also, PIC programs are transformed to logic programs

in [10]. Rule-based representations used in declarative pro-

gramming in general—and in Prolog in particular—provide

a convenient formalism to define such intermediate repre-

sentations. E.g., as it can be seen in [1, 18, 20, 10], the

operand stack used in a low-level language can be repre-

sented by means of explicit logic variables and that its un-

structured control flow can be transformed into recursion.

All above cited approaches (except [10]) develop ad-

hoc decompilers to carry out the particular decompilations.

An appealing alternative to the development of dedicated

decompilers is the so-called interpretive decompilation by

partial evaluation (PE) [11]. PE is an automatic program

transformation technique which specializes a program w.r.t.

part of its known input data. Interpretive compilation was

proposed in Futamura’s seminal work [6], whereby com-

pilation of a program P written in a (source) program-

ming language LS into another (object) programming lan-

guage LO is achieved by specializing an interpreter for

LS written in LO w.r.t. P . The advantages of interpretive

(de-)compilation w.r.t. dedicated (de-)compilers are well-

known and discussed in the PE literature (see, e.g., [3]).

Very briefly, they include: flexibility, it is easier to modify

the interpreter in order to tune the decompilation (e.g., ob-

serve new properties of interest); easier to trust, it is more

difficult to prove that ad-hoc decompilers preserve the pro-

gram semantics; easier to maintain, new changes in the lan-

guage semantics can be easily reflected in the interpreter.

There have been several proofs-of-concept of interpre-

tive (de-)compilation (e.g., [3, 10, 13]), but there remain

interesting open issues when it comes to assess its power

and/or limitations to decompile a real language: (a) does the

Eighth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3353-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCAM.2008.35

239

approach scale? (b) do (de-)compiled programs preserve

the structure of the original ones? (c) is the “quality” of

decompiled programs comparable to that obtained by ded-

icated decompilers? This paper answers these questions

positively by proposing a modular decompilation scheme

which can be steered to control the structure of decompiled

code and ensure quality decompilations which preserve the

original program’s structure. Our main contributions are

summarized as follows:

1. We present the problems of non-modular decompila-

tion and identify the components needed to enable a

modular scheme. This includes how to write an inter-

preter and how to control an online partial evaluator in

order to preserve the structure of the original program

w.r.t. method invocations.

2. We present a modular decompilation scheme which is

correct and complete for the proposed big-step inter-

preter. The modular-optimality of the scheme allows

addressing issue (a) by avoiding decompiling the same

method more than once, and (b) by ensuring that the

structure of the original program can be preserved.

3. We introduce an interpretive decompilation scheme for

low-level languages which answers issue (c) by pro-

ducing decompiled programs whose quality is similar

to that of dedicated decompilers. This requires a block-

level decompilation scheme which avoids code dupli-

cation and code re-evaluation.

4. We report on a prototype implementation which incor-

porates the above techniques and demonstrate it on an

set of realistic Java bytecode programs.

For the sake of concreteness, our decompilation scheme

is formalized in the context of logic programming but the

techniques to enable modularity can also be applied to com-

pilation for any instantiation of languages (not necessarily

low-level languages).

2 Basics of Partial Deduction

We assume familiarity with basic notions of logic pro-

gramming [16]. Executing a program P for a call A con-

sists in building an SLD tree for P∪{A} and then extracting

the computed answers from every non-failing branch of the

tree. PE in logic programming (see e.g. [7]) builds upon the

SLD trees mentioned above. We now introduce a generic

function PE, which is parametric w.r.t. the unfolding rule,

unfold, and the abstraction operator, abstract and captures

the essence of most algorithms for PE of logic programs:

1: function PE (P,A, S0)

2: repeat

3: T pe := unfold(Si, P,A);
4: Si+1 := abstract(Si, leaves(T pe),A);
5: i := i + 1;

6: until Si = Si−1 % (modulo renaming)

7: return codegen(T pe, unfold);

Function PE differs from standard ones in the use of the

set of annotations A, whose role is described below. PE

starts from a program P , a (possibly empty) set of anno-

tations A and an initial set of calls S0. At each iteration,

the so-called local control is performed by the unfolding

rule unfold (L3), which takes the current set of terms Si,

the program and the annotations and constructs a partial

SLD tree for each call in Si. Trees are partial in the sense

that, in order to guarantee termination of the unfolding pro-

cess, it must be possible to choose not to further unfold a

goal, and rather allow leaves in the tree with a non-empty,

possibly non-failing, goal. The particular unfold operator

determines which call to select from each goal and when

to stop unfolding. The partial evaluator may have to build

several SLD-trees to ensure that all calls left in the leaves

are “covered” by the root of some tree. This is known as

the closedness condition of PE [17]. In the global control,

those calls in the leaves which are not covered are added

to the new set of terms to be partially evaluated, by the op-

erator abstract (L4). At the next iteration, an SLD-tree is

built for such call. Thus, basically, the algorithm iteratively

(L2-6) constructs partial SLD trees until all their leaves are

covered by the root nodes. An essential point of the oper-

ator abstract is that it has to perform “generalizations” on

the calls that have to be partially evaluated in order to avoid

computing partial SLD trees for an infinite number of calls.

A partial evaluation of P w.r.t. S is then systematically ex-

tracted from the resulting set of calls T pe in the final phase,

codegen in L7. The notion of resultant is used to generate

a program rule associated to each root-to-leaf derivation of

the SLD-trees for the final set of terms T pe. Given an SLD

derivation of P ∪ {A} with A ∈ T pe ending in B and θ be

the composition of the mgu’s in the derivation steps, the rule

θ(A) : −B is called the resultant of the derivation. A PE is

defined as the set of resultants associated to the derivations

of the constructed partial SLD trees for all P ∪ T pe.

The notions of completeness and correctness of PE [7]

ensure that the specialized program produces no less resp.

no more answers than the original program. A sufficient

condition to ensure completeness is that the specialized pro-

gram is closed by the resulting set of terms T pe. Intuitively,

the closedness condition ensures that all calls which may

arise during the computation of P ∪ S are instances of T pe

and hence there is a matching resultant for them (solutions

are not lost). The abstraction operator is encharged of en-

suring that the closedness condition is met by means of a

proper generalization of calls. Correctness is achieved when

the resulting set T pe is independent, i.e., there are no two

calls in T pe which unify. Independence can be easily re-

covered by a post-processing of renaming, which often does

argument filtering [7].

240

Finally, the role of the annotations A (often manually

provided) in offline PE is to give information to the con-

trol operators to decide when to stop derivations in the local

control and how to perform generalizations in the global

control to ensure termination. In online PE, all control de-

cisions are taken during the specialization phase, without

the use of annotations. We trivially turn function PE into

online by just ignoring the annotations.

3 Non-Modular Interpretive Decompilation

This section describes the state of the art in interpretive

decompilation of low-level languages to Prolog, including

recent work in [10, 2, 9, 3]. We do so by formulating non-

modular decompilation in a generic way and identifying its

limitations. The low-level language we consider, denoted as

Lbc, is a simple imperative bytecode language in the spirit

of Java bytecode but, to simplify the presentation, without

object-oriented features (our implementation supports full

Java bytecode). It uses an operand stack to perform com-

putations. It has an unstructured control flow with explicit

conditional and unconditional goto instructions and ma-

nipulates only integer numbers. A bytecode program Pbc

is organized in a set of methods which are the basic (de-

)compilation units of Lbc. The code of a method m, denoted

code(m), consists of a sequence of bytecode instructions

BCm =<pc0 : bc0, . . . , pcnm
: bcnm

> with pc0, . . . , pcnm

being consecutive natural numbers. The Lbc instruction set

is:

BcInst ::= push(x) | load(v) | store(v) | add | sub | mul | div | rem |
| neg | if ⋄ (pc) | if0 ⋄ (pc) | goto(pc) | return | call(mn)

where ⋄ is a comparison operator (eq, le, gt, etc.), v a lo-

cal variable, x an integer, pc an instruction index and mn a

method name. Instructions push, load and store trans-

fer values or constants from the local variables to the stack

(and viceversa); add, sub, mul, div, rem and neg per-

form the usual arithmetic operations, being rem the divi-

sion remainder and neg the arithmetic negation; if and

if0 are conditional branching instructions (with the spe-

cial case of comparisons with 0); goto is an unconditional

branching; return marks the end of methods and call
invokes a method. A method m is uniquely determined by

its name. We write calls(m) to denote the set of all method

names invoked within the code of m. We use defs(Pbc)
to denote the set of internal method names defined in Pbc.

The remaining methods are external. We say that Pbc is

self-contained if ∀m ∈ Pbc, calls(m) ⊆ defs(Pbc), i.e., Pbc

does not include calls to external methods.

3.1 Non-modular, Online Decompilation

We rely on the so-called “interpretive approach” to com-

pilation by PE described in Sect. 1, also known as first

main(Method,InArgs,Top) :-
build_s0(Method,InArgs,S0), execute(S0,Sf),
Sf = st(fr(_,_,[Top|_],_),_)).

execute(S,S) :-
S = st(fr(M,PC,[_Top|_],_),[]),
bytecode(M,PC,return,_).

execute(S1,Sf) :-
S1 = st(fr(M,PC,_,_),_), bytecode(M,PC,Inst,_),
step(Inst,S1,S2), execute(S2,Sf).

step(goto(PC),S1,S2) :-
S1 = st(fr(M,_,S,LV),FrS),
S2 = st(fr(M,PC,S,LV),FrS).

step(push(X),S1,S2) :-
S1 = st(fr(M,PC,S,L),FrS), next(M,PC,PC2),
S2 = st(fr(M,PC2,[X|S],L),FrS).

...
step(call(M2),S1,S2) :-

S1 = st(fr(M,PC,OS,LV),FrS), split_OS(M2,OS,Args,OS3),
build_s0(M2,Args,st(fr(M2,PC2,OS2,LV2),_)),
S2 = st(fr(M2,PC2,OS2,LV2),[fr(M,PC,OS3,LV)|FrS]).

step(return,S1,S2) :-
S1 = st(fr(_,_,[RV|_],_),[fr(M,PC,OS,LV)|FrS]),
next(M,PC,PC2), S2 = st(fr(M,PC2,[RV|OS],LV),FrS).

Figure 1. Fragment of (small-step) Lbc interpreter

Futamura projection [6]. In particular, the decompila-

tion of a Lbc-bytecode program Pbc to LP (for short LP-

decompilation) might be obtained by specializing (with an

LP partial evaluator) a Lbc-interpreter written in LP w.r.t.

Pbc. In Fig. 1 we show a fragment of a (small-step) Lbc in-

terpreter implemented in Prolog, named IntLbc
. We assume

that the code for every method in the bytecode program Pbc

is represented as a set of facts bytecode/3 such that, for

every pair pci : bci in the code for method m, we have a

fact bytecode(m,pci,bci). The state carried around by

the interpreter is of the form st(Fr,FrStack)where Fr
represents the current frame (environment) and FrStack
the stack of frames (call stack) implemented as a list.

Frames are of the form fr(M,PC,OStack,LocalV),

where M represents the current method, PC the program

counter, OStack the operand stack and LocalV the list

of local variables. Predicate main/3, given the method

to be interpreted Method and its input method arguments

InArgs, first builds the initial state by means of predi-

cate build s0/3 and then calls predicate execute/2.

In turn, execute/2 calls predicate step/3, which pro-

duces S2, the state after executing the bytecode, and then

calls predicate execute/2 recursively with S2 until we

reach a return instruction with the empty stack. For

brevity, we only show the definition of step/3 for a se-

lected set of instructions and omit the code of build s0/3
and localVar update/4. The latter simply updates the

value of a local variable. By using this interpreter, in a

purely online setting, we define a non-modular decompila-

tion scheme in terms of the generic function PE as follows.

Definition [DECOMPLbc
] Given a self-contained

Lbc-bytecode program Pbc, the (non-modular) LP-

decompilation of Pbc can be obtained as:

DECOMPLbc
(Pbc) = PE(IntLbc

∪ Pbc, ∅, S)

where S is the set of calls {main(m, ,) |m ∈ defs(Pbc)}.

241

int gcd(int x,int y){
int res;
while (y != 0){

res = x%y; x = y;
y = res;}

return abs(x);}

int abs(int x){
if (x < 0) return -x;
else return x; }

int lcm(int x,int y){
int gcd = gcd(x,y);
if (gcd == 0) return 0;
else return x*y/gcd;}

int fact(int x){
if (x == 0)

return 1;
else

return x*fact(x-1);}

Method gcd/2
0:load(1)
1:if0eq(11)
2:load(0)
3:load(1)
4:rem
5:store(2)
6:load(1)
7:store(0)
8:load(2)
9:store(1)
10:goto 0
11:load(0)
12:call(abs)
13:return

Method abs/1
0:load(0)
1:if0ge(5)
2:load(0)
3:neg
4:return
5:load(0)
6:return

Method lcm/2
0:load(0)
1:load(1)
2:call(gcd)
3:store(2)
4:load(2)
5:if0ne 8
6:push(0)
7:return
8:load(0)
9:load(1)
10:mul
11:load(2)
12:div
13:return

Method fact/1
0:load(0)
1:if0ne(4)
2:push(1)
3:return
4:load(0)
5:load(0)
6:push(1)
7:sub
8:call(fact)
9:mul
10:return

Figure 2. Source code and Lbc-bytecode for working example

Recent work in interpretive, online decompilation has fo-

cused on ensuring that the layer of interpretation is com-

pletely removed from decompiled programs, i.e., effec-

tive decompilations are obtained. This requires the use

of advanced control strategies as explained in [2] and [9].

Our starting point is thus a state-of-the-art partial evaluator

which incorporates such advanced techniques and which is

able to remove the layer of interpretation.

3.2 Limitations

This section illustrates by means of the bytecode exam-

ple in Fig. 2 that non-modular decompilation does not en-

sure a satisfactory handling of issues (a) and (b). In the

examples, we often depict the Java source code for clar-

ity, but the partial evaluator works directly on the bytecode.

The program consists of a set of methods that carry out

arithmetic operations. Method gcd computes the greatest-

common divisor, abs the absolute value, lcm the least-

common multiple and fact the factorial recursively. The

LP-decompilation obtained by applying Def. 3.1 is shown

in Fig. 3. We identify the following limitations of non-

modular decompilation:

(L1) Method invocations from lcm to gcd (index 2) and

from gcd to abs (index 12) do not appear in the decom-

piled code. Instead, such calls have been inlined within their

calling contexts and, as a consequence, the structure of the

original code has been lost. For instance, the last two rules

in the decompilation for lcm, execute 1, correspond to

the while loop of gcd.

(L2) As a consequence, decompilation might become

very inefficient. E.g., if n calls to the same method appear

within a code, such method will be decompiled n times.

This might be even worse in teh case of loops.

main(lcm,[B,0],A) :-
B>0, C is B*0, A is C//B.

main(lcm,[0,0],0).
main(lcm,[B,0],A) :-

B<0, D is B*0,
C is -B, A is D//C.

main(lcm,[B,C],A) :-
C\=0, D is B rem C,
execute_1(C,D,B,C,A).

execute_1(A,0,B,C,D) :-
A>0, E is B*C, D is E//A.

execute_1(0,0,_,_,0).
execute_1(A,0,B,C,D) :-

A<0, E is-A,
F is B*C, D is F//E.

execute_1(A,B,C,D,I) :-
B\=0, K is A rem B,
execute_1(B,K,C,D,I).

main(gcd,[A,0],A) :-A>=0.
main(gcd,[B,0],A) :-

B<0, A is-B.
main(gcd,[B,C],A) :-

C\=0, D is B rem C,
execute_2(C,D,A) .

execute_2(A,0,A) :-
A>=0.

execute_2(A,0,C) :-
A<0, C is-A.

execute_2(A,B,G) :-
B\=0,
I is A rem B,
execute_2(B,I,G).

main(abs,[A],A) :- A>=0.
main(abs,[B],A) :-

B<0, A is-B.

Figure 3.Decompiled (non-modular) code for working example

(L3) The non-modular approach does not work incre-

mentally, in the sense that it does not support separate de-

compilation of methods but rather has to (re)decompile all

method calls. Thus, decompiling a real language becomes

unfeasible, as one needs to consider system libraries. Limi-

tation L2 together with L3 answer issue (a) negatively.

(L4) The decompiled program does not contain the code

corresponding to recursive fact due to space limitations,

as the decompiled code contains basically the whole inter-

preter. The problem with recursion is: assume we want to

decompile method m1 whose code is < pc0 : bc0, . . . , pcj :
call(m1), . . . , pcn : return >. There is an initial decom-

pilation for Ak = execute(st(fr(m1, pcj, os, lv), []), Sf)
in which the call stack is empty. During

its decompilation, a call of the form Al =
execute(st(fr(m1, pcj, os

′, lv′), [fr(m1, pcj, os, lv)]), Sf)
with the call stack containing the previous frame appears

when we get to the recursive call. At this point, the

derivation must be stopped as Ak�T Al. In order to

ensure termination, the global control generalizes the

above calls into execute(st(fr(m1, pcj, ,),), Sf),
where denotes a fresh variable and thus the call-stack

has become unknown. As a consequence, after evalu-

ating the return statement, the continuation obtained

from the call-stack is unknown and we produce the call

execute(st(fr(, , ,),), Sf) to be decompiled. Here,

the fact that the method and the program counter are

unknown prevents us from any chance of removing the

interpretation layer, i.e., the decompiled code will poten-

tially contain the whole interpreter. This indeed happens

during the decompilation of fact. Partial solutions to

the recursion problem exist and will be discussed later.

Limitations L1 and L4 answer issue (b) negatively.

4 A Modular Decompilation Scheme

By modular decompilation, we refer to a decompilation

technique whose decompilation unit is the method, i.e., we

242

decompile a method at a time. We show that this approach

overcomes the four limitations of non-modular decompila-

tion described in Sect. 3.2 and answers issues (a) and (b)

positively. In essence, we need to: (i) give a compositional

treatment to method invocations, we show that this can be

achieved by considering a big-step interpreter; (ii) provide a

mechanism to residualize calls in the decompiled program,

we automatically generate program annotations for this pur-

pose; (iii) study the conditions which ensure that separate

decompilation of methods is sound.

4.1 Big-step Semantics Interpreter

Traditionally, two different approaches have been con-

sidered to define language semantics, big-step (or natural)

semantics and small-step semantics (see, e.g., [12]). Essen-

tially, in big-step semantics, transitions relate the initial and

final states for each statement, while in small-step seman-

tics transitions define the next step of the execution for each

statement. In the context of bytecode interpreters, it turns

out that most of the statements execute in a single step,

hence making both approaches equivalent for such state-

ments. This is the case for our Lbc-bytecode interpreter

for all statements except for call. The transition for call in

small-step defines the next step of the computation, i.e., the

current frame is pushed on the call-stack and a new environ-

ment is initialized for the execution of the invoked method.

Note that, after performing this step, we do not distinguish

anymore between the code of the caller method and that of

the callee. This avoids modularity of decompilation.

In the context of interpretive (de-)compilation of imper-

ative languages, small-step interpreters are commonly used

(see e.g. [19, 10, 3]). We argue that the use of a big-step

interpreter is a necessity to enable modular decompilation

which scales to realistic languages. In Fig. 4, we depict the

relevant part of the big-step interpreter for Lbc-bytecode,

named Intbs
Lbc

. We can see that the call statement, after

extracting the method parameters from the operand stack,

calls recursively predicate main/3 in order to execute the

callee. Upon return from the method execution, the return

value is pushed on the operand stack of the new state and

execution proceeds normally. Also, we do not need to carry

the call-stack explicitly within the state, but only the infor-

mation for the current environment. I.e., states are of the

form st(M,PC,OStack,LocalV). This is because the

call-stack is already available by means of the calls for pred-

icate main/3.

The compositional treatment of methods in Intbs
Lbc

is not

only essential to enable modular decompilation (overcome

L1, L2 and L3) but also to solve the recursion problem in

a simple and elegant way. Indeed, the decompilation based

on the big-step interpreter Intbs
Lbc

does not present L4. E.g.,

the decompilation of a recursive method m1 starts from the

execute(S,S) :-
S = st(M,PC,[_Top|_],_),
bytecode(M,PC,return,_).

execute(S1,Sf) :-
S1 = st(M,PC,_,_),
bytecode(M,PC,Inst,_),
step(Inst,S1,S2),
execute(S2,Sf).

step(call(M2),S1,S2) :-
S1 = st(M,PC,OS,LV),
next(M,PC,PC2),
split_OS(M2,OS,Args,OSRs),
main(M2,Args,RV),
S2 = st(M,PC2,[RV|OSRs],LV).

Figure 4. Fragment of big-step Lbc interpreter Intbs
Lbc

call main(m1, ,) and then reaches a call main(m1, args,)
where args represents the particular arguments in the recur-

sive call. This call is flagged as dangerous by local control

and the derivation is stopped. The important points are that,

unlike before, no recomputation is needed as the second call

is necessarily an instance of the first one and, besides, there

is no information loss associated to the generalization of

the call-stack, as there is no stack. The recursion problem

was first detected in [8] and a solution based on computing

regular approximations during PE was proposed. Although

feasible in theory, such technique might be too inefficient

in practice and problematic to scale it up to realistic ap-

plications due to the overhead introduced by the underlying

analysis. Another solution is proposed in [10], where a sim-

pler control-flow analysis is performed before PE in order

to collect all possible instructions which might follow the

return. Such information may then be used to recover in-

formation lost by the generalization. This solution turns out

to be also impractical for our purposes when considering

realistic programs that make intensive use of library code

(e.g. Java bytecode) as many continuations can follow. Our

solution does not require the use of static analysis and, as

our experiments show, does not pose scalability problems.

4.2 Guiding Online PE with Annotations

We now present the annotations we use to provide ad-

ditional control information to PE. They are instrumental

for obtaining the quality decompilation we aim at. We

use the annotation schema: “[Precond] ⇒ Ann Pred”

where Precond is an optional precondition defined as a

logic formula, Ann is the kind of annotation (Ann ∈
{memo, rescall}) and Pred is a predicate descriptor, i.e.,

a predicate function and distinct free variables. Such an-

notations are used by local control when a call for Pred is

found as follows:

• memo: The current call is not further unfolded. There-

fore, the call is later transferred to the global control to

carry out its specialization separately.

• rescall: The current call is not further unfolded. Un-

like calls marked memo, the current call is not trans-

ferred to the global control.

In the following, we denote by unfoldA�T
the unfolding op-

erator of Sect. 2 enhanced to use the above annotations. We

adopt the same names for the annotations as in offline PE

243

[15]. However, in offline PE they are the only means to

control terminationand rescall annotations are in principle

only used for builtins.

4.3 Modular Decompilation

In order to achieve modular decompilation, it is instru-

mental to allow performing separate decompilation. In the

interpretive approach this requires being able to perform

separate PE, i.e., to be able to specialize parts of the pro-

gram independently and then join the specializations to-

gether to form the residual program. For instance, con-

sider a self-contained logic program P partitioned in a set

{P1, . . . , Pn} of mutually disjoint subprograms which pre-

serve predicate boundaries, i.e., for any predicate pred in

P we have that all rules for pred are in the same parti-

tion Pj , for some j ∈ {1, . . . , n}. Consider also the sets

of terms S1, . . . , Sn such that all calls in Si correspond to

predicates defined in Pi, i = 1, . . . , n. We can now de-

fine S = S1 ∪ · · · ∪ Sn and the usual notions of closedness

and independence are applicable. A separate partial evalu-

ation for P and S is obtained as the union of the individual

specializations w.r.t. each corresponding set of calls, i.e.,⋃
Pi∈P PE(Pi, ∅, Si). One additional difficulty for sepa-

rate PE is related to the use of renaming for guaranteeing

independence, since renaming requires a global table which

is not available when generating code for the individual sub-

programs. A simple strategy which we will use in our mod-

ular decompilation is to allow polyvariant specialization for

calls to predicates locally defined in the subprogram Pi be-

ing partially evaluated but to resort to monovariant special-

ization for predicates used across subprogram boundaries.

Then, the renaming can use a local renaming table, which

must guarantee that there will be no name clash with re-

named calls from other subprograms.

We present now a modular decompilation scheme which,

by combining the big-step interpreter with the use of rescall

annotations, enables separate decompilation and ensures

soundness (i.e., it is correct and complete w.r.t. internal

methods).

Definition [MOD-DECOMPLbc
] Given a Lbc-bytecode pro-

gram Pbc, a modular LP-decompilation of Pbc can be ob-

tained as:

MOD-DECOMPLbc
(Pbc) =

⋃

∀m∈defs(Pbc)

PE(Int
bs
Lbc

∪code(m),Amod, Sm)

where the set of annotations Amod = {(m ∈ calls(Pbc)) ⇒
rescall main(m, ,)} and the initial sets of calls Sm =
{main(m, ,)} for each m ∈ defs(Pbc).

Let us briefly explain the above definition. Now the func-

tion PE is executed once per method defined in Pbc, starting

each time from a set of calls, Sm, which contains a call of

the form main(m, ,) for method m. The set Amod contains

a rescall annotation which affects all methods invoked (but

not necessarily internal) inside Pbc. When a method invoca-

tion is to be decompiled, the call step(call(m’), ,)
occurs during unfolding. We can see that, by using the big-

step interpreter in Fig. 4, a subsequent call main(m’, ,)
will be generated. As there is a rescall annotation which

affects all methods invoked in the program, such call is not

unfolded but rather remains residual. If m′ is internal, a cor-

responding decompilation from the call main(m’, ,)
will be, or has already been, performed since function PE

is executed for every method in Pbc. Thus, completeness is

ensured for internal predicates.

Example 1 By applying function MOD-DECOMPLbc
to

the Lbc-bytecode program in Fig. 2 we execute PE

once for each of the four methods in the pro-

gram. In each execution we specialize the interpreter

w.r.t. the calls main(fact, ,), main(gcd, ,),

main(lcm, ,), and main(abs, ,). We obtain the

following LP-decompilation:

main(lcm,[B,C],A) :-
main(gcd,[B,C],D),
D\=0, E is B*C,
A is E//D.

main(lcm,[A,B],0) :-
main(gcd,[A,B],0).

main(gcd,[B,0],A) :-
main(abs,[B],A).

main(gcd,[B,C],A) :-
C\=0, D is B rem C,
exec_1(C,D,A).

exec_1(A,0,C) :-
main(abs,[A],C).

exec_1(A,B,F) :- B\=0,
H is A rem B, exec_1(B,H,F).

main(abs,[A],A) :- A>=0.
main(abs,[B],A) :- B<0, A is-B.

main(fact,[B],A) :-
B\=0, C is B-1,
main(fact,[C],D), A is B*D.

main(fact,[0],1).

The structure of the original program w.r.t. method calls is

preserved, as the residual predicate for lcm contains an

invocation to the definition of gcd, which in turn invokes

abs, as it happens in the original bytecode. Moreover,

we now obtain an effective decompilation for the recursive

method fact where the interpretive layer is completely re-

moved without the need of any analysis. Thus, L1 and L4

have been successfully solved.

The following theorem ensures the soundness of modular

decompilation for the big-step bytecode interpreter. Com-

pleteness can be ensured by excluding calls to external

methods not defined in the bytecode. It is independent of

the way the interpreter is defined, as the closedness condi-

tion for the internal methods is enforced by our definitions

of Amod and Sm. Correctness holds in the case of our in-

terpreter, because the only calls which are transferred to the

global control are instances of main/3 and execute/2
and their first argument is the method’s name, which makes

them mutually exclusive. A post-processing of renaming

is thus optional, but it can be necessary to ensure that the

independence condition is met for other interpreters.

244

Theorem 1 (soundness) Consider a Lbc-bytecode pro-

gram Pbc and a concrete input I . Let P ′
bc be the result of

MOD-DECOMPLbc
(Pbc) and I ′ the LP representation of I .

Then, A′ is an answer for P ′
bc∪{I

′} iff A is the result of exe-

cuting Pbc for the input I , where A′ is the LP representation

of A.

We now characterize the notion of modular-optimality in

decompilation which ensures that (1) only the code associ-

ated to internal methods is decompiled, thus, we can have

external calls (e.g., to libraries) which are not decompiled

and overcome L3; (2) and each method is decompiled only

once and thus we overcome L2.

Proposition 1 (modular-optimality) Given a Lbc-

bytecode program Pbc, function MOD-DECOMPLbc
only

decompiles the code corresponding to internal methods

defined in Pbc, and the code of each method is decompiled

once.

Note that modular decompilation gives a monovariant

treatment to methods in the sense that it does not allow

creating specialized versions of method definitions. This is

against the usual spirit in PE, where polyvariance is a main

goal to achieve further specialization. However, in the con-

text of decompilation, we have shown that a monovariant

treatment is necessary to enable scalability and to preserve

program structure. It naturally raises the question whether

a polyvariant treatment could achieve, even if at the cost

of efficiency and loss of structure, a better quality decom-

pilation. Note that enabling polyvariant specialization in

the modular setting can be trivially done by not introduc-

ing rescall annotations for certain selected methods which

should be treated in a polyvariant manner. Our experience

indicates that there is often a small quality gain at the price

of a highly inefficient decompilation.

5 Decompilation of Low-Level Languages

Applying the interpretive approach on a low-level lan-

guage introduces new challenges. The main issue is

whether it is possible to obtain, by means of interpretive de-

compilation, programs whose quality is equivalent to that

obtained by dedicated decompilers, issue (c) in Sect. 1.

We will show now that, using the most effective unfold-

ing strategies of PE, code for the same program point can

be emitted (i.e. it can be decompiled) several times, which

degrades both efficiency and quality of decompilation. In

order to obtain results which are comparable to that of ded-

icated decompilers, it makes sense to use similar heuristics.

Since decompilers first build a control flow graph (CFG)

for the method, which guides the decompilation process, we

now study how a similar notion can be used for controlling

PE of the interpreter.

Let us explain block-level decompilation by means of an

example. Consider the method mbl to the left of Fig. 5,

where we only show the relevant bytecode instructions, and

its CFG in the center. A divergence point (D point) is a

program point (bytecode index) from which more than one

branch originates; likewise, a convergence point (C point)

is a program point where two or more branches merge. In

the CFG of mbl, the only divergence (resp. convergence)

point is pci (resp. pck).

By using the decompilation scheme presented so far, we

obtain the SLD-tree shown to the right of Fig. 5, in which

all calls are completely unfolded as there is no termination

risk (nor rescall annotation). The decompiled code is shown

under the tree. We use {resX} to refer to the residual code

emitted for BlockX and condi to refer to the condition as-

sociated to the branching instruction at pci (condi denotes

its negation). The quality of the decompiled code is not op-

timal due to:

D. Decompiled code {resA} for BlockA is duplicated in

both rules. During PE, this code is evaluated once but,

due to the way resultants are defined (see codegen in

Sect. 2), each rule contains the decompiled code as-

sociated to the whole branch of the tree. This code

duplication brings in two problems: it increases con-

siderably the size of decompiled programs and also

makes their execution slower. For instance, when

condi holds, the execution goes unnecessarily through

{resA} in the first rule, fails to prove condi and, then,

attempts the second rule.

C. Decompiled code of BlockD is again emitted more

than once. Each rule for the decompiled code contains

a (possibly different) version, {resD} and {res
′

D}, of

the code of BlockD. Unlike above, at PE time, the

code of BlockD is actually evaluated in the context of

{condi, {resB}} and then re-evaluated in the context

of {condi, {resC}}. Convergence points thus might

degrade both efficiency (and endanger scalability) and

quality of decompilation (due to larger residual code).

The amount of repeated residual code grows exponentially

with the number of C and D points and the amount of re-

evaluated code grows exponentially with the number of C

points. Thus, we now aim for a block-level decompilation

that helps overcome problems D and C above. Intuitively,

a block-level decompilation must produce a residual rule

for each block in the CFG. This can be achieved by build-

ing SLD-trees which correspond to each single block, rather

than expanding them further.

The memo annotations presented in Sect. 4.2 facili-

tate the design of the block-level interpretive decompilation

scheme. In particular, we can easily force the unfolding pro-

cess to stop at D points by including a memo annotation for

execute/2 calls whose PC corresponds to a D point. In

245

Method mbl
pc0 : bc0
...

pci : if ⋄ (pcj)
pci+1 : bci+1

...

pcj−1 : goto(pck)
pcj : bcj
...

pck−1 : bck−1

pck : bck
pcn : return

pcj−1:goto(pck)
. . .

pci+1:bci+1 pcj:bcj

pck−1:bck−1

. . .

pc0:bc0

. . .

pci:if⋄(pcj)

pck:bck

. . .

pcn:return

condi

Block A

Block B

Block D

Block Ccondi

exec(st(mbl, 0, os0, lv0),)

exec(st(mbl, pci, osi, lvi),)

exec(st(mbl, pci+1, . . .)

exec(st(mbl, pcn, osn, lvn),)

true true

exec(st(mbl, pcj, osj, lvj),)

exec(st(mbl, pck, osk, lvk),)exec(st(mbl, pck, osk, lvk),)

exec(st(mbl, pcn, osn, lvn),)

{resD}

{resC}

{res
′

D
}

{resB}

{resA}

main(mbl, ,)

condi condi

main(mbl,Args,Out) :- {resA}, condi, {resB}, {resD}.

main(mbl,Args,Out) :- {resA}, condi, {resC}, {res
′

D}.

Figure 5. Lbc-bytecode, CFG, unfolding tree and decompiled code of mbl method

the example, unfolding stops at pci as desired. Regarding

C points, an additional requirement is to partially evaluate

the code on blocks starting at these points at most once.

The problem is similar to the polyvariant vs monovariant

treatment in the decompilation of methods in Sect. 4.3, by

viewing entries to blocks as method calls. Not surprisingly,

the solution can be achieved similarly in our setting by: (1)

stopping the derivation at execute/2 calls whose PC cor-

responds to C points and (2) passing the call to the global

control, and ensuring that it is evaluated in a sufficiently

generalized context which covers all incoming contexts.

The former point is ensured by the use of memo annotations

and the latter by including in the initial set of terms a gener-

alized call of the form execute(st(mbl, pck, ,),) for all

C points, which forces such generalization. The next defi-

nition presents the block-level decompilation scheme where

div points(m) and conv points(m) denote, resp., the set

of D points and C points of a method m.

Definition [BLOCK-MOD-DECOMPLbc
] Given a Lbc-bytecode

program Pbc, a block-level, modular LP-decompilation of

Pbc can be obtained as:

BLOCK-MOD-

DECOMPLbc

(Pbc) =
⋃

∀m∈defs(Pbc)

PE(Int
bs
Lbc

∪ code(m),Am, Sm)

Ablocks = {pc ∈ div points(m) ∪ conv points(m) ⇒
memo execute(st(m, pc, ,),)}

Sm = {main(m, ,)} ∪
{execute(st(m, pc, ,),) | pc ∈ conv points(m)}

Am = Amod ∪ Ablocks, for each m ∈ defs(Pbc).

An important point is that, unlike annotations used in offline

PE [13] which are generated by only taking the interpreter

into account, our annotations for block-level decompilation

are generated by taking into account the particular program

to be decompiled. Importantly, both the annotations and the

initial set of calls can be computed automatically by per-

forming two passes on the bytecode (see, e.g., [1, 20]). The

result of performing block-level decompilation on mbl is:

main(mbl,Args,Out) :- {resA}, execute1(. . .).
execute1(. . .) :- condi, {resB}, execute2(. . .).
execute1(. . .) :- condi, {resC}, execute2(. . .).
execute2(. . .) :- {resD}.

Now, the residual code associated to each block appears

once in the code. This ensures that block-level decompila-

tion preserves the CFG shape as dedicated decompilers do.

Thus, the quality of our decompiled code is as good as that

obtained by state-of-the-art decompilers [1, 18] but with the

advantages of interpretive decompilation (see Sect. 1). We

formalize the quality of block-level decompilation.

Proposition 2 (block-optimality) Given a bytecode

program Pbc, the block-level decompilation function

BLOCK-MOD-DECOMPLbc
ensures that: (I) residual code

for each bytecode instruction in Pbc is emitted once in the

decompiled program, and (II) each bytecode instruction in

Pbc is evaluated at most once during PE.

6 Experimental Evaluation

We report on our implementation of a decompiler for

full (sequential) Java Bytecode into Prolog. The exten-

sions needed to handle the features of Java Bytecode not

considered in Lbc (exception handling, dynamic memory

allocation, object orientation, etc) are basically carried

out by making the decompiler produce the corresponding

builtins in the residual code. E.g. the bytecode instruc-

tion putfield will make the decompiler produce the predicate

set field/5 in the decompiled code. This naive solu-

tion might be considerably improved to increase the preci-

sion and quality of the decompilation. However this is out

of the scope of this paper. For the experimental evaluation

we have used the set of benchmarks in the JOlden suite [4].

Most programs make an extensive use of library methods.

Hence, non-modular decompilation cannot be assessed as

we run into memory problems when trying to decompile the

code of library calls. The experiments have been performed

on an Intel Core 2 Duo 1.86GHz with 2GB of RAM, run-

ning Linux. Figure 6 depicts four charts measuring different

aspects of the decompilation. We assess the differences be-

tween the modular and the modular+block-level (just block-

level for short) approaches; as well as how the size of the

programs affects the decompilation. We measure two as-

246

Figure 6. Evaluating modular decompilation vs. modular+block-level deompilation with the JOlden Suite

pects of the decompilation: the decompilation time (in mil-

liseconds) per instruction and the decompiled program size

(in bytes) per instruction. The decompilation time indicates

the efficiency of the process and the size of decompiled pro-

grams is directly related to the decompilation quality. Each

point [X,Y] in the charts corresponds to the decompilation

of a single method in the JOlden suite, where X represents

the number of instructions of the method and Y the mea-

sured data (time or decompiled program size). The tables in

the left-hand side show the data obtained (times in the top

chart and sizes in the bottom one) for both the modular and

the block-level decompilation. The variations in the block-

level decompilation cannot be appreciated when combined

with modular. Thus, we include in the tables on the right-

hand side the figures for the block-level decompilation in

isolation such that we adjust the scale on the Y-axis to the

domain of the data.

From the charts, we conclude: (1) Times per instruc-

tion are notably larger for the smallest methods, as can be

seen by looking at the initial curve in the charts. This is

because the overhead introduced for starting a new decom-

pilation is more noticeable when the time for decompilation

itself is small, while it becomes negligible for larger meth-

ods. The same happens for the size of the decompiled pro-

grams. (2) Block-level decompilation achieves important

speedups in general (for all methods with more than 40 in-

structions). Besides, it obtains significantly smaller decom-

piled programs. The speedups per package range from 3.36
in power to 31.4 in bisort for the decompilation times; and

from 2.5 times smaller in power to 9 times smaller in bisort

for the decompiled program sizes. Note that there is a clear

correspondence between both measures, since C points in-

troduce both inefficiency and size increase in decompila-

tion, as explained in Sect. 5. Moreover, modular decompi-

lation runs out of memory for some of the largest methods.

This is again related to code duplication (C and D points)

and (re-)evaluation (C points), which grow exponentially.

(3) The most important conclusion is that, while in modu-

lar decompilation both the times and the sizes per instruc-

tion greatly increase with the size of the benchmarks, this

does not happen in the block-level scheme. In block-level

decompilation, these figures are totally stable (mostly con-

stant) for all methods with more than 40 instructions. This

demonstrates that both the decompilation times and the de-

compiled program sizes are linear with the size of the input

bytecode program, thus demonstrating the scalability of the

block-level decompilation. One might wonder why there

are still small variations in the ratio. In our experience, the

following points also matter: 1) the complexity of the con-

trol flow of the methods, 2) the relative complexity of the

bytecode instructions used, e.g., instructions which operate

in the heap tend to produce more residual code, 3) the struc-

ture w.r.t. methods of the program, e.g., classes with meth-

ods of medium size tend to result in better decompilations

than those with few large methods or many small ones.

7 Conclusions and Related Work

We argue that declarative languages and the technique of

partial evaluation have nowadays a large application field

within the development of analysis, verification, and model

checking tools for modern programming languages. On one

hand, declarative languages provide a convenient intermedi-

ate representation which allows (1) representing all iterative

constructs (loops) as recursion, independently of whether

they originate from iterative loops (conditional and uncon-

ditional jumps) or recursive calls, and (2) all variables in the

local scope of the methods (formal parameters, local vari-

ables, fields, and stack values in low-level languages) can

be represented uniformly as explicit arguments of a declar-

247

ative program. On the other hand, the technique of par-

tial evaluation enables the automatic (de-)compilation of a

(complicated) modern program to a simple declarative rep-

resentation by just writing an interpreter for the modern lan-

guage in the corresponding declarative language and using

an existing partial evaluator. The resulting intermediate rep-

resentation greatly simplifies the development of the above

tools for modern languages and, more interestingly, existing

advanced tools developed for declarative programs (already

proven correct and effective) can be directly applied on it.

Previous work in interpretative (de-)compilation has

mainly focused on proving that the approach is feasible for

small interpreters and medium-sized programs. The focus

has been on demonstrating its effectiveness, i.e., that the so-

called interpretation layer can be removed from the com-

piled programs. To achieve effectiveness, offline [13], on-

line [3, 10, 19] and hybrid [14] PE techniques have been

assessed and novel control strategies have been proposed

and proved effective [9, 2]. Our work starts off from the

premise that interpretive decompilation is feasible and ef-

fective as proved by previous work and studies further is-

sues which have not been explored before. A main objec-

tive of our work is to investigate, and provide the neces-

sary techniques, to make interpretive decompilation scale in

practice. A further goal is to ensure, and provide the tech-

niques, that decompiled programs preserve the structure of

the original programs and that its quality is comparable to

that obtained by dedicated decompilers. We believe that the

techniques proposed in this paper, together with their exper-

imental evaluation, provide for the first time actual evidence

that the interpretive theory proposed by Futamura in the 70s

is indeed an appealing and feasible alternative to the devel-

opment of ad-hoc decompilers from modern languages to

intermediate representations.

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanar-

dini. Cost Analysis of Java Bytecode. In R. D. Nicola, edi-

tor, 16th European Symposium on Programming, ESOP’07,

volume 4421 of Lecture Notes in Computer Science, pages

157–172. Springer, March 2007.
[2] E. Albert, J. Gallagher, M. Gómez-Zamalloa, and G. Puebla.

Type-based Homeomorphic Embedding and its Applica-

tions to Online Partial Evaluation. In 17th International

Symposium on Logic-based Program Synthesis and Trans-

formation (LOPSTR’07), number 4915 in LNCS, pages 23–

42. Springer-Verlag, 2008.
[3] E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla.

Verification of Java Bytecode using Analysis and Transfor-

mation of Logic Programs. In 9th Int. Symposium on Prac-

tical Aspects of Declarative Languages, number 4354 in

LNCS, pages 124–139. Springer-Verlag, January 2007.
[4] J. S. Collection. http://www-ali.cs.umass.edu/

DaCapo/benchmarks.html.

[5] R. DeLine and K. Leino. BoogiePL: A typed procedural

language for checking object-oriented programs. Technical

Report MSR-TR-2005-70, Microsoft Research, 2005.
[6] Y. Futamura. Partial evaluation of computation process -

an approach to a compiler-compiler. Systems, Computers,

Controls, 2(5):45–50, 1971.
[7] J. Gallagher. Tutorial on specialisation of logic programs. In

Proc. of PEPM’93, pages 88–98. ACM Press, 1993.
[8] J. Gallagher and J. Peralta. Using regular approximations for

generalisation during partial evaluation. In Proc. of the SIG-

PLAN Workshop on Partial Evaluation and Semantics-based

Program Manipulation, pages 44–51. ACM Press, 2000.
[9] M. Gómez-Zamalloa, E. Albert, and G. Puebla. Improv-

ing the Decompilation of Java Bytecode to Prolog by Partial

Evaluation. In ETAPS Ws on Bytecode Semantics, Verifi-

cation, Analysis and Transformation (BYTECODE’07), vol-

ume 190 of ENTCS, pages 85–101, 2007.
[10] K. S. Henriksen and J. P. Gallagher. Abstract interpreta-

tion of pic programs through logic programming. In SCAM

’06: Proceedings of the Sixth IEEE International Workshop

on Source Code Analysis and Manipulation, pages 184–196.

IEEE Computer Society, 2006.
[11] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and

Automatic Program Generation. Prentice Hall, New York,

1993.
[12] J. Launchbury. A Natural Semantics for Lazy Evaluation. In

POPL, pages 144–154, 1993.
[13] M. Leuschel, S. Craig, M. Bruynooghe, and W. Vanhoof.

Specialising interpreters using offline partial deduction. In

Program Development in Computational Logic, volume

3049 of Lecture Notes in Computer Science, pages 340–375.

Springer, 2004.
[14] M. Leuschel, S. Craig, and D. Elphick. Supervising offline

partial evaluation of logic programs using online techniques.

In LOPSTR, volume 4407 of Lecture Notes in Computer Sci-

ence, pages 43–59. Springer, 2006.
[15] M. Leuschel, J. Jørgensen, W. Vanhoof, and

M. Bruynooghe. Offline specialisation in prolog us-

ing a hand-written compiler generator. TPLP, 4(1–2):139 –

191, 2004.
[16] J. Lloyd. Foundations of Logic Programming. Springer, 2nd

Ext. Ed., 1987.
[17] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in

logic programming. The Journal of Logic Programming,

11:217–242, 1991.
[18] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A

Flexible (C)LP-Based Approach to the Analysis of Object-

Oriented Programs. In 17th International Symposium on

Logic-based Program Synthesis and Transformation (LOP-

STR’07), August 2007.
[19] J. Peralta, J. Gallagher, and H. Sağlam. Analysis of impera-

tive programs through analysis of constraint logic programs.

In Proc. of SAS’98, volume 1503 of LNCS, pages 246–261,

1998.
[20] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,

E. Gagnon, and P. Co. Soot - a Java optimization frame-

work. In Proc. of Conference of the Centre for Advanced

Studies on Collaborative Research (CASCON), pages 125–

135, 1999.

248

Decompilation of Java bytecode to Prolog by partial evaluation

Miguel Gómez-Zamalloa a,*, Elvira Albert a, Germán Puebla b

aDSIC, Complutense University of Madrid, E-28040 Madrid, Spain
bCLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

a r t i c l e i n f o

Article history:

Available online 5 May 2009

Keywords:

Program transformation

Partial evaluation

Decompilation

Interpreters

Java bytecode

Logic programming

a b s t r a c t

Reasoning about Java bytecode (JBC) is complicated due to its unstructured control-flow, the use of three-

address code combined with the use of an operand stack, etc. Therefore, many static analyzers and model

checkers for JBC first convert the code into a higher-level representation. In contrast to traditional decom-

pilation, such representation is often not Java source, but rather some intermediate language which is a

good input for the subsequent phases of the tool. Interpretive decompilation consists in partially evaluat-

ing an interpreter for the compiled language (in this case JBC) written in a high-level language with

respect to the code to be decompiled. There have been proofs-of-concept that interpretive decompilation

is feasible, but there remain important open issues when it comes to decompile a real language such as

JBC. This paper presents, to the best of our knowledge, the first modular scheme to enable interpretive

decompilation of a realistic programming language to a high-level representation, namely of JBC to Pro-

log. We introduce two notions of optimality which together require that decompilation does not generate

code more than once for each program point. We demonstrate the impact of our modular approach and

optimality issues on a series of realistic benchmarks. Decompilation times and decompiled program sizes

are linear with the size of the input bytecode program. This demonstrates empirically the scalability of

modular decompilation of JBC by partial evaluation.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Decompilation of Java bytecode (JBC for short) to an intermedi-

ate representation has become a usual practice nowadays within

the development of analyzers, verifiers, model checkers, etc. For in-

stance, in the context of mobile code, as the source code is not

available, decompilation facilitates the reuse of the existing analy-

sis and model checking tools. In general, high-level intermediate

representations allow abstracting away the particular language

features and developing the tools on simpler representations. In

particular, JBC is decompiled to a rule-based representation in

[2], to clause-based programs in [35], to a three-address code rep-

resentation in Soot [43] and to the typed procedural language Boo-

giePL in [13]. Also, the analysis of Java programs is formalized and

performed using Datalog in [44] and in [20] PIC assembly is trans-

formed into logic programs. This shows that the rule-based repre-

sentations used in declarative programming in general – and in

Prolog in particular – provide a convenient formalism to define

such intermediate representations. For instance, as it can be seen

in [2,35,20], the operand stack used in a bytecode language can

be represented by means of explicit logic variables and its unstruc-

tured control flow can be transformed into recursion.

All above cited approaches (except [20]) develop ad hoc, or

dedicated, decompilers to carry out the particular decompilations.

An appealing alternative to the development of dedicated decom-

pilers is the so-called interpretive decompilation by partial

evaluation (PE for short) [23]. PE is an automatic program trans-

formation technique which specializes programs w.r.t. part of

their input data. Interpretive compilation was proposed in Futam-

ura’s seminal work [14], whereby compilation of a program P

written in a (source) programming language LS into another (tar-

get) programming language LT is achieved by specializing an

interpreter for LS written in LT w.r.t. P. The advantages of interpre-

tive (de-)compilation w.r.t. dedicated (de-)compilers are well

known and discussed in the PE literature (see, e.g., [5]). Very

briefly, they include:

1. Flexibility: it is easier to modify the interpreter in order to tune

the decompilation (e.g., observe new properties of interest). As

an interesting example, in [5], a Java bytecode interpreter is

instrumented with an additional argument which computes

the trace of bytecode instructions in order to collect the compu-

tation history. A program decompiled by using this interpreter

contains an additional argument with the execution trace at

0950-5849/$ - see front matter � 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2009.04.010

* Corresponding author.

E-mail addresses: mzamalloa@fdi.ucm.es, mzamalloa@clip.dia.fi.upm.es (M.

Gómez-Zamalloa), elvira@fdi.ucm.es (E. Albert), german@fi.upm.es (G. Puebla).

Information and Software Technology 51 (2009) 1409–1427

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

mailto:mzamalloa@fdi.ucm.es
mailto:mzamalloa@clip.dia.fi.upm.es
mailto:elvira@fdi.ucm.es
mailto:german@fi.upm.es
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

the level of Java bytecode. This trace will allow to observe a

good number of interesting properties about the program, e.g.,

run-time error freeness can be ensured when the trace

does not contain instructions which issue any kind of run-time

error.

2. Easier to trust: it is more difficult to prove that ad hoc decom-

pilers preserve the program semantics. For example, the for-

mal specification chosen for defining our bytecode

interpreter is Bicolano [40], which is written with the Coq

Proof Assistant [7]. This allows checking that the specification

is consistent and also proving properties on the behavior of

some programs.

3. Easier to maintain: new changes in the language semantics can

be easily reflected in the interpreter. This will become apparent

later when we see that defining a bytecode interpreter in Prolog

is a rather easy task and, hence, also maintaining it.

The challenge now is in defining a practical, scalable scheme to

interpretive decompilation which achieves quality decompiled

programs and, provided this is feasible, we will be able to take

advantage of the above-mentioned features.

1.1. Summary of contributions

There have been several proofs-of-concept of interpretive

(de-)compilation (e.g., [5,20,29]), but there remain interesting

open issues when it comes to assess its power and/or limitations

to decompile a real language:

(a) does the approach scale?

(b) do decompiled programs preserve the structure of the original

ones?

(c) is the ‘‘quality” of decompiled programs comparable to that

obtained by dedicated decompilers?

This article answers these questions positively by proposing a

modular decompilation scheme which can be steered to control

the structure of decompiled code and ensure quality decompila-

tions which preserve the original program’s structure. Our main

contributions are summarized as follows:

1. We present the problems of non-modular decompilation and

identify the components needed to enable a modular scheme.

This includes how to write an interpreter and how to control

an online partial evaluator in order to preserve the structure

of the original program w.r.t. method invocations.

2. We present a modular decompilation scheme which is correct

and complete for the proposed big-step interpreter. The modu-

lar-optimality of the scheme allows addressing issue (a) by

avoiding decompiling the same method more than once, and

(b) by ensuring that the structure of the original program can

be preserved.

3. We introduce an interpretive decompilation scheme which

answers issue (c) by producing decompiled programs whose

quality is similar to that of dedicated decompilers. This requires

a block-level decompilation scheme which avoids code duplica-

tion and code re-evaluation.

4. We report on experimental results on an set of realistic JBC pro-

grams which demonstrate the scalability and the efficiency of

our proposal.

For the sake of concreteness, our interpretive decompilation

scheme is formalized in the context of PE of logic programs but

the ideas we propose for enabling the practicality of the approach

are also of interest for the interpretive (de-)compilation of any pair

of source and target languages.

1.2. Outline of the article

The article is organized as follows. The next section recalls some

preliminary definitions and presents the background on PE of logic

programs. We recall the correctness issues that a partial evaluator

must guarantee. We also sketch the differences between online

and offline partial evaluators. Section 3 briefly describes the inter-

pretive approach to (de-)compilation. We present the first Futam-

ura projection in generic terms and then instantiate it to the

particular decompilation we want to carry out: decompile JBC to

Prolog. Section 4 presents the subset of JBC we consider to define

our decompilation scheme. It also describes non-modular decom-

pilation (originally presented in [5]) and explains its limitations

for the decompilation of real applications. These limitations are

not tied to the decompilation of bytecode. They also occur in any

application of interpretive decompilation.

Our first contribution is a modular decompilation scheme

which is introduced in Section 5. We start by presenting a big-step

interpreter and explain why it is necessary to enable a modular

decompilation scheme. Then, we define the annotations that must

be generated to obtain such modular decompilation. An important

property of the resulting method is that it is ensured that each

method is decompiled once.

Our second important contribution is the refinement of the

modular decompilation scheme in Section 6 to ensure the scalabil-

ity of our approach. This requires, among other things, that the

decompiler does not emit code more than once for each bytecode

instruction. This leads to what we call block-optimality in

decompilation.

In Section 7 we extend the subset of JBC considered in previous

sections in order to support a realistic language with object-ori-

ented features. We show how our scheme can be easily adapted

to handle the new features: the decompilation of the heap and

associated instructions, the representation of classes by means of

Prolog modules and virtual invocations by module-qualified calls.

Our experimental results are reported in Section 8, where both

the scalability and efficiency of our approach are assessed using

the JOlden suite of benchmarks [22]. Finally, Section 9 reviews re-

lated work and Section 10 concludes.

2. Background on partial evaluation of logic programs

This section presents some preliminary notions and the back-

ground on PE of logic programs (often called partial deduction) re-

quired to formalize our decompilation scheme. We assume some

basic knowledge on the terminology of logic programming and re-

fer to [34] for details.

2.1. Logic programming

Very briefly, an atom (or call) A is a syntactic construction of the

form pðt1; . . . ; tnÞ, with nP 0, where p=n is a predicate signature

and t1; . . . ; tn are terms. A clause is of the form H : �B1; . . . ;Bm, with

mP 0, where its head H is an atom and its body B1; . . . ;Bm is a con-

junction ofm atoms. Note that in this context commas denote con-

junctions. Whenm ¼ 0 the clause is called a fact and is written ‘‘H”.

A program is a finite set of clauses. A goal is a conjunction of atoms.

We denote by fX1#t1; . . . ;Xn#tng the substitution rwith rðXiÞ ¼ ti
for i ¼ 1; . . . ;n (with Xi – Xj if i – j), and rðXÞ ¼ X for all other vari-

ables X. Given an atom A, hðAÞ denotes the application of substitu-

tion h to A. Given two substitutions h1 and h2, we denote by h1h2

their composition. The identity substitution is denoted by id. An

atom A0 is an instance of A if there is a substitution rwith A0 ¼ rðAÞ.
The operational semantics of logic programs is based on

derivations.

1410 M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427

Definition 1 (derivation step). Let G be A1; . . . ;AR; . . . ;Ak and

C ¼ H : �B1; . . . ; Bm be a renamed apart clause in P (i.e., it has no

common variables with G). Let AR be the selected atom for its

evaluation. Then G0 is derived from G if the following conditions

hold:

h ¼ mguðAR;HÞ

G0 is the goal hðA1; . . . ;AR�1; B1; . . . ;Bm;ARþ1; . . . ;AkÞ

As customary, given a program P and a goal G, a SLD derivation

for P [fGg consists of a possibly infinite sequence G ¼ G0;G1;G2; . . .

of goals, a sequence C1;C2; . . . of properly renamed apart clauses of

P (i.e. Ci has no common variables with any Gj nor Cj with j < i), and

a sequence of computed answer substitutions h1; h2; . . . (or most-gen-

eral unifiers, mgus for short) such that each Giþ1 is derived from Gi

and Ciþ1 using hiþ1. Finally, we say that the SLD derivation is com-

posed of the subsequent goals G0;G1;G2;

A derivation step can be non-deterministic when AR unifies with

several clauses in P, giving rise to several possible SLD derivations

for a given goal. Such SLD derivations can be organized in SLD trees.

A finite derivation G ¼ G0;G1;G2; . . . ;Gn is called successful if Gn

is empty. In that case h ¼ h1h2 . . . hn is called the computed answer

for goal G. Such a derivation is called failing if it is not possible to

perform a derivation step with Gn.

Executing a program P for a call A consists in building a SLD tree

for P [fAg and then extracting the computed answers from every

non-failing branch of the tree.

2.2. Partial deduction

Partial evaluation in logic programming (see, e.g. [16]) builds

upon the SLD trees mentioned above. We now introduce a generic

function PE, which is parametric w.r.t. the unfolding rule, unfold, and

the abstraction operator, abstract, and captures the essence of most

algorithms for PE of logic programs:

1: function PE P;A; S

2: S0 :¼ S; i :¼ 0;

3: repeat

4: Lpe :¼ unfoldðSi; P;AÞ;

5: Siþ1 :¼ abstractðSi; L
pe;AÞ;

6: i :¼ iþ 1;

7: Until Si ¼ Si�1 % (modulo renaming)

8: return codegenðLpe; unfoldÞ;

Function PE differs from standard ones in the use of the set of

annotationsA, whose role is described below. PE starts from a pro-

gram P, a (possibly empty) set of annotationsA and an initial set of

calls S. At each iteration, the so-called local control is performed by

the unfolding rule unfold (Line 4), which takes the current set of

atoms Si, the program and the annotations and constructs a partial

SLD tree for each call in Si. Trees are partial in the sense that, in or-

der to guarantee termination of the unfolding process, it must be

possible to choose not to further unfold a goal, and rather allow

leaves in the tree with a non-empty, possibly non-failing, goal

(these goals appear in the next examples within a frame). The

atoms corresponding to such goals are returned by unfold and

stored in Lpe (Line 4). Then, in the global control, which is performed

by the abstraction operator abstract, when some calls in the leaves

of the trees are not properly covered, the operator abstract adds

them to the new set of atoms to be partially evaluated in a proper

‘‘generalized” form such that termination is ensured (i.e., the con-

dition Si ¼ Si�1 is reached).

Let us consider the PE of the following program to reverse a list

using an accumulator (predicate rev/3) w.r.t. the initial set

S ¼ frevð½1;2jXs�; ½�;ZsÞg and A ¼ ;:

revð½�;L;LÞ:

revð½XjXs�;Ys;ZsÞ : �revðXs; ½XjYs�;ZsÞ:

Prolog lists use the notation ½XjL� to denote the list with X as

head and L as continuation and ½� to denote the empty list. The par-

ticular unfold operator determines which atom to select from each

goal and when to stop unfolding. Let us consider an unfolding rule

based on the homeomorphic embedding [28] relation, a well-quasi

order used in state-of-the-art specialization tools. Intuitively, the

homeomorphic embedding is a structural ordering under which

an expression e1 is greater than (i.e., it embeds), another expression

e2 if e2 can be obtained from e1 by deleting some parts, e.g.,

sðsðUþ WÞ�ðUþsðVÞÞÞ embeds sðU� ðUþ VÞÞ.

Such unfolding rule always selects the leftmost atom and stops

the derivation when the selected call embeds a previous call and

thus threatens termination. We start by constructing the following

SLD tree:

It can be observed that the call in the frame revðXs0;

½X0;2;1�;ZsÞ embeds the previous call revðXs; ½2;1�;ZsÞ, hence

the derivation is stopped. Such call is said to be transferred to

the global control in the sense that it is returned by unfold as an ele-

ment of Lpe and hence it is passed away as an argument to abstract.

The partial evaluator may have to build several SLD trees to en-

sure that all calls left in the leaves (Lpe in Line 4) are ‘‘covered” by

the root of some tree. This is known as the closedness condition of

PE [33]. For example, after having built the first SLD tree for the call

revð½1;2jXs�; ½�;ZsÞ, the call revðXs0; ½X0;2;1�;ZsÞ is not covered by

revð½1;2jXs�; ½�;ZsÞ because it is not an instance of it. At this point

the abstract operator adds the framed call to the new set of atoms

to be partially evaluated. At the next iteration, the following SLD

tree is built for such call:

Thus, basically, the algorithm iteratively (Lines 3–7) constructs

partial SLD trees until all their leaves are covered by the root

nodes. An essential point of the operator abstract is that it has

to perform ‘‘generalizations” on the calls that have to be partially

evaluated in order to avoid computing partial SLD trees for an

infinite number of calls. The homeomorphic embedding can be

again used here to ensure termination and detect which calls

have to be generalized. A classical way of performing generaliza-

tions is to use the most-specific generalizer operator (msg for short)

in the following way. Suppose that a call A is to be added to the

set Sk, and that there is a call B in Sk s.t. A embeds B, then the msg

of A and B is added to the set Skþ1 (and usually B is removed). In

the example, the framed call revðXs; ½X0;X00;2;1�;ZsÞ embeds

revðXs; ½X;2;1�;ZsÞ (also framed), therefore both are generalized

using the msg resulting in revðXs; ½A;B;CjD�;ZsÞ. The generalized

call is added to the set Siþ1 and revðXs; ½X;2;1�;ZsÞ removed. At

the next iteration, the following SLD tree is built for the general-

ized atom:

M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427 1411

Without such generalization, the algorithm would keep on

adding calls revðXs; ½X;X0;X00;2;1�;ZsÞ, revðXs; ½X;X0;X00;X000;2;1�;

ZsÞ,. . . infinitely.

A partial evaluation of P w.r.t. S is then systematically extracted

from the resulting set of calls Lpe in the final phase, codegen in Line

8. The notion of resultant is used to generate a program rule asso-

ciated to each root-to-leaf derivation of the SLD trees for the final

set of atoms Lpe. Given a SLD derivation of P [fAg with A 2 Lpe end-

ing in B and h being the composition of the mgus in the derivation

steps, the rule hðAÞ : �B is called the resultant of the derivation.

A PE is defined as the set of resultants (clauses) associated to the

derivations of the constructed partial SLD trees for all P [Lpe. The

resulting program is often referred to as the specialized program

or residual program. In the example, the final set Lpe contains the

calls revð½1;2jXs�; ½�;ZsÞ and revðXs; ½A;B;CjD�;ZsÞ from which

the following PE (residual program) is generated:

revð½1;2�; ½�; ½2;1�Þ:

revð½1;2;AjB�; ½�;CÞ : �rev 1ðB; ½A;2;1�;CÞ:

rev 1ð½�; ½A;B;CjD�; ½A;B;CjD�Þ:

rev 1ð½AjB�; ½C;D;EjF�;GÞ : �rev 1ðB; ½A;C;D;EjF�;GÞ:

The first two resultants are obtained from each derivation

(branch) of the first tree above and the last two ones from the last

tree above.

It can be also observed that a post-processing of renaming has

been performed by codegen as explained below. Such a post-pro-

cessing use to perform in addition some form of argument filtering

[32]. This is because automatically generated programs, and in par-

ticular those generated by PE, very often contain redundant argu-

ments which do not affect the correctness of the program.

Throughout the rest of the paper we will consider a codegen func-

tion which is able to remove arguments which are actually not

used in any computation but rather just passed around.

2.3. Correctness of partial deduction

Intuitively, the notions of, respectively, completeness and cor-

rectness of PE [16] ensure that the specialized program produces

no less, respectively, no more answers than the original program.

A sufficient condition to ensure completeness is that the special-

ized program is closed by the resulting set of atoms Lpe. As infor-

mally explained in Section 2.2, the closedness condition ensures

that all calls which may arise during the computation of P [S are

instances of Lpe and hence there is a matching resultant for them

(solutions are not lost).

Definition 2 (closedness). Let T and S be two sets of atoms. Then, S

is T-closed iff each atom in S is an instance of an atom in T. Given a

program P and a set of atoms T, we say that P [T is S-closed if the

set of atoms which occur in the computation of P [T are S-closed.

The abstraction operator ensures that the closedness condition

is met by means of a proper generalization of calls. For instance, as

the set of atoms frevðXs; ½X0;X00;2;1�;ZsÞg is not closed w.r.t. this

set frevðXs; ½X;2;1�;ZsÞg, the abstraction operator has generalized

both terms to the term revðXs; ½A;B;CjD�;ZsÞ which covers both

terms.

Let us see an example where the closedness condition does not

hold and hence we lose completeness. Consider a program defined

by these two clauses:

pðXÞ : �qðXÞ:

qðXÞ:

The following partially evaluated program has been obtained by

specializing the above-mentioned program w.r.t. the set of atoms

S ¼ fqðaÞg:

pðXÞ : �qðXÞ:

qðaÞ:

The closedness condition w.r.t. the set S does not hold because

the atom in the left-hand side of the first rule is not an instance of

any atom in S. It can be seen that the partially evaluated program is

not complete since the goal pðbÞ succeeds in the original program

while it fails in the residual one.

Correctness is achieved when the resulting set Lpe is indepen-

dent, i.e., there are no two calls in Lpe which unify.

Definition 3 (independence). Let S be a set of atoms. Then, S is

independent if no pair of atoms in S have a common instance.

Let us see an example where the independence condition does

not hold and hence we lose correctness. Consider again the

above-mentioned program and the set of atoms S ¼ fqðXÞ;qðaÞg

which is not independent. The following program is a partial eval-

uation w.r.t. the set S:

pðXÞ : �qðXÞ:

qðXÞ:

qðaÞ:

It can be seen that the residual program produces more answers

than the original one. In particular, for the goal qðYÞ it returns two

answers fY#Xg and fY#ag while the original program generates

only the first one.

Independence can be recovered by a post-processing of renam-

ing [16]. In the previous program, the two atoms in S could be re-

named as q1ðXÞ and q2ðaÞ and the residual program would contain

one clause defining q1 and another one for q2. In addition, renam-

ing has benefits for performance because it reduces the number of

rules per predicate. Thus, though the calls in Lpe for our running

example are independent, we rename the second call for predicate

rev to rev 1 .

Theorem 1 (correctness). Let P be a program, Lpe be a finite,

independent set of atoms and P0 be a partial evaluation of Lpe in P.

For every goal G such that P0 [fGg is Lpe-closed, the following

conditions hold:

� Soundness: P0 [fGg has a successful derivation with an answer h

only if P [fGg does.

� Completeness: P [fGg has a successful derivation with an answer h

only if P0 [fGg does.

The above-mentioned theorem is proven in early work on PE of

logic programs [33,25].

2.4. Online vs. offline partial deduction

It is well known that both the quality of the specialized pro-

grams and the time required for the PE process greatly vary with

the control strategies used. Traditionally, two approaches to PE

have been considered, online and offline PE. In online PE, all control

decisions are taken on the fly during the specialization phase by

keeping track of the specialization history. This is the case of the

control rules used in the example of Section 2.2. In the offline

approach, all control decisions are taken before the proper special-

ization phase. These control decisions are based on abstract

1412 M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427

descriptions of the data instead of the actual data. The control

strategy is usually represented as program annotations which are

the sole decision criteria for control of the partial evaluator. For in-

stance, in the local control, an annotation can explicitly indicate

that an atom should not be unfolded. In the global control, annota-

tions typically specify for each call which arguments have to be

generalized away (i.e. replaced by variables). Such annotations

are in some partial evaluators automatically generated by a bind-

ing-time analysis and in other partial evaluators they are manually

provided by the user, either in part or in full.

Under this classification, the PE algorithm we propose can be

considered a hybrid approach since the A annotations provide

information to the control operators, as in offline PE, and the algo-

rithm includes control rules based on the actual specialization his-

tory, as in online PE. The advantages of the offline approach are

that, once all control annotations are available, PE is quite simple

and efficient. On the other hand, online PE, though less efficient,

has a strictly more powerful control strategy since control deci-

sions are based on actual data instead of abstract descriptions of

data. Therefore, though all offline PEs can be replicated using on-

line techniques, many online PEs cannot be reproduced using off-

line techniques.

In this work we are interested in investigating how far we can

go with the more powerful but less efficient online PE approach.

The motivation for this is that this way we may obtain decompila-

tions of higher quality than those achievable using offline PE. Thus,

our challenges are both in terms of quality of the decompiled pro-

grams and in terms of efficiency of the decompilation process. As

we will see later in the article many of the lessons learned in this

work are of interest both to the online and offline approaches to

the PE of interpreters.

3. The interpretive approach to compilation

The development of PE, program specialization and related

techniques [14,23,15] has led to an alternative approach to compi-

lation (known as the first Futamura projection) based on specializ-

ing an interpreter with respect to a fixed object program. Let us

explain intuitively the interpretive approach. We denote by mix

a generic partial evaluator, by p a program and by in1 (respec-

tively, in2) the static (respectively, dynamic) input data. Given a

program P, we write PL to denote that P is written in language L.

When the program is a meta-program, we write as a super-index

the language the meta-program manipulates. For instance, mix L
S

denotes a partial evaluator, written in S, which manipulates pro-

grams written in L. We omit the languages (both sub- and super-

indexes) when they are not relevant. Finally, we use the notation

½½P��½d� to denote the execution of P with input data d. A partial

evaluator can be defined as a program which behaves as follows:

p in1 ¼ ½½mix��½p;in1�

output ¼ ½½p in1��½in2� ¼ ½½p��½in1;in2�

Essentially, the execution of mix for p and in1 returns a spe-

cialized program p in1 whose execution for the dynamic data

in2 must be the same as executing the original program p w.r.t.

all dynamic plus static data ½in1;in2�. This implies the following:

½½p��½in1;in2� ¼ ½½½½mix��½p;in1���½in2� ð1Þ

This means that the result of PE is a program which is semanti-

cally equivalent w.r.t. the original for the static data.

We now define by means of equations the behavior of an inter-

preter int S
L
, which interprets programs written in S, and is writ-

ten in (a possibly different) language L:

output ¼ ½½sourceS��½d� ¼ ½½intS

L
��½sourceS;d� ð2Þ

This captures the idea that executing a source program source

for some input data d in the interpreter gives the same output as

the execution of the program yields. Similarly, we can define a

compiler compS!T
L

from S to T written in (a possibly different) lan-

guage L as follows:

½½sourceS��½d� ¼ ½½½½compS!T

L
��½sourceS���½d� ð3Þ

½½compS!T

L
��½sourceS� ¼ targetT

Consider now a partial evaluator mix T
L
(written in L) for pro-

grams written in T, and an interpreter int S
T
(written in T) for pro-

grams written in S. Now, the compilation of a program sourceS to

a program target T by using a partial evaluator mix T
L
can be per-

formed as follows:

targetT ¼ ½½mixT

L
��½intS

T
;sourceS�

which is justified by combining Eqs. (1) and (2) in this way:

½½pS��d ¼ ½½intS

T
��½p;d� ¼ ½½½½mixT

L
��½intS

T
;p���d

Now, by comparing the above-mentioned equation with Eq. (3),

it can be observed the essence of compilation by means of PE of

interpreters: we obtain the compilation of the program p written

in S into another language T. The application of this interpretative

approach to compilation within our framework consists in special-

izing a bytecode (BC) interpreter int BC
LP

written in logic program-

ming LP where the static data are the actual bytecode program pBC

to be decompiled:

½½pBC��d ¼ ½½intBC

LP
��½pBC;d� ¼ ½½½½mixLP��½intBC

LP
;pBC���d ¼ ½½pLP��d

It can be observed that the result is a decompiled program pLP

in LPwhich, given the actual input data d produces the same result

as the original program pBC.

4. Non-modular interpretive decompilation

This section describes the state of the art in interpretive decom-

pilation of low-level languages to Prolog, including recent work in

[20,4,18,5]. We do so by formulating non-modular decompilation

in a generic way and by identifying its limitations.

4.1. The bytecode language

The bytecode language we consider, denoted as Lbc , is a simple

imperative bytecode language in the spirit of Java bytecode. To

simplify the presentation, it does not include advanced features

of Java bytecode such as exceptions, arrays, object-oriented fea-

tures, and access control (e.g. public, protected, and private) and

it manipulates only integer numbers. The extensions to consider

such advanced features will be discussed later in Sections 7 and

8. As in Java bytecode, Lbc uses an operand stack to perform inter-

mediate computations and an array of variables to store the formal

parameters of the method and the actual method variables. Also,

the global heap is not yet considered. Support for object-oriented

features will be provided later. Finally, Lbc , has an unstructured

control flow, i.e., there are no explicit block markers, hence it in-

cludes explicit conditional and unconditional goto instructions.

A bytecode program Pbc consists of a set of methods which are

the basic (de-)compilation units of Lbc. The code of a method m,

denoted codeðmÞ, consists of a sequence of indexed bytecode

instructions hpc0 : bc0; . . . ; pcnm : bcnm i with pc0; . . . ; pcnm being con-

secutive natural numbers. The Lbc instruction set is:

InstLbc
::¼ pushðxÞjloadðvÞjstoreðvÞjaddjsubjmuljdivjremj

negjif} ðpcÞjif0 } ðpcÞjgotoðpcÞjreturnjinvokeðmnÞ

where } is a comparison operator (eq, le, gt, etc.), v a local variable, x

an integer, pc an instruction index and mn a method name. Instruc-

M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427 1413

tions push, load and store transfer values or constants from the

local variables to the stack (and vice versa); add, sub, mul, div,

rem and neg perform the usual arithmetic operations, rem being

the division remainder and neg being the arithmetic negation; if

and if0 are conditional branching instructions (with the special

case of comparisons with 0); goto is an unconditional branching;

return marks the end of methods and invoke invokes a method.

For simplicity, all methods are supposed to return an integer value.

A method m is uniquely determined by its name. We write callsðmÞ

to denote the set of all method names invoked within the code ofm.

We use defsðPbcÞ to denote the set of internal method names defined

in Pbc . The remaining methods are external. We say that Pbc is self-

contained if 8m 2 Pbc; callsðmÞ# defsðPbcÞ, i.e., Pbc does not include

calls to external methods.

Though very simple, Lbc will be enough for our purposes when

presenting the main ideas of the different decompilation schemes.

Nevertheless it will be gradually extended as needed when we

present more advanced features until the point of covering the full

Java bytecode language in the experimental evaluation in Section

8.

4.2. Non-modular, online decompilation

We rely on the interpretive approach to compilation by PE de-

scribed in Section 3. As it has been already explained, the decom-

pilation of a Lbc-bytecode program Pbc to LP (for short LP-

decompilation) might be obtained by specializing (with an LP par-

tial evaluator) a Lbc-interpreter written in LP w.r.t. Pbc . In Fig. 1 we

show a fragment of a (small-step) Lbc interpreter implemented in

Prolog, named IntLbc
. We assume that the code for every method in

the bytecode program Pbc is represented as a set of facts

bytecode/3 such that, for every pair pci : bci in the code for meth-

od m, we have a fact bytecode(m,pci,bci). The state carried

around by the interpreter is of the form st(Fr,FrStack) where

Fr represents the current frame (environment) and FrStack, the

stack of frames (call stack) implemented as a list. Frames are of

the form fr(M,PC,OStack,LocalV), where M represents the cur-

rent method, PC, the program counter; OStack, the operand stack

and LocalV, the list of local variables. Predicate main/3, given the

method to be interpreted Method and a concrete input (method

arguments) InArgs, first builds the initial state by means of pred-

icate build_s0/3 and then calls predicate execute/2. In turn,

execute/2 calls predicate step/3, which produces S0, the state

after executing the bytecode, and then calls predicate execute/

2 recursively with S0 until we reach a return instruction with

the empty stack. For brevity, we only show the definition of

step/3 for a selected set of instructions and omit the code of some

auxiliary predicates. Namely build_s0/3, which was explained

below, next/3, which produces the next program counter given

the current one, nth/3 and replace_nth/4, which, respectively,

get and set the ith element of a list, and split_OS/4, which splits

the current operand stack between the parameters list to be used

in the called method and the rest. By using this interpreter, we de-

fine a non-modular decompilation scheme in terms of the generic

function PE as follows:

Definition 4 (DECOMPLbc
). Given a self-contained Lbc-bytecode

program Pbc , the (non-modular) LP-decompilation of Pbc can be

obtained as:

DECOMPLbc
ðPbcÞ ¼ PEðIntLbc

[Pbc; ;; SÞ

where S is the set of calls fmainðm; ; Þjm 2 defsðPbcÞg.

Observe in the above-mentioned definition that the set of anno-

tations is empty. Following the PE terminology, the above-men-

tioned definition corresponds to online PE as we have explained

in Section 2.4.

Recent work in interpretive, online decompilation has focused

on ensuring that the layer of interpretation is completely removed

from decompiled programs, i.e., effective decompilations are ob-

tained. This requires the use of the following advanced control

techniques. Type-based homeomorphic embedding (ET) [4] has

been used at both the local and global control to decide when to

stop derivations and when to generalize calls so that effectiveness

of the decompilation can be obtained in the presence of integers

without compromising termination. The unfolding operator must

also be able to accurately handle built-in predicates and to safely

perform non-leftmost unfolding steps as in [6]. The operator

abstract must incorporate a polyvariance control mechanism [18]

which avoids performing useless specializations that can introduce

superfluous decompiled code and thus degrade the decompilation

effectiveness. Our starting point is thus a state-of-the-art online

partial evaluator based on an unfolding operator unfoldET
and

abstraction operator abstractET
which incorporate such advanced

techniques and is able to remove the layer of interpretation. Such

advanced partial evaluator is used in the following for both run-

ning examples and experiments.

Fig. 1. Fragment of (small-step) Lbc interpreter.

1414 M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427

4.3. Limitations

This section illustrates by means of the bytecode example in

Fig. 2 that non-modular decompilation does not ensure a satisfac-

tory handling of issues (a) and (b) in Section 1. In the examples, we

often depict the Java source code for clarity, but the decompiler

works directly on the bytecode. The program consists of a set of

methods that carry out arithmetic operations. Method gcd com-

putes the greatest-common divisor, abs the absolute value, lcm

the least-common multiple and fact the factorial recursively.

The LP-decompilationobtained by applying Definition 4 is shown

in Fig. 3. The partial evaluator performs a post-processing of

renaming and argument filtering [16] for all calls except for calls

to the main predicate (as they represent calls to methods whose

name we want to preserve). We identify below four limitations,

which we identify as (L1). . .(L4), of non-modular decompilation.

It is important to note that such limitations, and the way to avoid

them which we propose in Section 5 below, are also relevant to the

case of offline PE.

(L1) Calls to methods are inlined within their calling contexts

and, as a consequence, the structure of the original code is

lost. For example, method invocations from lcm to gcd

(index 2) and from gcd to abs (index 12) do not appear in

the decompiled code. As a result, the last two rules in the

decompilation for lcm, execute 1 , correspond to the

while loop of gcd. This happens because calls to methods

are dealt with in a small-step fashion within the interpreter,

i.e., the code of invoked methods is unfolded as if it was

inlined inside the ‘‘caller” method.

(L2) As a consequence, decompilation becomes very inefficient.

For example, if n calls to the same method appear within a

code, such method will be decompiled n times. Even worse,

if there is a method invocation inside a loop, its code will be

evaluated twice in the best case, as we have to perform the

corresponding generalizations in the global control before

reaching a fixpoint, as in the example of Section 2.2. This is

worse in the case of nested loops.

(L3) The non-modular approach does not work incrementally, in

the sense that it does not support separate decompilation of

methods but rather has to (re)decompile all method calls.

Thus, decompiling a real language becomes unfeasible, as

one needs to consider system libraries, whose code might

not be available. Limitation L2 together with L3 answers

issue (a) negatively.

(L4) The decompiled code contains basically the whole inter-

preter when there are recursive methods. This is why the

decompiled program in Fig. 3 does not contain the code

corresponding to the recursive fact method. The problem

with recursion is as follows. Assume we want to decompile

method m1 whose code is hpc0 : bc0; . . . ; pcj :

invokeðm1Þ; . . . ; pcn : returni. There is an initial decompila-

tion for Ak ¼ executeðstðfrðm1;pcj;os;lvÞ; ½�Þ;SfÞ in

which the call stack is empty. During its decompilation, a

call of the form Al ¼ executeðstðfrðm1;pcj;os
0;lv0Þ;

½frðm1;pcj;os;lvÞ�Þ;SfÞ with the call stack containing the

previous frame appears when we arrive to the recursive call.

At this point, the derivation must be stopped as AkETAl. In

order to ensure termination, global control generalizes the

above-mentioned calls into executeðstðfrðm1;pcj; ; Þ; Þ;

Sf Þ, where denotes a fresh variable and thus the call stack

has become unknown. As a consequence, after evaluating

the return statement, the continuation obtained from the

call stack is unknown and we produce the call

executeðstðfrð ; ; ; Þ; Þ;SfÞ to be decompiled. Here, the

fact that the method and the program counter are unknown

Fig. 2. Source code and Lbc-bytecode for working example.

M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427 1415

prevents us from any chance of removing the interpretation

layer, i.e., the decompiled code will potentially contain the

whole interpreter. This indeed happens during the decompi-

lation of fact. Partial solutions to the recursion problem

exist and will be discussed later. Limitations L1 and L4

answer issue (b) negatively.

5. A modular decompilation scheme

By modular decompilation, we refer to a decompilation tech-

nique whose decompilation unit is the method, i.e., we decompile

a method at a time. We show that this approach overcomes the

four limitations of non-modular decompilation described in Sec-

tion 4.3 and answers issues (a) and (b) positively. In essence, we

need to: (i) Give a compositional treatment to method invocations.

We show that this can be achieved by considering a big-step inter-

preter. (ii) Provide a mechanism to residualize calls in the decom-

piled program (i.e. do not unfold them and add them without

modifications to the residual code). We automatically generate

program annotations for this purpose. (iii) Study the conditions

which ensure that separate decompilation of methods is sound.

5.1. Big-step semantics interpreter to enable modularity

Traditionally, two different approaches have been considered to

define language semantics, big-step (or natural) semantics and

small-step (or structural operational) semantics (see, e.g., [26]).

Essentially, in big-step semantics, transitions relate the initial

and final states for each statement, while in small-step semantics

transitions define the next step of the execution for each statement.

In the context of bytecode interpreters, it turns out that most of the

statements execute in a single step, hence making both approaches

equivalent for such statements. This is the case for our Lbc-byte-

code interpreter for all statements except for call. The transition

for call in small-step defines the next step of the computation,

i.e., the current frame is pushed on the call stack and a new envi-

ronment is initialized for the execution of the invoked method.

Note that, after performing this step, we do not distinguish any-

more between the code of the caller method and that of the callee.

This prevents us from having modularity in decompilation.

In the context of interpretive (de-)compilation of imperative lan-

guages, small-step interpreters are commonly used (see, e.g.

[39,20,5]).We argue that the use of a big-step interpreter is a neces-

sity to enable modular decompilation which scales to realistic lan-

guages. In Fig. 4, we depict the relevant part of the big-step

interpreter forLbc-bytecode, named Intbs
Lbc

. We can see that the call

statement, after extracting the method parameters from the oper-

and stack, calls recursively predicate main/3 in order to execute

the callee. Upon return from themethod execution, the return value

is pushed on the operand stack of the new state and execution pro-

ceeds normally. Also,we do not need to carry the call stack explicitly

within the state, but only the information for the current environ-

ment, i.e., states are of the form st(M,PC,OStack,LocalV). This

is because the call stack is already available by means of the calls

for predicate main=3 .

The compositional treatment of methods in Intbs
Lbc

is not only

essential to enable modular decompilation (overcome L1, L2 and

L3) but also to solve the recursion problem in a simple and elegant

way. Indeed, the decompilation based on the big-step interpreter

Intbs
Lbc

does not present L4. For example, the decompilation of a

recursive method m1 starts from the call mainðm1; ; Þ and then

reaches a call mainðm1;args; Þwhere args represents the particu-

lar arguments in the recursive call. This call is flagged as dangerous

by local control and the derivation is stopped. The important points

are that, unlike before, no re-computation is needed as the second

call is necessarily an instance of the first one and, besides, there is

no information loss associated to the generalization of the call stack,

as there is no stack. The recursion problemwas first detected in [17]

and a solution based on computing regular approximations during

PEwas proposed. Although feasible in theory, such techniquemight

be too inefficient inpractice andproblematic to scale it up to realistic

applications due to the overhead introduced by the underlying anal-

ysis. Another solution is proposed in [20], where a simpler control-

flow analysis is performed before PE in order to collect all possible

instructions which might follow the return. Such information may

then be used to recover information lost by the generalization. This

solution turns out to be also impractical for our purposeswhen con-

sidering realistic programs that make intensive use of library code

(e.g. Java bytecode) as many continuations can follow. Our solution

does not require the use of static analysis and, as our experiments

show, does not pose scalability problems.

It is important to note that the idea of using a big-step seman-

tics for describing the interpreter in order to achieve modular (de-

)compilation is equally useful in the offline approach to interpre-

tive decompilation. Furthermore, to the best of our knowledge,

our idea is novel and has not been proposed before, neither in on-

line nor in offline PE of interpreters.

Fig. 3. Decompiled (non-modular) code for working example.

Fig. 4. Fragment of big-step Lbc interpreter Int
bs
Lbc

.

1416 M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427

5.2. Guiding online PE with annotations

We now present the annotations we use to provide additional

control information to PE. They are instrumental for obtaining

the quality decompilation we aim at. We use the annotation sche-

ma: ‘‘½Precond�) AnnPred” where Precond is an optional precondi-

tion defined as a logic formula, Ann is the kind of annotation

(Ann 2 fmemo;rescallg) and Pred is a predicate descriptor, i.e., a

predicate name and distinct free variables. Such annotations are

used by local control when a call for Pred is found as follows:

� memo: The current call is not further unfolded and is later

transferred to the global control to carry out its specialization

separately. It is then replaced by a call to the specialized version.

� rescall: The current call is not further unfolded. Unlike calls

marked memo, the current call is not transferred to the global

control. Therefore the call is added to the residual code without

modification.

In the following, we denote by unfoldA
ET

the unfolding operator of

Section 2.2 enhanced to use the above-mentioned annotations. We

adopt the same names for the annotations as in offline PE [31] (res-

call stands for residual call while memo stands for memoise, i.e.,

pass the call to the memo table1). However, in offline PE they are

the only means to control termination while in our method they

are only used to improve the accuracy in the local control. As another

difference, in offline PE, rescall annotations are used only for built-

ins. In principle, their use for internal predicates could threaten

PE-completeness if a call is residualized but it is not an instance of

some call in the final set Lpe (i.e., it is not closed by Lpe). In the next

section, we illustrate the importance of rescall annotations also for

internal predicates to enable separate PE. The role of memo becomes

important to control the structure of the decompiled programs as we

will see in Section 6.

5.3. Modular decompilation

In order to achieve modular decompilation, it is instrumental to

allow performing separate decompilation. In the interpretive ap-

proach this requires being able to perform separate PE, i.e., to be

able to specialize parts of the program independently and then join

the specializations together to form the residual program. For in-

stance, consider a self-contained logic program P partitioned in a

set fP1; . . . ; Png of mutually disjoint subprograms which preserve

predicate boundaries, i.e., for any predicate pred in P we have that

all rules for pred are in the same partition Pj, for some j 2 f1; . . . ;ng.

Consider also the sets of terms S1; . . . ; Sn such that all calls in Si cor-

respond to predicates defined in Pi, i ¼ 1; . . . ;n. We can now define

S ¼ S1 [� � � [Sn and the usual notions of closedness and indepen-

dence are applicable. A separate partial evaluation for P and S is ob-

tained as the union of the individual specializations w.r.t. each

corresponding set of calls, i.e.,
S

Pi2P
PEðPi; ;; SiÞ. One additional dif-

ficulty for separate PE is related to the use of renaming for guaran-

teeing independence (see Definition 3), since renaming requires a

global table which is not available when generating code for the

individual subprograms. A simple strategy which we will use in

our modular decompilation is to allow polyvariant specialization

(i.e. multiple specialized versions per predicate) for calls to predi-

cates locally defined in the subprogram Pi being partially evalu-

ated, but to resort to monovariant specialization (i.e. only one

specialized version per predicate) for predicates used across sub-

program boundaries. Then, the renaming can use a local renaming

table, which must guarantee that there will be no name clash with

renamed calls from other subprograms.

We present now a modular decompilation scheme which, by

combining the big-step interpreter with the use of rescall annota-

tions, enables separate decompilation and ensures correctness (i.e.,

it is sound and complete w.r.t. internal methods).

Definition 5 (MOD-DECOMPLbc
). Given a Lbc-bytecode program Pbc , a

modular LP-decompilation of Pbc can be obtained as:

MOD�DECOMPLbc
ðPbcÞ¼

[

8m2defsðPbcÞ

PEðIntbs
Lbc

[codeðmÞ;AmodðmÞ;SðmÞÞ

where the set of annotations AmodðmÞ ¼ fðm 2 callsðmÞÞ) rescall

mainðm; ; Þg and the initial set of calls SðmÞ ¼ fmainðm; ; Þg.

Let us briefly explain the above-mentioned definition. Now the

function PE is executed once per method defined in Pbc , starting

each time from a set of calls, Sm, which contains a call of the form

mainðm; ; Þ for method m. The set Amod contains a rescall annota-

tion which affects all methods invoked (but not necessarily inter-

nal) inside Pbc . When a method invocation is to be decompiled,

the call step(invoke(m0),_,_) occurs during unfolding. We can

see that, by using the big-step interpreter in Fig. 4, a subsequent

call main(m0,_,_) will be generated. As there is a rescall annota-

tion which affects all methods invoked in the program, such call

is not unfolded but rather remains residual. If m0 is internal, a cor-

responding decompilation from the call main(m0,_,_) will be, or

has already been, performed since function PE is executed for every

method in Pbc. Thus, completeness is ensured for internal

predicates.

Example 1. By applying function MOD-DECOMPLbc
to the Lbc-byte-

code program in Fig. 2 we execute PE once for each of the four

methods in the program. In each execution we specialize the

interpreter w.r.t. the calls main(fact,_,_), main(gcd,_,_),

main(lcm,_,_), and main(abs,_,_). We obtain the following

LP-decompilation:

The structure of the original program w.r.t. method calls is pre-

served, as the residual predicate for lcm contains an invocation to

the definition of gcd, which in turn invokes abs, as it happens in
1 This is how the list of atoms to be partially evaluated, named Lpe in Section 2.2, is

usually denoted in offline PE.

M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427 1417

the original bytecode. Moreover, we now obtain an effective

decompilation for the recursive method fact where the interpre-

tive layer is completely removed without the need of any analysis.

Thus, L1 and L4 have been successfully solved.

The following theorem ensures the correctness of modular

decompilation for the big-step bytecode interpreter. Completeness

can be ensured by excluding calls to external methods not defined

in the bytecode. It is independent of the way the interpreter is de-

fined, as the closedness condition for the internal methods is en-

forced by our definitions of Amod and Sm. Soundness holds in the

case of our interpreter, because the only calls which are transferred

to the global control are instances of main/3 and execute/2 and

their first argument is the method’s name, which makes them

mutually exclusive. A post-processing of renaming is thus optional,

but it can be necessary to ensure that the independence condition

is met for other interpreters.

Theorem 2 (correctness). Consider a Lbc-bytecode program Pbc , a

concrete input I and theLbc-bytecode interpreter Int
bs
Lbc

. Let P0
bc be the

result of MOD-DECOMPLbc
ðPbcÞ. Then, A is an answer for P0

bc [fIg iff A is

an answer obtained running Pbc on Intbs
Lbc

with input I.

Proof. Let us first prove the completeness of modular decompila-

tion. This requires to prove the closedness condition as stated in

Definition 2. We first have to exclude calls to external predicates

not defined in the bytecode for which we do not obtain an answer

in P0
bc. Thus, we need to ensure closedness for the calls which have

rescall annotations and are internal. For the remaining internal

calls, closedness is already ensured by traditional PE (Theorem

1). We reason by contradiction. Consider a method invocation to

m0 which has a rescall annotation true) rescallmainðm0; ; Þ

but it is not covered by Lpe. This leads to a contradiction because,

function PEis executed 8m 2 defsðPbcÞ, including m0. Thus, there is

an initial call mainðm0; ; Þ in Sm0 and hence it is covered by the final

set Lpe.

In order to prove the correctness of our modular decompilation

scheme, the full code of the interpreter must be studied. Here we

focus on proving independence as stated in Definition 3. In the case

of Intbs
Lbc

, it is implied by the facts that: (1) the only recursive

definitions are main/3 and execute/2 and the remaining pred-

icates are always evaluable (in the sense of [41]), (2) thus every call

manipulated by the global control is an instance of main/3 or

execute/2 and (3) all such instances include the method name in

some of their (sub-)arguments, which makes them mutually

exclusive and hence independent. Since we have proved indepen-

dence and closedness of the resulting terms, by Theorem 1, we

have the correctness of modular decompilation. h

We now characterize the notion of modular-optimality in

decompilation which ensures that (1) only the code associated to

internal methods is decompiled, thus, we can have external calls

(e.g., to libraries) which are not decompiled and overcome L3; (2)

and each method is decompiled only once and thus we overcome

L2.

Proposition 1 (modular-optimality). Given a Lbc-bytecode pro-

gram Pbc , function MOD-DECOMPLbc
only decompiles the code corre-

sponding to internal methods defined in Pbc , and the code of each

method is decompiled once.

Proof. Only internal methods of Pbc are decompiled because all

calls are annotated as rescall and hence they are not transferred

to the global control. Then, we must prove that each method is

decompiled once. The proof follows by contradiction. Assume that

a method m is decompiled n > 1 times. This means that during the

PE process, there have been n calls of the form mainðm; ; Þ that

have been unfolded. This leads to a contradiction as there is a res-

call annotation which affects every method which is called in the

program mainðm; ; Þ. This prevents from unfolding mainðm; ; Þ

and the result follows. h

Note that modular decompilation gives a monovariant treat-

ment to methods in the sense that it does not allow creating spe-

cialized versions of method definitions. This is against the usual

spirit in PE, where polyvariance is a main goal to achieve further

specialization. However, in the context of decompilation, we have

shown that a monovariant treatment is necessary to enable scala-

bility and to preserve program structure. It naturally raises the

question whether a polyvariant treatment could achieve, even if

at the cost of efficiency and loss of structure, a better quality

decompilation. Note that enabling polyvariant specialization in

the modular setting can be trivially done by not introducing rescall

annotations for certain selected methods which should be treated

in a polyvariant manner. Our experience indicates that there is of-

ten a small quality gain at the price of a highly inefficient

decompilation.

6. An optimal decompilation scheme

The main issue is whether it is possible to obtain, by means of

interpretive decompilation, programs whose quality is equivalent

to that obtained by dedicated decompilers; issue (c) in Section 1.

We will show now that, using the most effective unfolding strate-

gies of PE, code for the same program point can be emitted (i.e. it

can be decompiled) several times, which degrades both the effi-

ciency and the quality of decompilation. In order to obtain results

which are comparable to those of dedicated decompilers, it makes

sense to use similar heuristics. Since decompilers first build a con-

trol flow graph (CFG) for the method, which guides the decompila-

tion process, we now study how a similar notion can be used for

controlling PE of the interpreter.

Let us explain block-level decompilation by means of an exam-

ple. Consider the method mbl in Fig. 5. The source code is shown

to the left, the relevant bytecode in the center and its CFG to the

right. As customary, the CFG [1] consists of basic blocks which

contain a sequence of non-branching bytecode instructions and

which are connected by edges which describe the possible flows

originated from the branching instructions (such as conditional

jumps, exceptions, and virtual method invocation). In our small

language Lbc , conditional jumps (i.e., if} and if0 }) are the

only branching instructions. A divergence point (D point) is a pro-

gram point (bytecode index) from which more than one branch

originates; likewise, a convergence point (C point) is a program

point where two or more branches merge. In the CFG of mbl, the

only divergence (respectively, convergence) point is pci (respec-

tively, pck).

By using the decompilation scheme presented so far, we obtain

the SLD tree shown in Fig. 6, in which all calls are completely un-

folded as there is no termination risk (nor rescall annotation). The

decompiled code is shown under the tree. We use fresXg to refer

to the residual code emitted for BlockX and condi to refer to the

condition associated to the branching instruction at pci (condi de-

notes its negation). The quality of the decompiled code is not opti-

mal due to:

D. Decompiled code fresAg for BlockA is duplicated in both

rules. During PE, this code is evaluated once but, due to

the way resultants are defined (see codegen in Section 2.2),

each rule contains the decompiled code associated to the

whole branch of the tree. This code duplication brings in

two problems: it increases considerably the size of decom-

piled programs and also makes their execution slower. For

1418 M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427

instance, when condi holds, the execution goes unnecessar-

ily through fresAg in the first rule, fails to prove cond i and,

then, attempts the second rule.

C. Decompiled code of BlockD is again emitted more than once.

Each rule for the decompiled code contains a (possibly dif-

ferent) version, fresDg and fres0
D
g, of the code of BlockD.

Unlike above, at PE time, the code of BlockD is actually eval-

uated in the context of fcondi; fresBgg and then re-evalu-

ated in the context of fcondi; fresCgg. Convergence points

thus might degrade both efficiency (and endanger scalabili-

ty) and quality of decompilation (due to larger residual

code).

The amount of repeated residual code grows exponentially with

the number of C and D points and the amount of re-evaluated code

grows exponentially with the number of C points. Thus, we now

aim for an optimal, block-level decompilation that helps overcome

problems D and C above. Intuitively, a block-level decompilation

must produce a residual rule for each block in the CFG. This can

be achieved by building SLD trees which correspond to each single

block, rather than expanding them further. Note that this idea is

against the typical spirit of PE which, in order to maximize the

propagation of static information, tries to build SLD trees as large

as possible and only stops unfolding when there is termination

risk.

The memo annotations presented in Section 5.2 facilitate the

design of the optimal interpretive decompilation scheme. In partic-

ular, we can easily force the unfolding process to stop at D points

by including a memo annotation for execute=2 calls whose PC

corresponds to a D point. In the example, unfolding stops at pci
as desired. Regarding C points, an additional requirement is to par-

tially evaluate the code on blocks starting at these points at most

once. The problem is similar to the polyvariant vs monovariant

treatment in the decompilation of methods in Section 5.3, by view-

ing entries to blocks as method calls. Not surprisingly, the solution

can be achieved similarly in our setting by: (1) stopping the deriva-

tion at execute=2 calls whose PC corresponds to C points and (2)

passing the call to the global control, and ensuring that it is evalu-

ated in a sufficiently generalized context which covers all incoming

contexts. The former point is ensured by the use of memo annota-

tions and the latter by including in the initial set of atoms a gener-

alized call of the form executeðstðmbl;pck; ; Þ; Þ for all C points,

which forces such generalization. The next definition presents

the optimal decompilation scheme where div_points(m) and

conv_pointsðmÞ denote, respectively., the set of D points and C

points of a method m.

Fig. 5. Source code, Lbc-bytecode and CFG of mbl method.

Fig. 6. Unfolding SLD tree and decompiled code of mbl method.

M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427 1419

Definition 6 (OPTIMAL-DECOMPLbc
). Given a Lbc-bytecode program

Pbc , an optimal, modular LP-decompilationof Pbc can be obtained

as:

OPTIMAL � DECOMPLbc
ðPbcÞ ¼

[

8m2defsðPbcÞ

PEðIntbs
Lbc

[codeðmÞ;AoptðmÞ; SðmÞÞ

AblocksðmÞ ¼ fpc 2 div pointsðmÞ [conv pointsðmÞ) memo

executeðstðm; pc; ; Þ; Þg

SðmÞ¼fmainðm; ;Þg[fexecuteðstðm;pc; ;Þ;Þjpc2convpointsðmÞg

AoptðmÞ ¼ AmodðmÞ [AblocksðmÞ

An important point is that, unlike annotations used in offline PE

[29] which are generated by only taking the interpreter into ac-

count, our annotations for the optimal decompilation are gener-

ated by taking into account the particular program to be

decompiled. Importantly, both the annotations and the initial set

of calls can be computed automatically by performing two passes

on the bytecode (see, e.g., [2,43]).

The result of performing an optimal decompilation on mbl is:

mainðmbl;Args;OutÞ : �fresAg;execute1ð. . .Þ:

execute1ð. . .Þ : �condi; fresBg;execute2ð. . .Þ:

execute1ð. . .Þ : �condi; fresCg;execute2ð. . .Þ:

execute2ð. . .Þ : �fresDg:

Now, the residual code associated to each block appears once in

the code. This ensures that the optimal decompilation preserves

the CFG shape as dedicated decompilers do. Thus, the quality of

our decompiled code is as good as that obtained by state-of-the-

art decompilers [2,35] but with the advantages of interpretive

decompilation (see Section 1). We formally prove the quality of

our proposed decompilation scheme in the next proposition.

Proposition 2 (block-optimality). Given a bytecode program Pbc ,

the optimal decompilation function OPTIMAL-DECOMPLbc
ensures that: (I)

residual code for each bytecode instruction in Pbc is emitted once in the

decompiled program, (II) each bytecode instruction in Pbc is evaluated

at most once during PE and (III) there is at most one residual rule for

each block in the bytecode.

Proof. The proof follows easily by contradiction.

In order to prove (I), consider that two resultants contain

residual code for the same bytecode instruction. This can be due to

two reasons. (a) There is in the SLD tree a D point which leads to

two derivations. This is not possible because D points are anno-

tated as memo and hence the derivation must have been stopped.

(b) There are two separate trees which contain derivations for

instructions of the same block. Then, this block must be a C block.

Hence, it is not possible because C points are annotated as memo

and hence the derivation must have stopped before.

We focus now on D blocks to prove (II). Consider that there have

been two evaluations of an instruction pcx within a D block B

starting at pc1 2 conv pointsðMÞ. Then, there must have been two

different instances executeðstðM;pc1;A;BÞ;CÞÞ and, later,

executeðstðM;pc1;D;EÞ;FÞÞ. This is not possible because there

exists the initial call executeðstðM;pc1; ; Þ; ÞÞ in Sm which does

not allow the evaluation of executeðstðM;pc1;D;EÞ;FÞÞ.

For (III) to be false there must exist a block in the CFG which

includes a sequence of bytecode instructions

hpc1 : b1; . . . ; pci : bi; . . . ; pcn : bni, with iP 2 and nP i such that

the residual program contains a rule for the subsequence of

bytecode instructions hpci : bi; . . . ; pcj : bji with i 2 f2; . . . ;ng and

j 2 fi; . . . ;ng. This requires that the local control stops unfolding for

a call of the form executeðstðM;pci;A;BÞ;CÞÞ. According to our

optimal local control strategy, execution of a bytecode instruction

is only left residual if the instruction at position pci in method M is

a C point or a D point, which contradicts the assumption that the

sequence of instructions hpc1 : b1; . . . ; pci : bi; . . . ; pcn : bni belongs

to the same block in the CFG. h

After taking into account the central observation from Section 5

that the interpreter should be written in big-step semantics, each

of the optimality criteria above is simpler or more complicated to

achieve depending on the local control strategy we use. For exam-

ple, if we start from a modular decompiler as discussed in Section 5

above, optimality criterion (III) will in general be satisfied, but not

criteria (I) nor (II) since the local control rule tends to over-special-

ize calls which results in re-evaluating expressions and emitting

code multiple times.

Conversely, if we use an offline partial evaluator, the natural lo-

cal control rule to use is to residualize all calls to execute and

then filter out all information other than the method signature

and program counter when transferring the atom to the global

control method. This control strategy trivially guarantees optimal-

ity criteria (I) and (II) since it guarantees that each bytecode

instruction is decompiled independently of the others. However,

it tends to under specialize and namely it does not satisfy the opti-

mality criterion (III): as soon as there is a block with more than one

bytecode instruction, which is almost always the case, the special-

ized program will contain a separate rule for each and every byte-

code instruction in the block. As a result, the residual program thus

obtained is high-level in the sense that it is written in Prolog. How-

ever, its control strategy is heavily influenced by the fact that we

decompile JBC (instead of converting, e.g. from Java source) and

the decompiled program is not at all similar to the Prolog program

which a Prolog programmer would write for performing the same

task. Since an important objective of decompilation is to enable

program understanding and analysis, we argue that programs

which satisfy this optimality criterion (III), like the ones we gener-

ate, are easier to reason about.

Another important observation is that the costly mechanisms,

namely the type-based homeomorphic embedding [4] and the

polyvariance control from [18], used for controlling the PE that

were used earlier to achieve the results in Sections 4.2 and 5.3

are not needed anymore using the optimal decompilation scheme.

Instead, the following trivial control operators can be used: unfold

unfolds all calls except those matching a memo or rescall annota-

tion, and abstract adds to the set Siþ1 every call in Lpe which is not an

instance of any call in Si. It can be easily proved that termination is

ensured both at the local and at the global control level thanks to

the annotations and the initial set of atoms provided to the PE in

Definition 6. Intuitively, in the local control, the only source of po-

tential non-termination is a loop in the bytecode program, and

there is always a convergence point associated with it, therefore

termination is guaranteed as the corresponding memo annotation

associated with the divergence point will force unfolding to stop. In

the global control, we have to ensure that the set of atoms to be

specialized does not grow infinitely. The only atoms which can

potentially occur in the set are those of the form

executeðstðm;pc; ; Þ; ÞÞ with pc 2 div pointsðmÞ [conv pointsðmÞ.

Those with pc 2 conv pointsðmÞ are always an instance of an atom

already present in the set thus they are never added. As regards

those with pc 2 div pointsðmÞ, it can be derived from Proposition

2 that only one single version of the atom can be added to the

set, otherwise the corresponding bytecode will be traversed more

1420 M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427

than once. The complete proof of termination will require a com-

plete formalization of the control rules and a complete definition

of the bytecode interpreter used, and is not given in this paper.

7. Decompiling object-oriented bytecode

In this section we present the main extensions that are needed

to apply interpretive decompilation to a bytecode language with

object-oriented features. Such features include: dynamic memory

allocation, arrays, classes and objects, inheritance and polymor-

phism. We first present an extension ofLbc , denoted asLO
bc , which

includes all these features in the spirit of Java bytecode. An L
O
bc-

bytecode program Pbc consists of a set of classes classesðPbcÞ ¼ C,

partially ordered w.r.t the subclass relation. The class is the basic

(de-)compilation unit of LO
bc. Each class c 2 C contains information

about the class it extends2and the fields and methods it declares. A

method (field) is uniquevocally identified by its method (field) signa-

ture which is of the form c : mn (c : fn), where c is the class in which

it is declared and mn (fn) the method (field) name. The name init is

reserved for the class initialization methods (constructors). We write

defs(c) to denote the set of internal method signatures defined in the

class c. Some other features of Java bytecode such as interfaces, static

methods and static fields, exceptions, access control and types be-

sides integers and references are not yet considered to simplify the

presentation. We show later in Section 8 that they do not add any

complication to the decompilation process. As in Lbc , the code asso-

ciated to a method m, denoted codeðmÞ, consists of a sequence of in-

dexed bytecode instructions. The L
O
bc instruction set is:

Inst
L

O
bc

::¼ pushðxÞ j loadðvÞ j storeðvÞ j add j sub j mul j div j rem j neg j

if}ðpcÞ j if0 }ðpcÞ j gotoðpcÞ j return j invokeðmsÞ

newarrayðsÞ j arrload j arrstore j arraylength

newðcÞ j getfieldðfsÞ j

putfieldðfsÞ j dup j ifnull j ifnonnull

where s is a type signature, s 2 C [fintg, c is a class, c 2 C, ms a

method signature and fs a field signature. The first two rows corre-

spond to the instructions in Lbc , which are already described in

Section 4.1. The third row comprises the instructions to manipulate

arrays: creation (newarray(s)), loading and storing an element

(respectively, arrload and arrstore), and consulting the array

length (arraylength). The last row contains instructions to

manipulate objects: object creation (new), accessing and modifying

fields (respectively, getfield and sputfield), the dup instruc-

tion duplicates the reference stored on top of the operand stack

and new conditional branching instructions for references ifnull

and ifnonnull. As we are omitting static methods, the invoke

instruction always corresponds to virtual invocations. For simplic-

ity, all methods are supposed to return a value (except for

constructors).

7.1. Handling the heap during decompilation

An L
O
bc-bytecode program manipulates both integers and refer-

ences to objects and arrays3. Therefore, besides using an operand

stack and an array of local variables, it uses a heap where objects

and arrays are allocated. Thus, the first design decision which we

have to take is how to represent the L
O
bc heap in Prolog. A first alter-

native would be to represent objects as Prolog terms. Each object

could have as main functor an identifier for its class and as many

arguments as fields there are in the corresponding class. The prob-

lem with this approach is that, though apparently simple, logic pro-

grams do not allow destructive updates, i.e., once an argument

(variable) gets associated (unified) to a functor, it cannot be associ-

ated to a different functor, as the subsequent unification would fail.

A possible way out would be the use of the non-pure Prolog predi-

cate setarg, which allows overwriting values. However, the pro-

grams thus obtained are not very amenable to static analysis since

the use of setarg breaks the declarative nature of logic programs

and introduces all difficulties associated to the analysis of shared

mutable data structures, which is well known to pose major difficul-

ties to static analysis. Since one of our main motivations is to analyze

the programs obtained by our decompilation, we opt for another

alternative which produces declarative programs. In this other alter-

native, the heap is passed as an explicit argument which is not over-

written, but rather modified as needed. We now describe how the

Intbs
Lbc

interpreter is extended to handle the heap, denoted Int
L

O
bc
.

The extensions include:

� The main predicate of the interpreter is now of the form

main(M,InArgs,Hin,Top,Hout), where the new additional

parameters Hin and Hout stand, respectively, for the input

and the output heap of the method. Note that now M is not just

a method name but a method signature.

� The state carried out by the interpreter has to include an extra

argument for the heap. Thus, it is of the form st(M,PC,

OS,LV,H), where H is the current heap. Again, M is a method

signature.

� The corresponding rules for the step/3 associated with the new

added bytecode instructions have to be provided. As an example,

consider the implementation in our Prolog interpreter of the

getfield(f) operation:

stepðgetfieldðFÞ;S;S0Þ : �

S ¼ stðM;PC; ½refðRÞjS�;L;HÞ;

S0 ¼ stðM;PC0; ½VjS�;L;HÞ;

nextðM;PC;PC0Þ;

getfieldðH;R;F;VÞ:

There is an important difference between the heap and the

operand stack which affects the decompilation process. While

the operand stack is a local data structure of each method execu-

tion, the heap is a global entity which stores objects that can be

created at any point during a program’s execution and besides ob-

jects can be aliased. Basically, the consequence is that the heap be-

comes unknown at PE time (typically it is a logic variable) and,

hence, most operations involving the heap cannot be fully evalu-

ated and have to appear residual in the decompiled code. Essen-

tially, we treat the heap during decompilation as an abstract data

type with a set of operations which manipulate it. For instance, this

is the case of the atom getfield(H,R,F,V) in the code above. In

Fig. 7 we list all the predicates used in the interpreter, which use

the heap, together with a description of their functionality. Output

arguments are underlined (the rest are input). Note that these are

exactly the set of predicates that can appear residual in our decom-

piled programs besides arithmetic operations, calls to main/5

(bytecode methods) and calls to execute_i/n (bytecode blocks).

Fig. 8 depicts to the right side an example of a decompiled program

containing heap operations.

7.2. Decompilation with classes

Object-oriented programs, both high-level and bytecode, are

structured as a set of classes. It makes sense then to devise a

decompilation scheme where the decompilation is done at the le-

vel of classes: we decompile one class at a time, and within each

class, we decompile each declared method at a time. Clearly, it is

2 If a class does not explicitly extend any class, it implicitly extends class Object.
3 We use the special functor ref/1 to distinguish references in the Prolog

representation.

M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427 1421

convenient to structure decompiled programs at a similar level. A

natural choice in a module-structured language like Prolog is to

make use of modules such that each class is decompiled in a corre-

sponding module. A Prolog module consists of a module name, a

list of exported predicates, a list of imported modules (optionally

together with the list of predicates imported from each module)

Fig. 8. Example of decompilation with classes.

Fig. 7. Residual heap operations.

1422 M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427

and the code (set of clauses) of the exported and auxiliary predi-

cates. We propose a decompilation scheme with the following

characteristics:

1. There is a Prolog module per class in the bytecode program,

with the same name.

2. A Prolog predicate is associated with each declared method,

with the same name. As we will see later this is done via a sim-

ple post-renaming of the main/5 atoms.

3. Each Prolog module: (1) exports all predicates corresponding to

the methods declared in the corresponding class and, (2)

imports all needed external predicates from the corresponding

modules.

The decompilation scheme with classes is formalized as

follows:

Definition 7 (CLASS-DECOMP
L

O
bc
).

Given a class of an L
O
bc-bytecode program, an optimal, LP-decom-

pilation of c is defined as:

CLASS�DECOMP
L

O
bc
ðcÞ¼/

[

8m2defsðcÞ

PEðInt
L

O
bc
[codeðmÞ;AclassðmÞ;SðmÞÞ

0

@

1

A

where AclassðmÞ ¼ AoptðmÞ [Aheap, being AoptðmÞ and SðmÞ the sets in

Definition 6 adapted for the new interpreter Int
L

O
bc
. The set Aheap de-

notes the set of rescall annotations to residualize the heap opera-

tions in Fig. 7.

The function / denotes a simple post-processing which is ap-

plied over the set of predicates resulting from the successive PEs,

producing a Prolog module with the characteristics enumerated

above. Basically, (1) it produces the corresponding module header,

with the lists of imported and exported predicates, and (2) it re-

names all atoms of the form main(c:mn,Args,Hin,Out,Hout) as

c:Mn(Args,Hin,Out,Hout). This is interpreted in Prolog as a

module-qualified call, i.e., a call to predicate mn of module c.

We can now define an object-oriented decompilation of anL
O
bc-

bytecode program as follows.

OO � DECOMP
L

O
bc
ðPbcÞ ¼

[

8c2classesðPbcÞ

CLASS � DECOMP
L

O
bc
ðcÞ:

Observe that OO-DECOMP
L

O
bc

takes a set of L
O
bc classes and pro-

duces a set of Prolog modules. An example of the application of

OO-DECOMP
L

O
bc

is shown in Fig. 8. On the left side, we show the

Java-like source code of our example program, together with the

L
O
bc-bytecode which is shown within parentheses. Again, we show

the source code for clarity but the decompilation works on the

bytecode. It has three classes, A, B and Foo. B extends A inheriting

field n and re-defining method m. Method foo of Foo invokes

method m on an object declared of type A. The L
O
bc-bytecode of

each declared method is shown within parentheses. On the right

side, we show the Prolog decompiled program. It has three mod-

ules A, B and Foo. Note that, in Prolog, strings starting with an

uppercase letter are interpreted as variables and the rest as func-

tors or constants. Thus, if one wants to use the special constant

A, the notation 0A0 has to be used. The Foo module will be explain

in the next section. The corresponding predicates are exported/im-

ported. See for example how module A exports predicates init/4

and m/4, and imports predicate init/4 from module Object
4.

Note that all predicates have four arguments as they come from

the corresponding instance of main/5. There are several calls in

the decompiled program which are module-qualified call, e.g., the

call to init/4 inside module B.

7.3. Virtual invocations

An important feature of object-oriented languages is polymor-

phism in the presence of virtual invocations. In a virtual invocation,

the method to be executed is determined at run-time depending

on the actual type of the corresponding object. As it happens with

heap operations, the operation to resolve the method to be called

cannot be performed at PE time, and then has to be residualized.

In fact, the information needed (object type) for the resolution is

in the heap which is in general unknown at PE time as we saw in

Section 7.1. In the following we show the code corresponding to

the invoke operation for virtual invocations in our Int
L

O
bc

interpreter:

stepðinvokeðC : M0Þ;S;S0Þ : �

S ¼ stðM;PC;OS;LV;HÞ;nextðM;PC;PC0Þ;

split OSðM0;OS; ½RefjArgs�;OSRsÞ;

resolveðRef;H;C0Þ;mainðC0
: M0; ½RefjArgs�;H;RV;H0Þ;

S0 ¼ stðM;PC0; ½RVjOSRs�;LV;H0Þ:

Predicate resolve/3 is encharged of performing the above-

mentioned method resolution. Given the call resolve(Ref,H,C0)

it proceeds as follows: (1) the class of the current object at location

Ref in the heap H is obtained, and (2) due to inheritance, it can hap-

pen that the method is not declared in such class, then it has to go

up in the classes hierarchy until reaching a class in which themeth-

od is declared. This class is finally returned in C0. Then, the call to

main/4 is done with the method signature C0:M0. As with heap

operations, the corresponding rescall annotation has to be provided

to make the corresponding resolve/3 atom appear in the decom-

piled code. It always appears immediately before calls correspond-

ing to method invocations (except calls to constructors5).

Example 2. As an example, consider method foo of class Foo in

Fig. 8. The method m is invoked on an object declared of type A.

However, variable a can actually store at run-time a reference to an

object of class A or of any class extending A, in this case B. Whether

to execute method m of class A or of class B is thus determined at

run-time. In the Prolog code, we can observe the call to resolve/3

immediately before the call to predicate m/4, which is module-

qualified with the obtained module.

8. Experimental evaluation

We report on two different implementations of a decompiler for

full (sequential) Java Bytecode into Prolog. For the first one we ex-

tend an already existing powerful online PE, the one integrated in

the CiaoPP analysis and specialization system [21]. This partial

evaluator implements several unfolding rules and abstraction

operators. This allows us to compare the different decompilation

schemes explained in the paper, in particular, to compare to the

non-optimal ones. Such comparison is presented in Section 8.1.

However, the overhead introduced by using such generic and pow-

erful tool prevents us from competing with ad hoc decompilers as

regards efficiency (decompilation times). For this reason, we have

carried out a second implementation for which we have written

a stand-alone PE which only contains the local and global strate-

gies required by an optimal decompilation. This partial evaluator

is integrated into a decompilation tool called jbc2prologwhich also

includes a Java bytecode interpreter. This makes it possible to both

obtain optimal decompilation and be competitive in terms of effi-

ciency with ad hoc decompilers. A thorough comparison against

4 Constructor methods first call the constructor of its super-class, in this case

Object. 5 Invocations to constructors are never virtual. They can be statically resolved.

M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427 1423

the decompiler in the COSTA[3] system and against the JDec[8]

decompiler is presented in Section 8.2.

Both implementations consider full sequential Java bytecode.

The extensions needed to handle the features not considered in

L
O
bc (exceptions, static fields and methods, access control, etc.) do

not add any special complication to the decompilation scheme.

For instance, exception handling is simply dealt with as another

source of branching. This certainly makes the size of our decom-

piled programs grow considerably, although this is something

every decompiler of a real-life language has to deal with. Solutions

based on static analysis exist which allow avoiding some exception

branches. For example, nullity analysis can be used to avoid consid-

ering branches corresponding to null-pointer exceptions which are

proved to be non-null, which reduces the size of the code consid-

erably. These analyses can be easily incorporated in our decompi-

lation tool and it is indeed a subject of future work.

8.1. Assessing the scalability of decompilation

For the experimental evaluation, we have used the standardized

set of benchmarks in the JOlden suite [22]. In particular, our first

goal is to compare the scalability of the optimal decompilation

scheme (see Definition 7) against that of the modular (non-opti-

mal) one (see Definition 5). Here it comes the need to use the par-

tial evaluator of CiaoPP, as it combines the power of online control

operators like type-based homeomorphic embedding [4], with the

ability of adding conditional annotations as described in Definition

6. As most programs in the JOlden suite make an extensive use of

library methods, non-modular decompilation cannot be assessed

as we run into memory problems when trying to decompile the

code of library calls. Fig. 9 depicts four charts measuring different

aspects of the decompilation. In order to reason about scalability,

we assess the differences between the non-optimal and the opti-

mal approaches, as well as how the size of the programs affects

the decompilation. The times are computed as the arithmetic mean

of five runs on an Intel Core 2 Duo at 1.86 GHz with 2GB of RAM,

running Linux 2.6.24-21. We measure two aspects of the decompi-

lation: the decompilation time (in milliseconds) and the decom-

piled program size (in bytes). It should be noticed that absolute

data are not required to assess scalability issues. We rather need

relative data per instruction in order to prove that it does not in-

crease with the size of the programs. The relative decompilation

time indicates the efficiency of the process and the size of decom-

piled programs are directly related to the decompilation quality.

Each point ½X;Y � in the charts corresponds to the decompilation

of a single method in the JOlden suite, where X represents the num-

ber of instructions of the method and Y the measured data (time

per instruction or decompiled program size per instruction). The

charts in the left-hand side show the data obtained (times in the

top chart and sizes in the bottom one) for both the non-optimal

and the optimal decompilation. The variations in the optimal

decompilation cannot be appreciated when combined with the

non-optimal. Thus, we include in the charts on the right-hand side

the figures for the optimal decompilation in isolation such that we

adjust the scale on the Y-axis to the domain of the data.

From the charts, we conclude: (1) Times per instruction are

notably larger for the smallest methods, as can be seen by looking

at the initial curve in the charts. This is because the overhead intro-

duced for starting a new decompilation is more noticeable when

the time for decompilation itself is small, while it becomes negligi-

ble for larger methods. The same happens for the size of the

decompiled programs. (2) The optimal decompilation achieves

important speedups in general (for all methods with more than

40 instructions). Besides, it obtains significantly smaller decom-

piled programs. The speedups per package range from 3:36 in

power to 31:4 in bisort for the decompilation times; and from

2:5 times smaller in power to 9 times smaller in bisort for the

decompiled program sizes. Note that there is a clear correspon-

dence between both measures, since C points introduce both

inefficiency and size increase in decompilation, as explained in

Section 6. Moreover, modular decompilation runs out of memory

for some of the largest methods. This is again related to code dupli-

Fig. 9. Evaluating the scalability of optimal decompilation with the JOlden Suite.

1424 M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427

cation (C and D points) and (re-)evaluation (C points), which grow

exponentially. (3) The most important conclusion is that, while in

the non-optimal decompilation both the times and the sizes per

instruction greatly increase with the size of the benchmarks, this

does not happen in the optimal scheme. In the optimal decompila-

tion, these figures are totally stable (mostly constant) for all meth-

ods with more than 40 instructions. This shows that both the

decompilation times and the decompiled program sizes are linear

with the size of the input bytecode program, thus demonstrating

the scalability of our optimal decompilation. One might wonder

why there are still small variations in the ratio. In our experience,

the following points also matter: (1) the complexity of the control

flow of the methods, (2) the relative complexity of the bytecode

instructions used, e.g., instructions which operate in the heap tend

to produce more residual code, (3) the structure w.r.t. methods of

the program, e.g., classes with methods of medium size tend to re-

sult in better decompilations than those with few large methods or

many small ones.

8.2. Efficiency: comparing against other decompilers

To assess the efficiency of our approach we compare the

decompilation times we get using our tool jbc2prologw.r.t. those

obtained using the decompiler in the COSTAsystem [3] and those

of the well-known Java decompiler JDec[8]. COSTAis a COSt and

Termination analysis tool for Java bytecode. It performs a decom-

pilation of the bytecode into a rule-based representation before

the actual analysis phase with the aim of making the analysis de-

sign simpler. This decompilation basically consists of two parts.

First, the CFG for each method is built and then, for each block

in the CFG, an associated rule is produced. We have chosen the

COSTAdecompiler to compare the efficiency of interpretive decom-

pilation because COSTAis also implemented in Prolog and hence

the underlying implementation language performance is identical.

The resulting decompiled program is a set of rules which resem-

ble our Prolog clauses in several aspects: recursion is the only

form of iteration and conditional instructions are captured by

guarded rules. However, there are still some differences w.r.t.

our decompiled programs: a) in COSTAthe operand stack is explic-

itly flattened and represented by means of local variables whereas

in jbc2prologPE together with argument filtering automatically

achieve this effect, and b) we represent the heap explicitly in

the residual programs as explained in Section 7.1. These two fea-

tures together are important since in the programs decompiled

using COSTA(or CiaoPP) all bytecode instructions remain residual

and have to be taken as builtins, i.e., predefined procedures by

analysis. In contrast, in jbc2prologbytecode instructions are inter-

preted at decompilation time and converted into basic Prolog

instructions such as unifications and arithmetic or into the ADT

operations in Fig. 7 for those instructions involving the heap. As

a result, extending an existing Prolog analyzer to analyze JBC

decompiled programs is simpler using our decompiler than using

those in COSTA[2] or CiaoPP[35], since the decompiled programs

are executable and the analysis does not need to be extended

with any further builtins.

Again we use the set of benchmarks in the JOlden suite [22]. Ta-

ble 1 shows the times taken (in milliseconds) by each of the differ-

ent phases of jbc2prologtogether with the total time used by the

COSTA and JDecdecompiler for each package of the JOlden suite. All

times are computed as the arithmetic mean of five runs, in this

case on a Intel Core 2 Quad Q9300 at 2.5 GHz with 1.95GB of

RAM, running Linux 2.6.27-9. In particular, for each JOlden package

we measure: the total number of classes, methods and instructions

in the package (columns Ncls, Nmths and Nins), the time taken by the

different phases of jbc2prolog, namely, the parsing and loading time

of the .classfile (column Tbl), the pre-processing time to infer the

divergence and convergence points of the bytecode program (col-

umn Tsps), the generation of the entries to the PE (column Tge),

the actual specialization time (column Tpe) and the time taken by

the code generation phase (column Tcg). Finally, last three columns

show respectively the total times taken by jbc2prolog(column Tj2p),

the COSTAdecompiler (column Tcosta) and the JDecdecompiler (col-

umn Tjdec). The last row shows the overalls of all measurements.

We can see that the whole JOlden suite is decompiled by jbc2pro-

login less than 4 s versus the 4.7 s in COSTAand the 42 s in JDec. It

can be concluded that our results our competitive with those of

an ad hoc decompiler. In particular, we see that they are similar

to those obtained in COSTA. Furthermore, in most examples, jbc2pro-

log is more efficient than COSTA, especially in voronoi, perimeter

and treeAdd. On the other hand we can see that jbc2prologis about

ten times faster than JDec. Our conclusion in this regard is that it is

very difficult to compare with decompilers written in other pro-

gramming languages, since the performance of the implementa-

tion language heavily influences the decompilation time.

9. Related work

Previous work in interpretative (de-)compilation has mainly fo-

cused on proving that the approach is feasible for small interpret-

ers and medium-sized programs. The focus has been on

demonstrating its effectiveness, i.e., that the so-called interpreta-

tion layer can be removed from the compiled programs. To achieve

effectiveness, offline [29], online [5,20,39] and hybrid [30] PE tech-

niques have been assessed and novel control strategies have been

proposed and proven effective [18,4].

Our work starts off from the premise that interpretive decompi-

lation is feasible and effective as proved by previous work and

studies further issues which have not been explored yet. Let us re-

Table 1

Efficiency of jbc2prolog.

Benchmark jbc2prolog COSTA JDec

Pack Ncls Nmths Nins Tbl Tsps Tge Tpe Tcg Tj2p Tcosta Tjdec

bisort 2 15 554 10 10 0 147 10 177 170 1802

bh 9 73 2012 57 28 0 652 70 807 860 7394

em3d 4 22 713 27 7 0 184 26 243 347 3386

health 6 27 973 37 13 0 224 26 300 420 4822

mst 5 31 703 14 4 0 173 20 210 317 3958

perimeter 9 46 838 37 9 0 134 13 193 363 6564

power 6 32 1927 43 24 4 566 64 701 693 5330

treeadd 2 12 308 6 3 0 67 14 90 143 1600

tsp 2 16 946 17 13 4 367 26 427 380 1948

voronoi 6 73 1781 50 19 7 673 62 810 1023 5270

Overall 51 347 10755 297 131 14 3186 330 3958 4717 42074

M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427 1425

view now related work in the field of decompilation of low-level

code. Related work on the PE of interpreters has been already com-

pared in Section 1 and in several places throughout the paper. The

work by Breuer and Bowen [9] is only tangentially related to ours.

They propose a general method for compiling decompilers from

the specifications of (non-optimizing) compilers. The main idea is

that a data type specification for a programming-language gram-

mar can be remolded into a functional program that enumerates

all the abstract syntax trees of the grammar. It is showed that by

relying on this technique a decompiler can be generated from a

simple Occam-like compiler specification. The only similarity with

our work is that decompiled programs are somehow obtained from

specifications (in our case of the interpreter and in their case of the

compiler). However, the underlying methods are technically differ-

ent and also they do not provide a practical solution for ensuring

applicable conditions for their technique.

As regards (direct) decompilation of low-level back to source

code, it has been the subject of a good amount of research. Decom-

pilation can be attempted at different levels, with different levels

of success. The most complicated case is when decompiling binary

executables. There are a good number of associated complications,

such as recovering the control flow. One intrinsic problem in this

approach is that it is not possible in general to distinguish code

from data statically. See, e.g. [10,42] and their references for a dis-

cussion on the problems and techniques for binary decompilation.

The next level is decompilation of assembly, see, e.g. [11]. This

shares many of the complications associated to the decompilation

of binaries, since current hardware architectures are rather com-

plex, but at least it is possible to separate code from data. The fol-

lowing level is decompilation of code to be run on a virtual

machine. This is in general easier to perform since virtual machines

are usually simpler than the current hardware architectures and

because often the code for this virtual machines (bytecode) must

satisfy certain behavior restrictions (must be verifiable [27]) and

types of variables are available. As a result, in the particular case

of decompilation of Java bytecode back to Java source, a number

of successful commercial and free software decompilers exist

which are able to handle a large class of bytecode programs, espe-

cially those generated by common Java compilers, i.e., javac. Nev-

ertheless, things become more complicated when the Java

bytecode has been generated by an obfuscator, and especially

when an optimizing compiler, or a compiler from other program-

ming languages such as Haskell, Eiffel, ML, Ada, and Fortran is used.

See, e.g. [37] and its references for a good account on the existing

Java bytecode decompilers and the difficulties associated to its

decompilation.

As already mentioned, there exist several analyzers for Java

bytecode which use a higher-level intermediate representation

and which can be seen as ad hoc decompilers. In particular, both

the COSTA [3] and CiaoPP [21] systems have a front-end which con-

verts bytecode into an intermediate representation which is then

the input to the subsequent analysis. Though in both cases the

intermediate representation is similar, in the case of COSTAit is for-

malized as a rule-based representation [2], whereas in CiaoPP it

is formalized as Horn clauses, i.e., a logic program [35]. The reason

for doing that in CiaoPP is that, at least in principle, that allows

using the analysis which are already available in CiaoPP. However,

there is a crucial difference between the logic programs generated

in [35] and those generated by our decompiler. Whereas the pro-

grams generated by [35] are only meant to be the subject of static

analysis and are not executable, the programs we generate can

both be subject to analysis or be executed. The reason why the pro-

grams in [35] nor those in [2] are executable is because they basi-

cally capture the control-flow of the bytecode program, but the

basic bytecode instructions themselves remain as builtins, i.e., pre-

defined predicates, to the analysis. Analysis results are correct as

long as the behavior of such bytecode instructions is safely approx-

imated by the analysis. Producing fully executable logic programs

as the result of decompilation is not trivial since many of the byte-

code instructions operate on the heap in a way or another. Thus, in

order to make an executable decompiled program we need to

introduce the JVM heap explicitly in the logic program. All this is

done automatically in our approach.

10. Conclusions

We argue that declarative languages and the technique of partial

evaluation have nowadays a large application field within the

development of analysis, verification, and model checking tools

for modern programming languages. On the one hand, declarative

languages provide a convenient intermediate representation which

allows (1) representing all iterative constructs (loops) as recursion,

independently of whether they originate from iterative loops (con-

ditional and unconditional jumps) or recursive calls, and (2) all

variables in the local scope of the methods (formal parameters, lo-

cal variables, fields, and stack values in low-level languages) can be

represented uniformly as explicit arguments of a declarative pro-

gram. On the other hand, the technique of PE enables the auto-

matic (de-)compilation of a (complicated) modern program to a

simple declarative representation by just writing an interpreter

for the modern language in the corresponding declarative language

and using an existing partial evaluator.

The resulting intermediate representation greatly simplifies the

development of the above-mentioned tools for modern languages

and, more interestingly, existing advanced tools developed for

declarative programs (already proven correct and effective) can

be directly applied on it. In previous work [5], by reasoning on

our decompiled residual programs, we have automatically proved

in the CiaoPPsystem some non-trivial properties of Java bytecode

programs such as termination, run-time error freeness and infer

bounds on its resource consumption. In order to prove run-time er-

ror freeness, we have proposed an enhanced bytecode interpreter

which computes, in addition to the return value of the method

called, also the trace which captures the computation history. Such

traces represent the semantic steps used and therefore do not only

represent instructions, as the context has also some importance.

They have allowed us to distinguish, for example, for a same

instruction, the step that throws an exception from the normal

behavior. For example, invokevirtual_step_ok and invoke-

virtual_step_NullPointerException represent, respectively,

a normal method call and a method call on a null reference that

throws an exception. Such additional flexibility of interpretive

decompilation has allowed to prove run-time error freeness in a

straightforward way by simply specifying the property of being er-

ror-free as verifying that the corresponding trace in the decom-

piled program does not contain an exceptional step.

A unique feature of our decompiled programs is that they rep-

resent the whole program state, i.e., in contrast to [35,2,43], our

decompiled programs contain a representation of the heap in addi-

tion to the operand stack. The advantage is decompiled programs

are fully executable which in turn broadens their application field.

As an example, recently we have developed a novel framework for

test case generation [45] of bytecode by relying on our decompiled

Prolog programs. Basically, the standard approach to generating

test-cases statically is to perform a symbolic execution of the pro-

gram [12,36,38,24,19], where the contents of variables are expres-

sions rather than concrete values. The symbolic execution

produces a system of constraints consisting of the conditions to

execute the different paths. This happens, for instance, in branch-

ing instructions, like if-then-else, where we might have to generate

test-cases for the two alternative branches and hence accumulate

1426 M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427

the conditions for each path as constraints. The fact that our

decompiled programs are executable Prolog programs allows us

to directly rely on the available techniques for constraint logic pro-

grams (where backtracking is inherent to the language) to carry

out such symbolic execution.

Finally, a main objective of our work has been to investigate,

and provide the necessary techniques, to make interpretive

decompilation scale in practice. A further goal has been to ensure,

and provide the techniques, that decompiled programs preserve

the structure of the original programs and that their quality is

comparable to that obtained by dedicated decompilers. We believe

that the techniques proposed in this paper, together with their

experimental evaluation, provide for the first time actual evidence

that the interpretive theory proposed by Futamura in the 70 s is

indeed an appealing and feasible alternative to the development

of ad hoc decompilers from modern languages to intermediate

representations.

Acknowledgement

We gratefully acknowledge the anonymous referees for many

useful comments and suggestions. This work was funded in part

by the Information Society Technologies program of the European

Commission, Future and Emerging Technologies under the IST-

15905 MOBIUS and IST-231620 HATS projects, by the Spanish Min-

istry of Education (MEC) under the TIN-2005-09207 MERIT and

TIN-2008-05624 DOVES projects, and the Madrid Regional Govern-

ment under the S-0505/TIC/0407 PROMESAS project.

References

[1] A.V. Aho, R. Sethi, J.D. Ullman, Compilers – Principles, Techniques and Tools,
Addison-Wesley, 1986.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini, Cost analysis of Java
bytecode, in: Rocco De Nicola (Ed.), 16th European Symposium on
Programming, ESOP’07, Lecture Notes in Computer Science, vol. 4421,
Springer, 2007, pp. 157–172.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini, COSTA: design and
implementation of a cost and termination analyzer for Java bytecode, in: Post-
proceedings of Formal Methods for Components and Objects (FMCO’07), LNCS,
vol. 5382, Springer-Verlag, 2008, pp. 113–133.

[4] E. Albert, J. Gallagher, M. Gómez-Zamalloa, G. Puebla, Type-based
homeomorphic embedding and its applications to online partial evaluation,
in: 17th International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’07), LNCS, vol. 4915, Springer-Verlag, 2008, pp. 23–
42.

[5] E. Albert, M. Gómez-Zamalloa, L. Hubert, G. Puebla, Verification of Java
bytecode using analysis and transformation of logic programs, in: Nineth
International Symposium on Practical Aspects of Declarative Languages, LNCS,
vol. 4354, Springer-Verlag, 2007, pp. 124–139.

[6] E. Albert, G. Puebla, J. Gallagher, Non-leftmost unfolding in partial evaluation
of logic programs with impure predicates, in: 15th International Symposium
on Logic-based Program Synthesis and Transformation (LOPSTR’05), LNCS, vol.
3901, Springer-Verlag, 2006, pp. 115–132.

[7] B. Barras et al., The Coq proof assistant reference manual: Version 6.1,
Technical Report RT-0203, 1997. <citeseer.ist.psu.edu/barras97coq.html>.

[8] Swaroop Belur, Kartik Bettadapura, Jdec: Java Decompiler, <http://
jdec.sourceforge.net/>.

[9] Peter T. Breuer, Jonathan P. Bowen, Decompilation: The enumeration of types
and grammars, ACM Trans. Program. Lang. Syst. 16 (5) (1994) 1613–1647.

[10] Cristina Cifuentes, K. John Gough, Decompilation of binary programs, Softw.
Pract. Exper. 25 (7) (1995) 811–829.

[11] Cristina Cifuentes, Doug Simon, Antoine Fraboulet, Assembly to high-level
language translation, in: ICSM, 1998, pp. 228–237.

[12] L.A. Clarke, A system to generate test data and symbolically execute programs,
IEEE Trans. Softw. Eng. 2 (3) (1976) 215–222.

[13] R. DeLine, K.R.M. Leino, BoogiePL: a typed procedural language for checking
object-oriented programs, Technical Report MSR-TR-2005-70, Microsoft
Research, 2005.

[14] Y. Futamura, Partial evaluation of computation process – an approach to a
compiler–compiler, Syst. Comput. Controls 2 (5) (1971) 45–50.

[15] J. Gallagher, Transforming logic programs by specializing interpreters, in:
Proceedings of the 7th European Conference on Artificial Intelligence, 1986.

[16] J.P. Gallagher, Tutorial on specialisation of logic programs, in: Proceedings of
the PEPM’93, ACM Press, 1993, pp. 88–98.

[17] J.P. Gallagher, J.C. Peralta, Using regular approximations for generalisation
during partial evaluation, in: Proceedings of the SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, ACM Press, 2000, pp.
44–51.

[18] M. Gómez-Zamalloa, E. Albert, G. Puebla, Improving the decompilation of Java
bytecode to prolog by partial evaluation, in: ETAPS Ws on Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE’07), ENTCS, vol. 190,
2007, pp. 85–101.

[19] A. Gotlieb, B. Botella, M. Rueher, A clp framework for computing structural test
data, in: Computational Logic, 2000, pp. 399–413.

[20] Kim S. Henriksen, John P. Gallagher, Abstract interpretation of pic programs
through logic programming, in: SCAM’06 Proceedings of the Sixth IEEE
International Workshop on Source Code Analysis and Manipulation, IEEE
Computer Society, 2006, pp. 184–196.

[21] M. Hermenegildo, G. Puebla, F. Bueno, P. López-Garcı́a, Integrated program
debugging, verification, and optimization using abstract interpretation (and
The Ciao System Preprocessor), Sci. Comput.Programming 58 (1–2) (2005)
115–140.

[22] JOlden Suite Collection, <http://www-ali.cs.umass.edu/DaCapo/
benchmarks.html>.

[23] N.D. Jones, C.K. Gomard, P. Sestoft, Partial Evaluation and Automatic Program
Generation, Prentice Hall, New York, 1993.

[24] J.C. King, Symbolic execution and program testing, Commun. ACM 19 (7)
(1976) 385–394.

[25] J. Komorovski, An introduction to partial deduction, in: A. Pettorossi (Ed.),
Meta Programming in Logic, Proceedings of META’92, LNCS, vol. 649, Springer-
Verlag, 1992, pp. 49–69.

[26] J. Launchbury, A natural semantics for lazy evaluation, in: POPL, 1993, pp.
144–154.

[27] Xavier Leroy, Java bytecode verification: algorithms and formalizations, J.
Automated Reasoning 30 (3–4) (2003) 235–269.

[28] M. Leuschel, Homeomorphic embedding for online termination of symbolic
methods, in: The Essence of Computation, LNCS, vol. 2566, Springer, 2002, pp.
379–403.

[29] M. Leuschel, S. Craig, M. Bruynooghe, W. Vanhoof, Specialising interpreters
using offline partial deduction, in: Program Development in Computational
Logic, Lecture Notes in Computer Science, vol. 3049, Springer, 2004, pp. 340–
375.

[30] M. Leuschel, S. Craig, D. Elphick, Supervising offline partial evaluation of logic
programs using online techniques, in: LOPSTR, Lecture Notes in Computer
Science, vol. 4407, Springer, 2006, pp. 43–59.

[31] M. Leuschel, J. Jørgensen, W. Vanhoof, M. Bruynooghe, Offline specialisation in
prolog using a hand-written compiler generator, TPLP 4 (1–2) (2004) 139–191.

[32] Michael Leuschel, Morten Heine Sørensen, Redundant argument filtering of
logic programs, in: LOPSTR, 1996, pp. 83–103.

[33] J.W. Lloyd, J.C. Shepherdson, Partial evaluation in logic programming, The
Journal of Logic Programming 11 (1991) 217–242.

[34] J.W. Lloyd, Foundations of Logic Programming, second extended ed., Springer,
1987.

[35] M. Méndez-Lojo, J. Navas, M. Hermenegildo, A flexible (C)LP-based approach to
the analysis of object-oriented programs, in: 17th International Symposium on
Logic-based Program Synthesis and Transformation (LOPSTR’07), 2007.

[36] C. Meudec, Atgen: automatic test data generation using constraint logic
programming and symbolic execution, Softw. Test. Verif. Reliab. 11 (2) (2001)
81–96.

[37] Jerome Miecznikowski, Laurie J. Hendren, Decompiling Java bytecode:
problems traps and pitfalls, in: R. Nigel Horspool (Ed.), CC, Lecture Notes in
Computer Science, vol. 2304, Springer, 2002, pp. 111–127.

[38] R.A. Müller, C. Lembeck, H. Kuchen, A symbolic java virtual machine for test
case generation, in: IASTED Conf. on Software Engineering, 2004, pp. 365–371.

[39] J.C. Peralta, J. Gallagher, H. Sağlam, Analysis of imperative programs through
analysis of constraint logic programs, in: Proceedings of the SAS’98, LNCS, vol.
1503, 1998, pp. 246–261.

[40] D. Pichardie, Bicolano (Byte Code Language in cOq), <http://www-sop.inria.fr/
everest/personnel/David.Pichardie/bicolano/main.html>.

[41] G. Puebla, E. Albert, M. Hermenegildo, Efficient local unfolding with ancestor
stacks for full prolog, in: Proceedings of the LOPSTR’04, LNCS, vol. 3573,
Springer, 2005, pp. 149–165.

[42] Benjamin Schwarz, Saumya K. Debray, Gregory R. Andrews, Disassembly of
executable code revisited, in: Arie van Deursen, Elizabeth Burd (Eds.), WCRE,
IEEE Computer Society, 2002, pp. 45–54.

[43] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, P. Co, Soot – a Java
optimization framework, in: Proceedings of the Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON), 1999, pp. 125–135.

[44] John Whaley, Dzintars Avots, Michael Carbin, Monica S. Lam, Using datalog
with binary decision diagrams for program analysis, in: Kwangkeun Yi (Ed.),
APLAS, Lecture Notes in Computer Science, vol. 3780, Springer, 2005, pp. 97–
118.

[45] Hong Zhu, Patrick A.V. Hall, John H.R. May, Software unit test coverage and
adequacy, ACM Comput. Surv. 29 (4) (1997) 366–427.

M. Gómez-Zamalloa et al. / Information and Software Technology 51 (2009) 1409–1427 1427

http://citeseer.ist.psu.edu/barras97coq.html
http://jdec.sourceforge.net/
http://jdec.sourceforge.net/
http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
http://www-sop.inria.fr/everest/personnel/David.Pichardie/bicolano/main.html
http://www-sop.inria.fr/everest/personnel/David.Pichardie/bicolano/main.html

Test Data Generation of Bytecode

by CLP Partial Evaluation

Elvira Albert1, Miguel Gómez-Zamalloa1, and Germán Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. We employ existing partial evaluation (PE) techniques de-
veloped for Constraint Logic Programming (CLP) in order to automati-
cally generate test-case generators for glass-box testing of bytecode. Our
approach consists of two independent CLP PE phases. (1) First, the
bytecode is transformed into an equivalent (decompiled) CLP program.
This is already a well studied transformation which can be done either by
using an ad-hoc decompiler or by specialising a bytecode interpreter by
means of existing PE techniques. (2) A second PE is performed in order
to supervise the generation of test-cases by execution of the CLP de-
compiled program. Interestingly, we employ control strategies previously
defined in the context of CLP PE in order to capture coverage criteria

for glass-box testing of bytecode. A unique feature of our approach is
that, this second PE phase allows generating not only test-cases but also
test-case generators. To the best of our knowledge, this is the first time
that (CLP) PE techniques are applied for test-case generation as well as
to generate test-case generators.

1 Introduction

Bytecode (e.g., Java bytecode [19] or .Net) is becoming widely used, especially, in
the context of mobile applications for which the source code is not available and,
hence, there is a need to develop verification and validation tools which work
directly on bytecode programs. Reasoning about complex bytecode programs
is rather difficult and time consuming. In addition to object-oriented features
such as objects, virtual method invocation, etc., bytecode has several low-level
language features: it has an unstructured control flow with several sources of
branching (e.g., conditional and unconditional jumps) and uses an operand stack
to perform intermediate computations.

Test data generation (TDG) aims at automatically generating test-cases for
interesting test coverage criteria. The coverage criteria measure how well the
program is exercised by a test suite. Examples of coverage criteria are: state-
ment coverage which requires that each line of the code is executed; path cov-
erage which requires that every possible trace through a given part of the code
is executed; etc. There are a wide variety of approaches to TDG (see [27] for
a survey).Our work focuses on glass-box testing, where test-cases are obtained
from the concrete program in contrast to black-box testing, where they are de-
duced from a specification of the program. Also, our focus is on static testing,

M. Hanus (Ed.): LOPSTR 2008, LNCS 5438, pp. 4–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Test Data Generation of Bytecode by CLP Partial Evaluation 5

where we assume no knowledge about the input data, in contrast to dynamic
approaches [9,14] which execute the program to be tested for concrete input
values.

The standard approach to generating test-cases statically is to perform a
symbolic execution of the program [7,22,23,17,13], where the contents of variables
are expressions rather than concrete values. The symbolic execution produces a
system of constraints consisting of the conditions to execute the different paths.
This happens, for instance, in branching instructions, like if-then-else, where we
might want to generate test-cases for the two alternative branches and hence
accumulate the conditions for each path as constraints. The symbolic execution
approach has been combined with the use of constraint solvers [23,13] in order to:
handle the constraints systems by solving the feasibility of paths and, afterwards,
to instantiate the input variables. For the particular case of Java bytecode, a
symbolic JVM machine (SJVM) which integrates several constraints solvers has
been designed in [23]. A SJVM requires non-trivial extensions w.r.t. a JVM: (1)
it needs to execute the bytecode symbolically as explained above, (2) it must
be able to backtrack, as without knowledge about the input data, the execution
engine might need to execute more than one path. The backtracking mechanism
used in [23] is essentially the same as in logic programming.

We propose a novel approach to TDG of bytecode which is based on PE tech-
niques developed for CLP and which, in contrast to previous work, does not
require the devising a dedicated symbolic virtual machine. Our method com-
prises two CLP PE phases which are independent. In fact, they rely on different
execution and control strategies:

1. The decompilation of bytecode into a CLP program. This has been the subject
of previous work [15,3,12] and can be achieved automatically by relying
on the first Futamura projection by means of partial evaluation for logic
programs, or alternatively by means of an adhoc decompiler [21].

2. The generation of test-cases. This is a novel application of PE which allows
generating test-case generators from CLP decompiled bytecode. In this case,
we rely on a CLP partial evaluator which is able to solve the constraint
system, in much the same way as a symbolic abstract machine would do.
The two control operators of a CLP partial evaluator play an essential role:
(1) The local control applied to the decompiled code will allow capturing
interesting coverage criteria for TDG of the bytecode. (2) The global con-
trol will enable the generation of test-case generators. Intuitively, the TDG
generators we produce are CLP programs whose execution in CLP returns
further test-cases on demand without the need to start the TDG process
from scratch.

We argue that our CLP PE based approach to TDG of bytecode has several
advantages w.r.t. existing approaches based on symbolic execution: (i) It is more
generic, as the same techniques can be applied to other both low and high-
level imperative languages. In particular, once the CLP decompilation is done,
the language features are abstracted away and, the whole part related to TDG
generation is totally language independent. This avoids the difficulties of dealing

6 E. Albert, M. Gómez-Zamalloa, and G. Puebla

with recursion, procedure calls, dynamic memory, etc. that symbolic abstract
machines typically face. (ii) It is more flexible, as different coverage criteria can
be easily incorporated to our framework just by adding the appropriate local
control to the partial evaluator. (iii) It is more powerful as we can generate test-
case generators. (iv) It is simpler to implement compared to the development of
a dedicated SJVM, as long as a CLP partial evaluator is available.

The rest of the paper is organized as follows. The next section recalls some
preliminary notions. Sec. 3 describes the notion of CLP block-level decompilation
which corresponds to the first phase above. The second phase is explained in the
remainder of the paper. Sec. 4 presents a näıve approach to TDG using CLP
decompiled programs. In Sec. 5, we introduce the block count-k coverage criterion
and outline an evaluation strategy for it. In Sec. 6, we present our approach to
TDG by partial evaluation of CLP. Sec. 7 discusses related work and concludes.

2 Preliminaries and Notation in Constraint Logic
Programs

We now introduce some basic notions about Constraint Logic Programming
(CLP). See e.g. [20] for more details. A constraint store, or store for short,
is a conjunction of expressions built from predefined predicates (such as term
equations and equalities or inequalities over the integers) whose arguments are
constructed using predefined functions (such as addition, multiplication, etc.).
We let ∃Lθ be the constraint store θ restricted to the variables of the syntactic
object L. An atom has the form p(t1, ..., tn) where p is a predicate symbol and
the ti are terms. A literal L is either an atom or a constraint. A goal L1, . . . , Ln is
a possibly empty finite conjunction of literals. A rule is of the form H:-B where
H , the head, is an atom and B, the body, is a goal. A constraint logic program,
or program, is a finite set of rules. We use mgu to denote a most general unifier
for two unifiable terms.

The operational semantics of a program P is in terms of its derivations which
are sequences of reductions between states. A state 〈G θ〉 consists of a goal G
and a constraint store θ. A state 〈L, G θ〉 where L is a literal can be reduced as
follows:

1. If L is a constraint and θ ∧ L is satisfiable, it is reduced to 〈G θ ∧ L〉.
2. If L is an atom, it is reduced to 〈B, G θ ∧ θ′〉 for some renamed apart rule

(L′:-B) in P such that L and L′ unify with mgu θ′.

A derivation from state S for program P is a sequence of states S0 →P S1 →P

... →P Sn where S0 is S and there is a reduction from each Si to Si+1. Given
a non-empty derivation D, we denote by curr state(D) and curr store(D) the
last state in the derivation, and the store in this last state, respectively. E.g.,
if D is the derivation S0 →∗

P
Sn, where →∗ denotes a sequence of steps, with

Sn = 〈G θ〉 then curr state(D) = Sn and curr store(D) = θ. A query is a
pair (L, θ) where L is a literal and θ a store for which the CLP system starts a
computation from 〈L θ〉.

Test Data Generation of Bytecode by CLP Partial Evaluation 7

The observational behavior of a program is given by its “answers” to queries.
A finite derivation D from a query Q = (L, θ) for program P is finished if
curr state(D) cannot be reduced. A finished derivation D from a query Q =
(L, θ) is successful if curr state(D) = 〈ǫ θ′〉, where ǫ denotes the empty con-
junction. The constraint ∃̄Lθ′ is an answer to Q. A finished derivation is failed if
the last state is not of the form 〈ǫ θ〉. Since evaluation trees may be infinite, we
allow unfinished derivations, where we decide not to further perform reductions.
Derivations can be organized in execution trees: a state S has several children
when its leftmost atom unifies with several program clauses.

3 Decompilation of Bytecode to CLP

Let us first briefly describe the bytecode language we consider. It is a very
simple imperative low-level language in the spirit of Java bytecode, without
object-oriented features and restricted to manipulate only integer numbers. It
uses an operand stack to perform computations and has an unstructured control
flow with explicit conditional and unconditional goto instructions. A bytecode
program is organized in a set of methods which are the basic (de)compilation
units of the bytecode. The code of a method m consists of a sequence of byte-
code instructions BCm =< pc0 : bc0, . . . , pcnm

: bcnm
> with pc0, . . . , pcnm

being
consecutive natural numbers. The instruction set is:

BcInst ::= push(x) | load(v) | store(v) | add | sub | mul | div | rem | neg |
if ⋄ (pc) | if0 ⋄ (pc) | goto(pc) | return | call(mn)

where ⋄ is a comparison operator (eq, le, gt, etc.), v a local variable, x an integer,
pc an instruction index and mn a method name. The instructions push, load and
store transfer values or constants from a local variable to the stack (and vice
versa); add, sub, mul, div, rem and neg perform arithmetic operations, rem is the
division remainder and neg the negation; if and if0 are conditional branching in-
structions (with the special case of comparisons with 0); goto is an unconditional
branching; return marks the end of methods returning an integer and call invokes
a method.

Figure 1 depicts the control flow graphs (CFGs) [1] and, within them, the
bytecode instructions associated to the methods lcm (on the left), gcd (on the
right) and abs (at the bottom). A Java-like source code for them is shown to
the left of the figure. It is important to note that we show source code only for
clarity, as our approach works directly on the bytecode. The use of the operand
stack can be observed in the example: the bytecode instructions at pc 0 and 1

in lcm load the values of parameters x and y (resp.) to the stack before invoking
the method gcd. Method parameters and local variables in the program are
referenced by consecutive natural numbers starting from 0 in the bytecode. The
result of executing the method gcd has been stored on the top of the stack.
At pc 3, this value is popped and assigned to variable 2 (called gcd in the Java
program). The branching at the end of Block1 is due to the fact that the division
bytecode instruction div can throw an exception if the divisor is zero (control

8 E. Albert, M. Gómez-Zamalloa, and G. Puebla

int lcm(int x,int y){

int gcd = gcd(x,y);

return abs(x*y/gcd);

}

int gcd(int x,int y){

int res;

while (y != 0){

res = x%y;

x = y; y = res;

}

return abs(x);

}

int abs(int x){

if (x >= 0)

return x;

else return -x;

}

0:load(1)

1:if0eq(11)

2:load(0)

3:load(1)

4:rem

5:store(2)

6:load(1)

7:store(0)

8:load(2)

9:store(1)

10:goto(0)

11:load(0)

12:call(abs)

13:return

exception(remby0)

4:load(0)

5:neg

6:return

exception(divby0)

2:load(0)

3:return

0:load(0)

1:if0lt(4)

8:div

9:call(abs)

10:return

0:load(0)

1:load(1)

2:call(gcd)

3:store(2)

4:load(0)

5:load(1)

6:mul

7:load(2)

lcm/2 gcd/2

Block1 Block5

Block6

Block8

y �=0

y �=0

Block4
gcd=0

y=0

gcd=0

Block7

y=0

Block11

Block3

Block10

Block9
x≥0

x<0

gcd �=0
Block2

abs/1

Fig. 1. Working example. Source code and CFGs for the bytecode.

goes to Block3). In the bytecode for gcd, we find: conditional jumps, like if0eq

at pc 1, which corresponds to the loop guard, and unconditional jumps, like goto
in pc 10, where the control returns to the loop entry. Note that the bytecode
instruction rem can throw an exception as before.

3.1 Decompilation by PE and Block-Level Decompilation

The decompilation of low-level code to CLP has been the subject of previous
research, see [15,3,21] and their references. In principle, it can be done by defining
an adhoc decompiler (like [2,21]) or by relying on the technique of PE (like
[15,3]). The decompilation of low-level code to CLP by means of PE consists in
specializing a bytecode interpreter implemented in CLP together with (a CLP
representation of) a bytecode program. As the first Futamura projection [11]
predicts, we obtain a CLP residual program which can be seen as a decompiled
and translated version of the bytecode into high-level CLP source. The approach
to TDG that will be presented in the remaining of this paper is independent of
the technique used to generate the CLP decompilation. Thus, we will not explain
the decompilation process (see [15,3,21]) but rather only state the decompilation
requirements our method imposes.

The correctness of decompilation must ensure that there is a one to one corre-
spondence between execution paths in the bytecode and derivations in the CLP
decompiled program. In principle, depending on the particular type of decompi-
lation –and even on the options used within a particular method– we can obtain
different correct decompilations which are valid for the purpose of execution.
However, for the purpose of generating useful test-cases, additional requirements

Test Data Generation of Bytecode by CLP Partial Evaluation 9

lcm([X,Y],Z) :- gcd([X,Y],GCD),P #= X*Y,

lcm1c([GCD,P],Z).

lcm1c([GCD,P],Z) :- GCD #\= 0,D #= P/GCD,

abs([D],Z).

lcm1c([0,_],divby0).

abs([X],Z) :- abs9c(X,Z).

abs9c(X,X) :- X #>= 0.

abs9c(X,Z) :- X #< 0, Z #= -X.

gcd([X,Y],Z) :- gcd4(X,Y,Z).

gcd4(X,Y,Z) :- gcd4c(X,Y,Z).

gcd4c(X,0,Z) :- abs([X],Z).

gcd4c(X,Y,Z) :- Y #\= 0,

gcd6c(X,Y,Z).

gcd6c(X,Y,Z) :- Y #\= 0,

R #= X mod Y,

gcd4(Y,R,Z).

gcd6c(_,0,remby0).

Fig. 2. Block-level decompilation to CLP for working example

are needed: we must be able to define coverage criteria on the CLP decompi-
lation which produce test-cases which cover the equivalent coverage criteria for
the bytecode. The following notion of block-level decompilation, introduced in
[12], provides a sufficient condition for ensuring that equivalent coverage criteria
can be defined.

Definition 1 (block-level decompilation). Given a bytecode program BC
and its CLP-decompilation P , a block-level decompilation ensures that, for each
block in the CFGs of BC, there exists a single corresponding rule in P which
contains all bytecode instructions within the block.

The above notion was introduced in [12] to ensure optimality in decompilation, in
the sense that each program point in the bytecode is traversed, and decompiled
code is generated for it, at most once. According to the above definition there is
a one to one correspondence between blocks in the CFG and rules in P , as the
following example illustrates. The block-level requirement is usually an implicit
feature of adhoc decompilers (e.g., [2,21]) and canbe also enforced in decompilation
by PE (e.g., [12]).

Example 1. Figure 2 shows the code of the block-level decompilation to CLP of
our running example which has been obtained using the decompiler in [12] and
uses CLP(FD) built-in operations (in particular those in the clpfd library of
Sicstus Prolog). The input parameters to methods are passed in a list (first
argument) and the second argument is the output value. We can observe that
each block in the CFG of the bytecode of Fig. 1 is represented by a correspond-
ing clause in the above CLP program. For instance, the rules for lcm and lcm1c

correspond to the three blocks in the CFG for method lcm. The more inter-
esting case is for method gcd, where the while loop has been converted into
a cycle in the decompiled program formed by the predicates gcd4, gcd4c, and
gcd6c. In this case, since gcd4 is the head of a loop, there is one more rule (gcd)
than blocks in the CFG. This additional rule corresponds to the method entry.
Bytecode instructions are decompiled and translated to their corresponding op-
erations in CLP; conditional statements are captured by the continuation rules.

10 E. Albert, M. Gómez-Zamalloa, and G. Puebla

For instance, in gcd4, the bytecode instruction at pc 0 is executed to unify a
stack position with the local variable y. The conditional if0eq at pc 1 leads
to two continuations, i.e. two rules for predicate gcd4c: one for the case when
y=0 and another one for y �=0. Note that we have explicit rules to capture the
exceptional executions (which will allow generating test-cases which correspond
to exceptional executions). Note also that in the decompiled program there is no
difference between calls to blocks and method calls. E.g., the first rule for lcm

includes in its body a method call to gcd and a block call lcm1c.

4 Test Data Generation Using CLP Decompiled
Programs

Up to now, the main motivation for CLP decompilation has been to be able
to perform static analysis on a decompiled program in order to infer properties
about the original bytecode. If the decompilation approach produces CLP pro-
grams which are executable, then such decompiled programs can be used not
only for static analysis, but also for dynamic analysis and execution. Note that
this is not always the case, since there are approaches (like [2,21]) which are
aimed at producing static analysis targets only and their decompiled programs
cannot be executed.

4.1 Symbolic Execution for Glass-Box Testing

A novel interesting application of CLP decompilation which we propose in this
work is the automatic generation of glass-box test data. We will aim at generating
test-cases which traverse as many different execution paths as possible. From this
perspective, different test data should correspond to different execution paths.
With this aim, rather than executing the program starting from different input
values, a well-known approach consists in performing symbolic execution such
that a single symbolic run captures the behaviour of (infinitely) many input
values. The central idea in symbolic execution is to use constraint variables
instead of actual input values and to capture the effects of computation using
constraints (see Sec. 1).

Several symbolic execution engines exist for languages such as Java [4] and
Java bytecode [23,22]. An important advantage of CLP decompiled programs
w.r.t. their bytecode counterparts is that symbolic execution does not require,
at least in principle, to build a dedicated symbolic execution mechanism. In-
stead, we can simply run the decompiled program by using the standard CLP
execution mechanism with all arguments being distinct free variables. E.g., in
our case we can execute the query lcm([X, Y], Z). By running the program with-
out input values on a block level decompiled program, each successful execution
corresponds to a different computation path in the bytecode. Furthermore, along
the execution, a constraint store on the program’s variables is obtained which

Test Data Generation of Bytecode by CLP Partial Evaluation 11

can be used for inferring the conditions that the input values (in our case X and
Y) must satisfy for the execution to follow the corresponding computation path.

4.2 From Constraint Stores to Test Data

An inherent assumption in the symbolic execution approach, regardless of whether
a dedicated symbolic execution engine is built or the default CLP execution is
used, is that all valuations of constraint variables which satisfy the constraints
in the store (if any) result in input data whose computation traverses the same
execution path. Therefore, it is irrelevant, from the point of view of the execution
path, which actual values are chosen as representatives of a given store. In any
case, it is often required to find a valuation which satisfies the store. Note that
this is a strict requirement if we plan to use the bytecode program for testing,
though it is not strictly required if we plan to use the decompiled program for
testing, since we could save the final store and directly use it as input test data.
Then, execution for the test data should load the store first and then proceed
with execution. In what follows, we will concentrate on the first alternative, i.e.,
we generate actual values as test data.

This postprocessing phase is straightforward to implement if we use CLP(FD)
as the underlying constraint domain, since it is possible to enumerate values
for variables until a solution which is consistent with the set of constraints is
found (i.e., we perform labeling). Note, however, that it may happen that some
of the computed stores are indeed inconsistent and that we cannot find any
valuation of the constraint variables which simultaneously satisfies all constraints
in the store. This may happen for unfeasible paths, i.e., those which do not
correspond to any actual execution. Given a decompiled method M, an integer
subdomain [RMin,RMax], the predicate generate test data/4 below produces,
on backtracking, a (possibly infinite) set of values for the variables in Args and
the result value in Z.

generate test data(M,Args,[RMin,RMax],Z) :-

domain(Args,RMin,RMax), Goal =..[M,Args,Z],

call(Goal), once(labeling([ff],Args)).

Note that the generator first imposes an integer domain for the program vari-
ables by means of the call to domain/3; then builds the Goal and executes it
by means of call(Goal) to generate the constraints; and finally invokes the
enumeration predicate labeling/2 to produce actual values compatible with
the constraints1. The test data obtained are in principle specific to some inte-
ger subdomain; indeed our bytecode language only handles integers. This is not
necessarily a limitation, as the subdomain can be adjusted to the underlying
bytecode machine limitations, e.g., [−231, 231 − 1] in the Java virtual machine.
Note that if the variables take floating point values, then other constraint do-
mains such as CLP(R) or CLP(Q) should be used and then, other mechanisms
for generating actual values should be used.

1 We are using the clpfd library of Sicstus Prolog. See [26] for details on predicates
domain/3, labeling/2, etc.

12 E. Albert, M. Gómez-Zamalloa, and G. Puebla

5 An Evaluation Strategy for Block-Count(k) Coverage

As we have seen in the previous section, an advantage of using CLP decompiled
programs for test data generation is that there is no need to build a symbolic
execution engine. However, an important problem with symbolic execution, re-
gardless of whether it is performed using CLP or a dedicated execution engine,
is that the execution tree to be traversed is in most cases infinite, since programs
usually contain iterative constructs such as loops and recursion which induce an
infinite number of execution paths when executed without input values.

Example 2. Consider the evaluation of the call lcm([X,Y],Z), depicted in Fig. 3.
There is an infinite derivation (see the rightmost derivation in the tree) where
the cycle {gcd4,gcd4c,gcd6c} is traversed forever. This happens because the
value in the second argument position of gcd4c is not ground during symbolic
computation.

Therefore, it is essential to establish a termination criterion which guarantees
that the number of paths traversed remains finite, while at the same time an
interesting set of test data is generated.

5.1 Block-count(k): A Coverage Criteria for Bytecode

In order to reason about how interesting a set of test data is, a large series
of coverage criteria have been developed over the years which aim at guaran-
teeing that the program is exercised on interesting control and/or data flows.
In this section we present a coverage criterion of interest to bytecode programs.
Most existing coverage criteria are defined on high-level, structured programming
languages. A widely used control-flow based coverage criterion is loop-count(k),
which dates back to 1977 [16], and limits the number of times we iterate on loops
to a threshold k. However, bytecode has an unstructured control flow: CFGs can
contain multiple different shapes, some of which do not correspond to any of the
loops available in high-level, structured programming languages. Therefore, we
introduce the block-count(k) coverage criterion which is not explicitly based on
limiting the number of times we iterate on loops, but rather on counting how
many times we visit each block in the CFG within each computation. Note that
the execution of each method call is considered as an independent computation.

Definition 2 (block-count(k)). Given a natural number k, a set of compu-
tation paths satisfies the block-count(k) criterion if the set includes all finished
computation paths which can be built such that the number of times each block
is visited within each computation does not exceed the given k.

Therefore, if we take k = 1, this criterion requires that all non-cyclic paths be
covered. Note that k = 1 will in general not visit all blocks in the CFG, since
traversing the loop body of a while loop requires k ≥ 2 in order to obtain a
finished path. For the case of structured CFGs, block-count(k) is actually equiv-
alent to loop-count(k′), by simply taking k′ to be k-1. We prefer to formulate
things in terms of block-count(k) since, formulating loop-count(k) on unstruc-
tured CFGs is awkward.

Test Data Generation of Bytecode by CLP Partial Evaluation 13

lcm([X, Y], Z) : R1

��

gcd([X, Y], Z), P#= X∗Y, lcm1c([GCD, P], Z) : R2

��

gcd4(X,Y,GCD) , . . . : R3

��

gcd4c(X, Y, GCD), . . . : R4
{Y =0}

�������� {Y �=0}

����������

abs([X],GCD) , . . . : R11

{X≥0}
∗�������� {X<0, GCD= −X}

∗ ��������

gcd6c(X, Y, GCD), . . . : R5

{Y �=0} {R=XmodY }��

lcm1c([X, 0], Z)

{X �=0} ��
{X=0}

{Z=divby0}

����������

lcm1c([GCD, 0], Z)

{X=0} ��

gcd4(Y,R,GCD) , . . . : R6

��

abs([0],Z) : R12

{Z=0} ∗
��

true(L2) abs([0],Z)

{Z=0} ∗
��

gcd4c(Y, R, GCD), . . . : R7

{R=0} ��
{R �=0}

����������

true(L1) true(L3) abs([Y],GCD) , . . . : R10

∗
.�������� ∗

��

gcd6c(R, R′, GCD), . . . : R8

{R �=0, R′=Y modR} ��

true(L4) true(L5)true(L6) true(L7) gcd4(R,R’,GCD) , . . . : R9

��
∞

Fig. 3. An evaluation tree for lcm([X,Y],Z)

5.2 An Intra-procedural Evaluation Strategy for Block-Count(k)

Fig. 3 depicts (part of) an evaluation tree for lcm([X,Y],Z). Each node in the
tree represents a state, which as introduced in Sec. 2, consists of a goal and a
store. In order not to clutter the figure, for each state we only show the relevant
part of the goal, but not the store. Also, an arc in the tree may involve several
reduction steps. In particular, the constraints which precede the leftmost atom
(if any) are always processed. Likewise, at least one reduction step is performed
on the leftmost atom w.r.t. the program rule whose head unifies with the atom.
When more than one step is performed, the arc is labelled with “∗”. Arcs are
annotated with the constraints processed at each step. Each branch in the tree
represents a derivation.

Our aim is to supervise the generation of the evaluation tree so that we gen-
erate sufficiently many derivations so as to satisfy the block-count(k) criterion
while, at the same time, guaranteeing termination.

Definition 3 (intra-procedural evaluation strategy). The following two
conditions provide an evaluation strategy which ensures block-count(k) in intra-
procedural bytecode (i.e., we consider a single CFG for one method):

(i) annotate every state in the evaluation tree with a multiset, which we refer to
as visited, and which contains the predicates which have been already reduced
during the derivation;

(ii) atoms can only be reduced if there are at most k − 1 occurrences of the
corresponding predicate in visited.

14 E. Albert, M. Gómez-Zamalloa, and G. Puebla

It is easy to see that this evaluation strategy is guaranteed to always produce a
finite evaluation tree since there is a finite number of rules which can unify with
any given atom and therefore non-termination can only be introduced by cycles
which are traversed an unbounded number of times. This is clearly avoided by
limiting the number of times which resolution can be performed w.r.t. the same
predicate.

Example 3. Let us consider the rightmost derivation in Fig. 3, formed by goals
R1 to R9. Observe the framed atoms for gcd4, the goals R3, R6 and R9 contain
an atom for gcd4 as the leftmost literal. If we take k = 1 then resolvent R6
cannot be further reduced since the termination criterion forbids it, as gcd4 is
already once in the multiset of visited predicates. If we take k = 2 then R6 can
be reduced and the termination criterion is fired at R9, which cannot be further
reduced.

5.3 An Inter-procedural Evaluation Strategy Based on Ancestors

The strategy of limiting the number of reductions w.r.t. the same predicate
guarantees termination. Furthermore, it also guarantees that the block-count(k)
criterion is achieved, but only if the program consists of a single CFG, i.e.,
at most one method. If the program contains more than one method, as in
our example, this evaluation strategy may force termination too early, without
achieving block-count(k) coverage.

Example 4. Consider the predicate abs. Any successful derivation which does
not correspond to exceptions in the bytecode program has to execute this pred-
icate twice, once from the body of method lcm and another one from the body
of method gcd. Therefore, if we take k = 1, the leftmost derivation of the tree in
Fig. 3 will be stopped at R12, since the atom to be reduced is considered to be a
repeated call to predicate abs. Thus, the test-case for the successful derivation
L1 is not obtained. As a result, our evaluation strategy would not achieve the
block-count(k) criterion.

The underlying problem is that we are in an inter-procedural setting, i.e., byte-
code programs contain method calls. In this case –meanwhile decompiled ver-
sions of bytecode programs without method calls always consist of binary rules–
decompiled programs may have rules with several atoms in their body. This is
indeed the case for the rule for lcm in Ex. 1, which contains an atom for predicate
gcd and another one for predicate lcm1c. Since under the standard left-to-right
computation rule, the execution of gcd is finished by the time execution reaches
lcm1c there is no need to take the computation history of gcd into account when
supervising the execution of lcm1c. In our example, the execution of gcd often
involves an execution of abs which is finished by the time the call to abs is
performed within the execution of lcm1c. This phenomenon is well known prob-
lem in the context of partial evaluation. There, the notion of ancestor has been
introduced [5] to allow supervising the execution of conjuncts independently by

Test Data Generation of Bytecode by CLP Partial Evaluation 15

only considering visited predicates which are actually ancestors of the current
goal. This allows improving accuracy in the specialization.

Given a reduction step where the leftmost atom A is substituted by B1, . . . , Bm,
we say that A is the parent of the instance of Bi for i = 1, . . . , m in the new goal
and in each subsequent goal where the instance originating from Bi appears. The
ancestor relation is the transitive closure of the parent relation. The multiset of
ancestors of the atom for abs in goal R12 in the SLD tree is {lcm1c,lcm}, as
lcm1c is its parent and lcm the parent of its parent. Importantly, abs is not in
such multiset. Therefore, the leftmost computation in Fig. 3 will proceed upon
R12 thus producing the corresponding test-case for every k ≥ 1. The evaluation
strategy proposed below relies on the notion of ancestor sequence.

Definition 4 (inter-procedural evaluation strategy). The following two
conditions provide an evaluation strategy which ensures block-count(k) in inter-
procedural bytecode (i.e., we consider several CFGs and methods):

(i) annotate every atom in the evaluation tree with a multiset which contains its
ancestor sequence which we refer to as ancestors;

(ii) atoms can only be reduced if there are at most k − 1 occurrences of the
corresponding predicate in its ancestors.

The next section provides practical means to implement this strategy.

6 Test Data Generation by Partial Evaluation

We have seen in Sec. 5 that a central issue when performing symbolic execu-
tion for TDG consists in building a finite (possibly unfinished) evaluation tree
by using a non-standard execution strategy which ensures both a certain cover-
age criterion and termination. An important observation is that this is exactly
the problem that unfolding rules, used in partial evaluators of (C)LP, solve. In
essence, partial evaluators are non-standard interpreters which receive a set of
partially instantiated atoms and evaluate them as determined by the so-called
unfolding rule. Thus, the role of the unfolding rule is to supervise the process of
building finite (possibly unfinished) SLD trees for the atoms. This view of TDG
as a PE problem has important advantages. First, as we show in Sec. 6.1, we
can directly apply existing, powerful, unfolding rules developed in the context of
PE. Second, in Sec. 6.2, we show that it is possible to explore additional abilities
of partial evaluators in the context of TDG. Interestingly, the generation of a
residual program from the evaluation tree returns a program which can be used
as a test-case generator for obtaining further test-cases.

6.1 Using an Unfolding Rule for Implementing Block-Count(k)

Sophisticated unfolding rules exist which incorporate non-trivial mechanisms
to stop the construction of SLD trees. For instance, unfolding rules based on
comparable atoms allow expanding derivations as long as no previous comparable
atom (same predicate symbol) has been already visited. As already discussed, the

16 E. Albert, M. Gómez-Zamalloa, and G. Puebla

use of ancestors [5] can reduce the number of atoms for which the comparability
test has to be performed.

In PE terminology, the evaluation strategy outlined in Sec. 5 corresponds to
an unfolding rule which allows k comparable atoms in every ancestor sequence.
Below, we provide an implementation, predicate unfold/3, of such an unfold-
ing rule. The CLP decompiled program is stored as clause/2 facts. Predicate
unfold/3 receives as input parameters an atom as the initial goal to evaluate,
and the value of constant k. The third parameter is used to return the resolvent
associated with the corresponding derivation.

unfold(A,K,[load_st(St)|Res]) :-

unf([A],K,[],Res),

collect_vars([A|Res],Vars),

save_st(Vars,St).

unf([],_K,_AS,[]).

unf([A|R],K,AncS,Res) :-

constraint(A),!, call(A),

unf(R,K,AncS,Res).

unf([’pop’|R],K,[_|AncS],Res) :-

!, unf(R,K,AncS,Res).

unf([A|R],K,AncS,Res) :-

clause(A,B), functor(A,F,Ar),

(check(AncS,F,Ar,K) ->

append(B,[’pop’|R],NewGoal),

unf(NewGoal,K,[F/Ar|AncS],Res)

; Res = [A|R]).

check([],_,_,K) :- K > 0.

check([F/Ar|As],F,Ar,K) :- !, K > 1,

K1 is K - 1, check(As,F,Ar,K1).

check([_|As],F,Ar,K) :- check(As,F,Ar,K).

Predicate unfold/3 first calls unf/4 to perform the actual unfolding and then,
after collecting the variables from the resolvent and the initial atom by means of
predicate collect vars/2, it saves the store of constraints in variable St so that
it is included inside the call load st(St) in the returned resolvent. The reason
why we do this will become clear in Sect. 6.2. Let us now explain intuitively the
four rules which define predicate unf/4. The first one corresponds to having an
empty goal, i.e., the end of a successful derivation. The second rule corresponds
to the first case in the operational semantics presented in Sec. 2, i.e., when the
leftmost literal is a constraint. Note that in CLP there is no need to add an
argument for explicitly passing around the store, which is implicitly maintained
by the execution engine by simply executing constraints by means of predicate
call/1. The second case of the operational semantics in Sec. 2, i.e., when the
leftmost literal is an atom, corresponds to the fourth rule. Here, on backtracking
we look for all rules asserted as clause/2 facts whose head unifies with the
leftmost atom. Note that depending on whether the number of occurrences of
comparable atoms in the ancestors sequence is smaller than the given k or not,
the derivation continues or it is stopped. The termination check is performed by
predicate check/4.

In order to keep track of ancestor sequences for every atom, we have adopted
the efficient implementation technique, proposed in [25], based on the use of a
global ancestor stack. Essentially, each time an atom A is unfolded using a rule
H : −B1, . . . , Bn, the predicate name of A, pred(A), is pushed on the ancestor
stack (see third argument in the recursive call). Additionally, a pop mark is
added to the new goal after B1, . . . , Bn (call to append/3) to delimit the scope
of the predecessors of A such that, once those atoms are evaluated, we find the
mark pop and can remove pred(A) from the ancestor stacks. This way, the

Test Data Generation of Bytecode by CLP Partial Evaluation 17

ancestor stack, at each stage of the computation, contains the ancestors of the
next atom which will be selected for resolution. If predicate check/4 detects that
the number of occurrences of pred(A) is greater than k, the derivation is stopped
and the current goal is returned in Res.The third rule of unf/4 corresponds to
the case where the leftmost atom is a pop literal. This indicates that the the
execution of the atom which is on top of the ancestor stack has been completed.
Hence, this atom is popped from the stack and the pop literal is removed from
the goal.

Example 5. The execution of unfold(lcm([X,Y],Z),2,[]) builds a finite (and
hence unfinished) version of the evaluation tree in Fig. 3. For k = 2, the infinite
branch is stopped at goal R9, since the ancestor stack at this point is [gcd6c,

gcd4c,gcd4,gcd6c,gcd4c,gcd4,lcm] and hence it already contains gcd4 twice.
This will make the check/4 predicate fail and therefore the derivation is stopped.
More interestingly, we can generate test-cases, if we consider the following call:

findall(([X,Y],Z),unfold([gen test data(lcm,[X,Y],[-1000,1000],Z)],2,[]),TCases).

where generate test data is defined as in Sec. 4. Now, we get on backtrack-
ing, concrete values for variables X, Y and Z associated to each finished deriva-
tion of the tree.2 They correspond to test data for the block-count(2) coverage
criteria of the bytecode. In particular, we get the following set of test-cases:
TCases = [([1,0],0), ([0,0],divby0), ([-1000,0],0), ([0,1],0), ([-1000,1],1000), ([-1000,-

1000], 1000),([1,-1],1)] which correspond, respectively, to the leaves labeled as
(L1),...,(L7) in the evaluation tree of Fig. 3. Essentially, they constitute a par-
ticular set of concrete values that traverses all possible paths in the bytecode,
including exceptional behaviours, and where the loop body is executed at most
once.

The soundness of our approach to TDG amounts to saying that the above im-
plementation, executed on the CLP decompiled program, ensures termination
and block-count(k) coverage on the original bytecode.

Proposition 1 (soundness). Let m be a method with n arguments and BCm

its bytecode instructions. Let m([X1, . . . , Xn], Y) be the corresponding decompiled
method and let the CLP block-level decompilation of BCm be asserted as a set
of clause/2 facts. For every positive number k, the set of successful derivations
computed by unf(m([X1, . . . , Xn], Y), k, [], [],) ensures block-count(k) coverage of
BCm.

Intuitively, the above result follows from the facts that: (1) the decompilation
is correct and block-level, hence all traces in the bytecode are derivations in
the decompiled program as well as loops in bytecode are cycles in CLP; (2) the
unfolding rule computes all feasible paths and traverses cycles at most k times.

2 We force to consider just finished derivations by providing [] as the obtained re-
sultant.

18 E. Albert, M. Gómez-Zamalloa, and G. Puebla

6.2 Generating Test Data Generators

The final objective of a partial evaluator is to generate optimized residual code.
In this section, we explore the applications of the code generation phase of par-
tial evaluators in TDG. Let us first intuitively explain how code is generated.
Essentially, the residual code is made up by a set of resultants or residual rules
(i.e., a program), associated to the root-to-leaf derivations of the computed eval-
uation trees. For instance, consider the rightmost derivation of the tree in Fig. 3,
the associated resultant is a rule whose head is the original atom (applying the
mgu’s to it) and the body is made up by the atoms in the leaf of the derivation.
If we ignore the constraints gathered along the derivation (which are encoded in
load st(S) as we explain below), we obtain the following resultant:

lcm([X,Y],Z) :- load st(S), gcd4(R,R’,GCD), P #= X*Y, lcm1c([GCD,P],Z).

The residual program will be (hopefully) executed more efficiently than the orig-
inal one since those computations that depend only on the static data are per-
formed once and for all at specialization time. Due to the existence of incom-
plete derivations in evaluation trees, the residual program might not be complete
(i.e., it can miss answers w.r.t. the original program). The partial evaluator in-
cludes an abstraction operator which is encharged of ensuring that the atoms
in the leaves of incomplete derivations are “covered” by some previous (par-
tially evaluated) atom and, otherwise, adds the uncovered atoms to the set of
atoms to be partially evaluated. For instance, the atoms gcd4(R,R’,GCD) and
lcm1c([GCD,P],Z) above are not covered by the single previously evaluated
atom lcm([X,Y],Z) as they are not instances of it. Therefore, a new unfolding
process must be started for each of the two atoms. Hence the process of build-
ing evaluation trees by the unfolding operator is iteratively repeated while new
atoms are uncovered. Once the final set of trees is obtained, the resultants are
generated from their derivations as described above.

Now, we want to explore the issues behind the application of a full partial
evaluator, with its code generation phase, for the purpose of TDG. Novel inter-
esting questions arise: (i) what kind of partial evaluator do we need to specialize
decompiled CLP programs?; (ii) what do we get as residual code?; (iii) what are
the applications of such residual code? Below we try to answer these questions.

As regards question (i), we need to extend the mechanisms used in standard
PE of logic programming to support constraints. The problem has been already
tackled, e.g., by [8] to which we refer for more details. Basically, we need to take
care of constraints at three different points: first, during the execution, as already
done by call within our unfolding rule unfold/3; second, during the abstraction
process, we can either define an accurate abstraction operator which handles
constraints or, as we do below, we can take a simpler approach which safely
ignores them; third, during code generation, we aim at generating constrained
rules which integrate the store of constraints associated to their corresponding
derivations. To handle the last point, we enhance our schema with the next
two basic operations on constraints which are used by unfold/3 and were left

Test Data Generation of Bytecode by CLP Partial Evaluation 19

unexplained in Sec. 6.1. The store is saved and projected by means of predicate
save st/2, which given a set of variables in its first argument, saves the current
store of the CLP execution, projects it to the given variables and returns the
result in its second argument. The store is loaded by means of load st/1 which
given an explicit store in its argument adds the constraints to the current store.
Let us illustrate this process by means of an example.

Example 6. Consider a partial evaluator of CLP which uses as control strate-
gies: predicate unfold/3 as unfolding rule and a simple abstraction opera-
tor based on the combination of the most specific generalization and a check
of comparable terms (as the unfolding does) to ensure termination. Note
that the abstraction operator ignores the constraint store. Given the entry,
gen test data(lcm,[X,Y],[-1000,1000],Z), we would obtain the following resid-
ual code for k = 2:

gen_test_data(lcm,[1,0],[-1000,1000],0).

gen_test_data(lcm,[0,0],[-1000,1000],

divby0).

...

gen_test_data(lcm,[X,Y],[-1000,1000],Z) :-

load_st(S1), gcd4(R,R’,GCD),

P #= X*Y, lcm1c([GCD,P],Z),

once(labeling([ff],[X,Y])).

gcd4(R,0,R) :- load_st(S2).

gcd4(R,0,GCD) :- load_st(S3).

gcd4(R,R’,GCD) :- load_st(S4),

gcd4(R’,R’’,GCD).

lcm1c([GCD,P],Z) :- load_st(S5).

lcm1c([GCD,P],Z) :- load_st(S6).

lcm1c([0,_P],divby0).

The residual code for gen test data/4 contains eight rules. The first seven
ones are facts corresponding to the seven successful branches (see Fig. 3). Due
to space limitations here we only show two of them. Altogether they repre-
sent the set of test-cases for the block-count(2) coverage criteria (those in
Ex. 6.1). It can be seen that all rules (except the facts3) are constrained as
they include a residual call to load st/1. The argument of load st/1 contains
a syntactic representation of the store at the last step of the corresponding
derivation. Again, due to space limitations we do not show the stores. As an
example, S1 contains the store associated to the rightmost derivation in the
tree of Fig. 3, namely {X in -1000..1000, Y in (-1000..-1)∨(1..1000), R in

(-999.. -1) ∨ (1..999), R’ in -998..998, R = X mod Y, R’ = Y mod R}. This
store acts as a guard which comprises the constraints which avoid the execu-
tion of the paths previously computed to obtain the seven test-cases above.

We can now answer issue (ii): it becomes apparent from the example above that
we have obtained a program which is a generator of test-cases for larger values
of k. The execution of the generator will return by backtracking the (infinite) set
of values exercising all possible execution paths which traverse blocks more than
twice. In essence, our test-case generators are CLP programs whose execution
in CLP returns further test-cases on demand for the bytecode under test and
without the need of starting the TDG process from scratch.

3 For the facts, there is no need to consider the store, because a call to labeling has
removed all variables.

20 E. Albert, M. Gómez-Zamalloa, and G. Puebla

Here, it comes issue (iii): Are the above generators useful? How should we
use them? In addition to execution (see inherent problems in Sec. 4), we might
further partially evaluate them. For instance, we might partially evaluate the
above specialized version of gen test data/4 (with the same entry) in order
to incrementally generate test-cases for larger values of k. It is interesting to
observe that by using k = 1 for all atoms different from the initial one, this
further specialization will just increment the number of gen test data/4 facts
(producing more concrete test-cases) but the rest of the residual program will
not change, in fact, there is no need to re-evaluate it later.

7 Conclusions and Related Work

We have proposed a methodology for test data generation of imperative, low-level
code by means of existing partial evaluation techniques developed for constraint
logic programs. Our approach consist of two separate phases: (1) the compilation
of the imperative bytecode to a CLP program and (2) the generation of test-cases
from the CLP program. It naturally raises the question whether our approach
can be applied to other imperative languages in addition to bytecode. This is
interesting as existing approaches for Java [23], and for C [13], struggle for dealing
with features like recursion, method calls, dynamic memory, etc. during symbolic
execution. We have shown in the paper that these features can be uniformly
handled in our approach after the transformation to CLP. In particular, all kinds
of loops in the bytecode become uniformly represented by recursive predicates in
the CLP program. Also, we have seen that method calls are treated in the same
way as calls to blocks. In principle, this transformation can be applied to any
language, both to high-level and to low-level bytecode, the latter as we have seen
in the paper. In every case, our second phase can be applied to the transformed
CLP program.

Another issue is whether the second phase can be useful for test-case genera-
tion of CLP programs, which are not necessarily obtained from a decompilation
of an imperative code. Let us review existing work for declarative programs.
Test data generation has received comparatively less attention than for impera-
tive languages. The majority of existing tools for functional programs are based
on black-box testing [6,18]. Test cases for logic programs are obtained in [24] by
first computing constraints on the input arguments that correspond to execution
paths of logic programs and then solving these constraints to obtain test inputs
for the corresponding paths. This corresponds essentially to the naive approach
discussed in Sec. 4, which is not sufficient for our purposes as we have seen in
the paper. However, in the case of the generation of test data for regular CLP
programs, we are interested not only in successful derivations (execution paths),
but also in the failing ones. It should be noted that the execution of CLP decom-
piled programs, in contrast to regular CLP programs, for any actual input values
is guaranteed to produce exactly one solution because the operational semantics
of bytecode is deterministic. For functional logic languages, specific coverage cri-
teria are defined in [10] which capture the control flow of these languages as well

Test Data Generation of Bytecode by CLP Partial Evaluation 21

as new language features are considered, namely laziness. In general, declara-
tive languages pose different problems to testing related to their own execution
models –like laziness in functional languages and failing derivations in (C)LP–
which need to be captured by appropriate coverage criteria. Having said this,
we believe our ideas related to the use of PE techniques to generate test data
generators and the use of unfolding rules to supervise the evaluation could be
adapted to declarative programs and remains as future work.

Our work is a proof-of-concept that partial evaluation of CLP is a power-
ful technique for carrying out TDG in imperative low-level languages. To de-
velop our ideas, we have considered a simple imperative bytecode language
and left out object-oriented features which require a further study. Also, our
language is restricted to integer numbers and the extension to deal with real
numbers is subject of future work. We also plan to carry out an experi-
mental evaluation by transforming Java bytecode programs from existing test
suites to CLP programs and then trying to obtain useful test-cases. When
considering realistic programs with object-oriented features and real num-
bers, we will surely face additional difficulties. One of the main practical is-
sues is related to the scalability of our approach. An important threaten to
scalability in TDG is the so-called infeasibility problem [27]. It happens in
approaches that do not handle constraints along the construction of execution
paths but rather perform two independent phases (1) path selection and 2) con-
straint solving). As our approach integrates both parts in a single phase, we do
not expect scalability limitations in this regard. Also, a challenging problem is
to obtain a decompilation which achieves a manageable representation of the
heap. This will be necessary to obtain test-cases which involve data for objects
stored in the heap. For the practical assessment, we also plan to extend our
technique to include further coverage criteria. We want to consider other classes
of coverage criteria which, for instance, generate test-cases which cover a certain
statement in the program.

Acknowledgments. This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS project, by the Spanish Ministry
of Education under the TIN-2005-09207 MERIT project, and by the Madrid
Regional Government under the S-0505/TIC/0407 PROMESAS project.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers - Principles, Techniques and Tools.
Addison-Wesley, Reading (1986)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

3. Albert, E., Gómez-Zamalloa, M., Hubert, L., Puebla, G.: Verification of Java Byte-
code using Analysis and Transformation of Logic Programs. In: Hanus, M. (ed.)
PADL 2007. LNCS, vol. 4354, pp. 124–139. Springer, Heidelberg (2006)

22 E. Albert, M. Gómez-Zamalloa, and G. Puebla

4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS, vol. 4334. Springer, Heidelberg (2007)

5. Bruynooghe, M., De Schreye, D., Martens, B.: A General Criterion for Avoiding
Infinite Unfolding during Partial Deduction. New Generation Computing 1(11),
47–79 (1992)

6. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing of
haskell programs. In: ICFP, pp. 268–279 (2000)

7. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Trans. Software Eng. 2(3), 215–222 (1976)

8. Craig, S.-J., Leuschel, M.: A compiler generator for constraint logic programs. In:
Ershov Memorial Conference, pp. 148–161 (2003)

9. Ferguson, R., Korel, B.: The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol. 5(1), 63–86 (1996)

10. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional
logic programs. In: PPDP, pp. 63–74 (2007)

11. Futamura, Y.: Partial evaluation of computation process - an approach to a
compiler-compiler. Systems, Computers, Controls 2(5), 45–50 (1971)

12. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Modular Decompilation of Low-Level
Code by Partial Evaluation. In: 8th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2008), pp. 239–248. IEEE Com-
puter Society, Los Alamitos (2008)

13. Gotlieb, A., Botella, B., Rueher, M.: A clp framework for computing structural test
data. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U.,
Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS, vol. 1861,
pp. 399–413. Springer, Heidelberg (2000)

14. Gupta, N., Mathur, A.P., Soffa, M.L.: Generating test data for branch coverage.
In: Automated Software Engineering, pp. 219–228 (2000)

15. Henriksen, K.S., Gallagher, J.P.: Abstract interpretation of pic programs through
logic programming. In: SCAM 2006: Proceedings of the Sixth IEEE International
Workshop on Source Code Analysis and Manipulation, pp. 184–196. IEEE Com-
puter Society, Los Alamitos (2006)

16. Howden, W.E.: Symbolic testing and the dissect symbolic evaluation system. IEEE
Transactions on Software Engineering 3(4), 266–278 (1977)

17. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

18. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic auto-
mated software testing. In: IFL, pp. 84–100 (2002)

19. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,
Reading (1996)

20. Marriot, K., Stuckey, P.: Programming with Constraints: An Introduction. MIT
Press, Cambridge (1998)

21. Méndez-Lojo, M., Navas, J., Hermenegildo, M.: A Flexible (C)LP-Based Approach
to the Analysis of Object-Oriented Programs. In: King, A. (ed.) LOPSTR 2007.
LNCS, vol. 4915. Springer, Heidelberg (2008)

22. Meudec, C.: Atgen: Automatic test data generation using constraint logic program-
ming and symbolic execution. Softw. Test., Verif. Reliab. 11(2), 81–96 (2001)

23. Müller, R.A., Lembeck, C., Kuchen, H.: A symbolic java virtual machine for test
case generation. In: IASTED Conf. on Software Engineering, pp. 365–371 (2004)

24. Mweze, N., Vanhoof, W.: Automatic generation of test inputs for mercury pro-
grams. In: Pre-proceedings of LOPSTR 2006 (July 2006) (extended abstract)

Test Data Generation of Bytecode by CLP Partial Evaluation 23

25. Puebla, G., Albert, E., Hermenegildo, M.: Efficient Local Unfolding with Ancestor
Stacks for Full Prolog. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp.
149–165. Springer, Heidelberg (2005)

26. Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista, Sweden.
SICStus Prolog 3.8 User’s Manual, 3.8 edition (October 1999),
http://www.sics.se/sicstus/

27. Zhu, H., Patrick, A., Hall, V., John, H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (1997)

http://www.sics.se/sicstus/

ar
X

iv
:0

90
3.

21
99

v1
 [

cs
.P

L]
 1

2
M

ar
 2

00
9

On the Generation of Test Data for Prolog by

Partial Evaluation

Miguel Gómez-Zamalloa1, Elvira Albert1, and Germán Puebla2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. In recent work, we have proposed an approach to Test Data
Generation (TDG) of imperative bytecode by partial evaluation (PE)
of CLP which consists in two phases: (1) the bytecode program is first
transformed into an equivalent CLP program by means of interpretive
compilation by PE, (2) a second PE is performed in order to supervise
the generation of test-cases by execution of the CLP decompiled pro-
gram. The main advantages of TDG by PE include flexibility to handle
new coverage criteria, the possibility to obtain test-case generators and
its simplicity to be implemented. The approach in principle can be di-
rectly applied for TDG of any imperative language. However, when one
tries to apply it to a declarative language like Prolog, we have found as
a main difficulty the generation of test-cases which cover the more com-
plex control flow of Prolog. Essentially, the problem is that an intrinsic
feature of PE is that it only computes non-failing derivations while in
TDG for Prolog it is essential to generate test-cases associated to fail-
ing computations. Basically, we propose to transform the original Prolog
program into an equivalent Prolog program with explicit failure by par-
tially evaluating a Prolog interpreter which captures failing derivations
w.r.t. the input program. Another issue that we discuss in the paper is
that, while in the case of bytecode the underlying constraint domain only
manipulates integers, in Prolog it should properly handle the symbolic
data manipulated by the program. The resulting scheme is of interest for
bringing the advantages which are inherent in TDG by PE to the field
of logic programming.

1 Introduction

Test data generation (TDG) aims at automatically generating test-cases for in-
teresting test coverage criteria. The coverage criteria measure how well the pro-
gram is exercised by a test suite. Examples of coverage criteria are: statement
coverage which requires that each line of the code is executed; path coverage
which requires that every possible trace through a given part of the code is exe-
cuted; etc. There are a wide variety of approaches to TDG (see [22] for a survey).
Our work focuses on glass-box testing, where test-cases are obtained from the
concrete program in contrast to black-box testing, where they are deduced from
a specification of the program. Also, our focus is on static testing, where we as-
sume no knowledge about the input data, in contrast to dynamic approaches [6]
which execute the program to be tested for concrete input values.

http://arXiv.org/abs/0903.2199v1

On the Generation of Test Data for Prolog by Partial Evaluation 27

The standard approach to generating test-cases statically is to perform a
symbolic execution of the program [18,14,11], where the contents of variables
are expressions rather than concrete values. The symbolic execution produces a
system of constraints consisting of the conditions to execute the different paths.
This happens, for instance, in branching instructions, like if-then-else, where we
might want to generate test-cases for the two alternative branches and hence
accumulate the conditions for each path as constraints. The symbolic execution
approach is usually combined with the use of constraint solvers in order to:
handle the constraints systems by solving the feasibility of paths and, afterwards,
to instantiate the input variables.

TDG for declarative languages has received comparatively less attention than
for imperative languages. In general, declarative languages pose different prob-
lems to testing related to their own execution models, like laziness in func-
tional programming (FP) and failing derivations in constraint logic programming
(CLP). The majority of existing tools for FP are based on black-box testing (see
e.g. [4]). An exception is [7] where a glass-box testing approach is proposed to
generate test-cases for Curry. In the case of CLP, test-cases are obtained for
Prolog in [16,3,21]; and very recently for Mercury in [5]. Basically the test-cases
are obtained by first computing constraints on the input arguments that corre-
spond to execution paths of logic programs and then solving these constraints
to obtain test inputs for such paths.

In recent work [2], we have proposed to employ existing partial evaluation
(PE) techniques developed for CLP in order to automatically generate test-case
generators for glass-box testing of bytecode. PE [13] is an automatic program
transformation technique which has been traditionally used to specialise pro-
grams w.r.t. a known part of its input data and, as Futamura predicted, can
also be used to compile programs in a (source) language to another (object)
language (see [8]). The approach to TDG by PE of [2] consists of two indepen-
dent CLP PE phases. (1) First, the bytecode is transformed into an equivalent
(decompiled) CLP program by specialising a bytecode interpreter by means of
existing PE techniques. (2) A second PE is performed in order to supervise the
generation of test-cases by execution of the CLP decompiled program. Interest-
ingly, it is possible to employ control strategies previously defined in the context
of CLP PE in order to capture coverage criteria for glass-box testing of byte-
code. A unique feature of this approach is that, this second PE phase allows
generating not only test-cases but also test-case generators. Another important
advantage is that, in contrast to previous work to TDG of bytecode, it does not
require devising a dedicated symbolic virtual machine.

In this work, we study the application of the above approach to TDG by
means of PE to the Prolog language. Compared to TDG of an imperative
language [2], dealing with Prolog brings in as the main difficulty to generate
test-cases associated to failing computations. This happens because an intrin-
sic feature of PE is that it only produces results associated to the non-failing
derivations. While this is what we need for TDG of an imperative language (like
bytecode above), we now want to capture non-failing derivations in Prolog and

28 Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla

CLPP

Generator
Test−case

L−to−CLP
Compiler

PL Test−cases

PHASE II

Cov. Criterion
(Unfolding Rule)

TDG (PE)

PHASE I

Fig. 1. General scheme of TDG by Partial Evaluation of CLP

still rely on a standard partial evaluator. Our proposal is to transform the orig-
inal Prolog program into an equivalent Prolog program with explicit failure by
partially evaluating a Prolog interpreter which captures failing derivations w.r.t.
the input program. This transformation is done in the phase (1) above. As an-
other difference, in the case of bytecode, the underlying constraint domain only
manipulates integers. However, the above phase (2) should properly handle the
data manipulated by the program in the case of Prolog. Compared to existing
approaches to TDG of Prolog [3,16], our approach basically is of interest for
bringing the advantages which are inherent in TDG by PE to the field of Prolog:

(i) It is more powerful in that we can produce test-case generators which are
CLP programs whose execution in CLP returns further test-cases on demand
without the need to start the TDG process from scratch;

(ii) It is more flexible, as different coverage criteria can be easily incorporated
to our framework just by adding the appropriate local control to the partial
evaluator.

(iii) It is simpler to implement compared to the development of a dedicated test-
case generator, as long as a CLP partial evaluator is available.

The rest of the paper is organized as follows. In the next section, we give
some basics on PE of logic programs and describe in detail the approach to
TDG by PE proposed in [2]. Sect. 3 discusses some fundamental issues like the
Prolog control-flow and the notion of computation path. Then, Sect. 4 describes
the program transformation to make failure explicit, Sect. 5 outlines existing
methods to properly handle symbolic data during the TDG phase, and finally
Sect. 6 concludes and discusses some ideas for future work.

2 Basics of TDG by Partial Evaluation

In this section we recall the basics of partial evaluation of logic programming
and summarize the general approach of relying on partial evaluation of CLP for
TDG of an imperative language, as proposed in [2].

On the Generation of Test Data for Prolog by Partial Evaluation 29

2.1 Partial Evaluation and its Application to Compilation

We assume familiarity with basic notions of logic programming and partial eval-
uation (see e.g. [9]). Partial evaluation is a semantics-based program transfor-
mation technique which specialises a program w.r.t. given input data, hence,
it is often called program specialisation. Essentially, partial evaluators are non-
standard interpreters which evaluate goals as long as termination is guaranteed
and specialisation is considered profitable. In logic programming, the underlying
technique is to construct (possibly) incomplete SLD trees for the set of atoms to
be specialised. In an incomplete tree, it is possible to choose not to further un-
fold a goal. Therefore, the tree may contain three kinds of leaves: failure nodes,
success nodes (which contain the empty goal), and non-empty goals which are
not further unfolded. The latter are required in order to guarantee termination
of the partial evaluation process, since the SLD being built may be infinite. Even
if the SLD trees for fully instantiated initial atoms (as regards the input argu-
ments) are finite, the SLD trees produced for partially instantiated initial atoms
may be infinite. This is because the SLD for partially instantiated atoms can
have (infinitely many) more branches than the actual SLD tree at run-time.

The role of the local control is to determine how to construct the (incomplete)
SLD trees. In particular, the unfolding rule decides, for each resolvent, whether
to stop unfolding or to continue unfolding it and, if so, which atom to select from
the resolvent. On the other hand, partial evaluators need to compute SLD-trees
for a number of atoms in order to ensure that all atoms which appear in non-
failing leaves of incomplete SLD trees are “covered” by the root of some tree
(this is known as the closedness condition of partial evaluation [9]). The role
of the global control is to ensure that we do not try to compute SLD trees for
an infinite number of atoms. The usual way of achieving this is by applying an
abstraction operator which performs “generalizations” on the atoms for which
SLD trees are to be built. The global control returns a set of atoms T . Finally,
the partial evaluation can then be systematically extracted from the set T (see
[9] for details).

Traditionally, there have been two different approaches regarding the way in
which control decisions are taken, on-line and off-line approaches. In online PE,
all control decisions are dynamically taken during the specialisation phase. In
offline PE, a set of previously computed annotations (often manually provided)
gives information to the control operators to decide, 1) when to stop unfolding
(memoise) in the local control, and 2) how to perform generalizations in the
global control.

The development of PE techniques has allowed the so-called “interpretative
approach” to compilation which consists in specialising an interpreter w.r.t. a
fixed object code. Interpretive compilation was proposed in Futamura’s seminal
work [8], whereby compilation of a program P written in a (source) programming
language LS into another (object) programming language LO is achieved by par-
tially evaluating an interpreter for LS written in LO w.r.t. P . The advantages of
interpretive (de-)compilation w.r.t. dedicated (de-)compilers are well-known and
discussed in the PE literature (see, e.g., [1]). Very briefly, they include: flexibility,

30 Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla

it is easier to modify the interpreter in order to tune the decompilation (e.g.,
observe new properties of interest); easier to trust, it is more difficult to prove
that ad-hoc decompilers preserve the program semantics; easier to maintain,
new changes in the language semantics can be easily reflected in the interpreter.

2.2 A General Scheme to TDG of Imperative Languages by PE

In recent work, we have proposed an approach to Test Data Generation (TDG)
by PE of CLP [2] and used it for TDG of bytecode. The approach is generic
in that the same techniques can be applied to TDG other both low and high-
level imperative languages. In Figure 1 we overview the main two phases of
this technique. In Phase I, the input program written in some (imperative)
language L is compiled into an equivalent CLP program PCLP . This compilation
can be achieved by means of an ad-hoc decompiler (e.g., an ad-hoc decompiler
of bytecode to Prolog [17]) or, more interestingly, can be achieved automatically
by relying on the first Futamura projection by means of PE for logic programs
as explained above (e.g., [12,1,10]).

Now, the aim of Phase II is to generate test-cases which traverse as many
different execution paths of PL as possible, according to a given coverage criteria.
From this perspective, different test data will correspond to different execution
paths. With this aim, rather than executing the program starting from different
input values, the standard approach consists in performing symbolic execution
such that a single symbolic run captures the behavior of (infinitely) many input
values. The central idea in symbolic execution is to use constraint variables
instead of actual input values and to capture the effects of computation using
constraints. Hence, the compilation from L to CLP allows us to use the standard
CLP execution mechanism to carry out this phase. In particular, by running the
PCLP program without input values, each successful execution corresponds to a
different computation path in PL.

Rather than relying on the standard execution mechanism, we have proposed
in [2] to use PE of CLP to carry out Phase II. Essentially, we can rely on a CLP
partial evaluator which is able to solve the constraint system, in much the same
way as a symbolic abstract machine would do. Note that performing symbolic
execution for TDG consists in building a finite (possibly unfinished) evaluation
tree by using a non-standard execution strategy which ensures both a certain
coverage criterion and termination. This is exactly the problem that unfolding
rules, used in partial evaluators of (C)LP, solve. In essence, partial evaluators
are non-standard interpreters which receive a set of partially instantiated atoms
and evaluate them as determined by the so-called unfolding rule. Thus, the
role of the unfolding rule is to supervise the process of building finite (possibly
unfinished) SLD trees for the atoms. This view of TDG as a PE problem has
important advantages. First, we can directly apply existing, powerful, unfolding
rules developed in the context of PE. Second, it is possible to explore additional
abilities of partial evaluators in the context of TDG. In particular, the generation
of a residual program from the evaluation tree returns a program which can be
used as a test-case generator, i.e., a CLP program whose execution in CLP

On the Generation of Test Data for Prolog by Partial Evaluation 31

returns further test-cases on demand without the need to start the TDG process
from scratch. In the rest of the paper, we study the application of this general
approach to TDG of Prolog programs.

3 Computation Paths for Test Data Generation of Prolog

As we have already mentioned, test data generation is about producing test-
cases which traverse as many different execution paths as possible. From this
perspective, different test data should correspond to different execution paths.
Thus, a main concern is to specify the computation paths for which we will pro-
duce test-cases. This requires first to determine the control flow of the considered
language. In this section, we aim at defining the control flow of Prolog programs
that we will use for TDG. Test data will be generated for the computation paths
in the control flow.

3.1 The Control Flow of Prolog

As usual a Prolog program consists of a set of predicates, where each predicate
is defined as a sequence of clauses of the form H :- B1, . . . , Bm with m ≥ 0. A
predicate is univocally determined by its predicate signature p/n, being p the
name of the predicate and n its arity. Throughout the rest of the paper we will
consider Prolog programs with the following features:

– Rules are normalized, i.e., arguments in the head of the rule are distinct
variables. The corresponding bindings will appear explicitly in the body as
unifications.

– Atoms appearing in the bodies of rules can be: unifications (considered as
builtins), calls to defined predicates, term checking builtins (==/2, \==/2,
etc), and arithmetic builtins (is/2, </2, =</2, etc). Other typical Prolog
builtins like fail/0, !/0, if/3, etc, have been deliberately left out to simplify
the presentation.

– All predicates must be moded and well-typed. We will assume the existence
of a “:- pred” declaration associated with each predicate specifying the
type expected for each argument (see as example the declarations in Fig. 2).
Note that this assumption is sensible in the context of TDG (as the aim is
the automatic generation of test input). Also, it should not be a limitation
as analyses that can automatically infer this information exist.

The control flow in Prolog programs is significantly more complex than in tra-
ditional imperative languages. The declarative semantics of Prolog implies some
additional features like: 1) several forms of backtracking, induced by the failure
of a sub-goal, or by non-deterministic predicates; or 2) forced control flow change
by the predicate “cut”. Traditionally, control-flow graphs (CFGs for short) are
used to statically represent the control-flow of programs. Typically, in a CFG,
nodes are blocks containing a set of sequential instructions, and edges represent
the flows that the program can follow w.r.t. the semantics of the corresponding

32 Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla

:- pred foo/2 : num*var.

foo(X,Z) :- X > 0,

Z = pos.

foo(X,Z) :- X = 0,

Z = zero.

foo/2

0 //'& %$! "#X > 0

3no
��

1

yes
//'& %$! "#Z = pos

2

yes
//GFED@ABC?>=<89:;T1

4

redoww'& %$! "#X = 0

7no ��

5

yes
//'& %$! "#Z = zero

6

yes
//GFED@ABC?>=<89:;T2

8

redo

nn?>=<89:;76540123F

:- pred sorted/1:list(num).

sorted(L) :- L = [].

sorted(L) :- L = [_].

sorted(L) :- L = [X,Y|R],

X < Y,

sorted([Y|R]).

sorted/1

0 //'& %$
 ! "#L = []

2no ��

1

yes
//GFED@ABC?>=<89:;T1

3
redo

uull
l
l
l
l
l
l

'& %$
 ! "#L = []

5no ��

4

yes
//GFED@ABC?>=<89:;T2

6
redouull

l
l
l
l
l
l

'& %$
 ! "#L = [X, Y|R]

7

yes
//

8no ��

'& %$! "#X < Y
10

yes
//

9

nouull
l
l
l
l
l
l
l

'& %$
 ! "#sorted([Y|R])

12

rfpp
11

rs ,,?>=<89:;76540123F GFED@ABC?>=<89:;T3
13

redo
]]

Fig. 2. Working example. Prolog code and CFGs.

programming language. In the literature, CFGs for Prolog (and Mercury) have
been used for the aim of TDG in [16,21] ([5] for Mercury). In particular, CFGs
determine the computation paths for which test-cases will be produced. Our
framework relies on the CFGs of [16,21] which are known as p-flowgraph’s.3 As
will be explained later, there are some differences between these CFGs and the
ones in [5] which lead to different test-cases.

Figure 2 depicts the Prolog code together with the corresponding CFGs for
predicates foo/2 and sorted/1. Predicate foo/2, given a number in its first
argument, returns, in the second one, the value pos if the number is positive and
zero if it is zero. If the number is negative, it just fails. Predicate sorted/1,
given a list of numbers, checks whether the list is strictly sorted, in that case it
succeeds, otherwise it fails. The CFGs contain the following nodes:

– a non-terminal node associated to each atom in the body of each clause,
– a set of terminal nodes “Ti” representing the success of the i-th clause, and
– the terminal node “F” to represent failure.

As regards edges, in principle all non-terminal nodes have two output flows,
corresponding to the cases where the builtin or predicate call succeeds or fails
respectively. They are labeled as “yes” or “no” for builtins (including unifica-
tions), and as “rs” (return-after-success) or “rf” (return-after-failure) for pred-
icate calls. There is an exception in the case of unifications where one of the
arguments is a variable, in which case the unification cannot fail. This can be
known statically by using the mode information. See for example nodes “Z=pos”

3 The difference with the CFGs in [16,21] is that they consider one additional node
per clause to explicitly represent the unification of the head of the rule. This is not
needed in our case since predicates are normalised.

On the Generation of Test Data for Prolog by Partial Evaluation 33

and “Z=zero” in the foo/2 CFG. Both “yes” and “rs” edges point to the node
representing the next atom in the clause or to the corresponding “Ti” node if
the atom is the last one. Finally, each “Ti” node has an output edge labeled
as “redo” to represent the case in which the predicate is asked for more solu-
tions. All “no”, “rf” and “redo” edges point either to the node corresponding
to the first previous non-deterministic call in the same clause, or the first node
of the following clause, or the “F” node if no node meets the above conditions.
See as an example the “rs” and “rf” edges from the non-terminal node for
sorted([Y|R]).

3.2 Generating Test Data for Computation Paths

In order to define the computation paths determined by the CFGs, every edge
in every CFG is labeled with a unique natural number. An special edge labeled
with “0” and p/n represents the entry of predicate p/n.

Definition 1 (Computation sub-path). Given the CFG for predicate P , a
computation sub-path is a sequence of numeric labels (natural numbers) 〈l1, . . . , ln〉
s.t.:

– l1 corresponds to either an entry, an “rs”, an “rf” or a “redo” edge,
– ln leads to a terminal node or to a predicate call, and
– for all consecutive labels li, lj, there exists a node corresponding to a builtin

in the CFG of P , for which li is an input flow and lj is an output flow.

Definition 2 (Computation path). Given the CFGs corresponding to the set
of predicates defining a program, a computation path (CP for short) for predicate
p is a concatenation sp1 · · · spm (m ≥ 1) of computation sub-paths such that:

– First label in sp1 is either 0, in which case we say it is a full CP, or corre-
sponds to a “redo” edge, in which case we say it is a partial CP (PCP for
short).

– Last label in spm leads to a terminal node in the CFG of p. If it is a T node
the CP is said to be successful otherwise it is called failing.

– For all spk whose last label leads to a node corresponding to a predicate call,
cp = spk+1 · · · spj, j > k is a CP for the called predicate, and:

• if cp is successful then the first label in spj+1 corresponds to an “rs”
edge,

• otherwise (cp is failing), it corresponds to an rf edge.

– For all spk whose first label corresponds to a “redo” edge flowing from a “Ta”
node in the CFG of predicate q, ∃spj, j < k, whose first label corresponds
either to an entry edge or to a “redo” edge flowing from “Tb”, b < a, of the
CFG of q.

If a CP contains at least one label corresponding to a “redo” flow, then the CP
is said to be an after-retry CP. The rest of the CPs are first-try CPs.

34 Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla

For example in foo/2, p1=〈0, 1, 2〉 and p2=〈0, 3, 5, 6〉 are first-try successful
CPs; p3=〈0, 3, 7〉 is a first-try failing branch; p4=〈0, 1, 2〉 · 〈4, 5, 6〉 is an after-
retry successful CP (although this one is unfeasible as X > 0 and X = 0
are disjoint conditions), and p5=〈0, 1, 2〉 · 〈4, 7〉 is an after-retry failing branch.
In sorted/1, p6=〈0, 2, 5, 7, 10〉 · 〈0, 2, 4〉 · 〈11〉 is a first-try successful CP and
p7=〈0, 2, 5, 7, 10〉 · 〈0, 2, 5, 7, 9〉 · 〈12〉 is a first-try failing CP. It is interesting
to observe the correspondence between the CPs and the test data that make
the program traverse them. In foo/2, p1 is followed by goal foo(1,Z), p2 by
goal foo(0,Z), p3 by foo(-1,Z), p4 is an unfeasible path, and p5 is followed
by foo(0,Z) when we ask for more solutions. As regards sorted/1, p6 is fol-
lowed by the goal sorted([0,1]) and p7 by sorted([0,1,0]). As we will see
in Sect. 5, these will become part of the test-cases that we automatically infer.

A key feature of our CFGs is that they make explicit the fact that after failing
with a clause the computation has to re-try with the following clause, unless a
non-deterministic call is left behind. E.g., in foo/2 the CFG makes explicit that
the only way to get a first-try failing branch is through the CP 〈0, 3, 7〉, hence
traversing, and failing in, both conditions X > 0 and X = 0. Therefore, a test
data to obtain such a behavior will be a negative number for argument X . Other
approaches, like the one in [5], do not handle flows after failure in the same way.
In fact, in [5], edge “3” in foo/2 goes directly to node “F”. It is not clear if
these approaches are able to obtain such a test data. As another difference with
previous approaches to TDG of Prolog, we want to highlight that we use CFGs
just to reason about the program transformation that will be presented in the
following section and, in particular, to clarify which features we want to capture.
However, in previous approaches, test-cases are deduced directly from the CFGs.

4 A Program Transformation to Make Failure Explicit

As we outlined in Sect. 1, an intrinsic feature of the second phase of our approach
is that it can only produce results associated to non-failing derivations. This is
the main reason why the general approach to TDG by PE sketched in Sect. 2 is
directly applicable only to TDG of imperative languages. To enable its applica-
tion to Prolog, we propose a program transformation which makes failure explicit
in the Prolog program. The specialisation of meta-programs has been proved to
have a large number of interesting applications[9]. Futamura projection’s to de-
rive compiled code, compilers and compiler generators fall into this category. The
specialization of meta-interpreters for non-standard computation rules has also
been studied. Furthermore, language extensions and enhancements can be easily
expressed as meta-interpreters which perform additional operations to the stan-
dard computation. In short, program specialisation offers a general compilation
technique for the wide variety of procedural interpretations of logic programs.
Among them, we propose to carry out our transformation which makes failure in
logic programs explicit by partially evaluating a Prolog meta-interpreter which
captures failing derivations w.r.t. the original program. First, in Sect. 4.1 we
describe such a meta-interpreter emphasizing the Prolog control features which

On the Generation of Test Data for Prolog by Partial Evaluation 35

we want to capture. Then, Sect. 4.2 describes the control strategies which have
to be used in PE in order to produce an effective transformation.

4.1 A Prolog Meta-Interpreter to Capture Failure

Given a Prolog program and given a goal, our aim is to define an interpreter in
which the computation of the program and goal produces the same results as the
ones obtained by using the standard Prolog computation but with the difference
that failure is never reported. Instead, an additional argument Answer will be
bound to the value “yes”, if the computation corresponds to a successful deriva-
tion, and to “no” if it corresponds to a failing derivation. Predicate solve/4 is
the main predicate of our meta-interpreter whose first and second arguments are
the predicate signature and arguments of the goal to be executed; and its third
argument is the answer; by now we ignore the last argument. For instance, the
call solve(foo/2,[0,Z],Answer,) succeeds with Z = zero and Answer = yes,
and solve(foo/2,[-1,Z],Answer,) also succeeds, but with Answer = no. The
interpreter has to handle the following issues:

1. The Prolog backtracking mechanism has to be explicitly implemented. To
this aim, a stack of choice points is carried along during the computation so
that:
– if the derivation fails: (1) when the stack is empty, it ends up with success

and returns the value “no”, (2) otherwise, the computation is resumed
from the last choice point, if any;

– if it successfully ends: (1) when the stack is empty, the computation
finishes with answer “yes”, (2) otherwise, the computation is resumed
from the last choice point.

2. When backtracking occurs, all variable bindings, between the current point
and the choice point to resume from, have to be undone.

3. The interpreter has to be implemented in a big-step fashion. This is a re-
quirement for obtaining an effective decompilation. More details are given
in Sect. 4.2.

Figure 3 shows an implementation of a meta-interpreter which handles the
above issues. The fourth argument of the main predicate solve/4, named TNCPS,
contains upon success the total number of choice points not yet considered,
whose role will be explained later. The interpreter assumes that the program
is represented as a set of pred/2 and clause/3 facts. There is a pred/2 fact
per predicate providing its predicate signature, number of clauses and mode
information; and a clause/3 fact per clause providing the actual code and clause
identifier. Predicate solve/4 basically builds an initial state on S0, by calling
build s0/4, and then delegates on exec/3 to obtain the final state Sf of the
computation. The output information, OutVs, is taken from Sf. The state carried
along is of the form st(PP,G,CPs,OutVs,Ans,NCPs), where PP is the current
program point, G the current goal, CPs is the stack of choice points (list of
program points), OutVs the list of variables in G corresponding to the output

36 Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla

solve(P/Ar,Args,Answer,TNCPs) :-
pred(P/Ar,_),

build_s0(P/Ar,Args,S0,OutVs),
exec(Args,S0,Sf),

Sf = st(_,_,_,OutVs’,Answer,TNCPs/_),
OutVs’ = OutVs.

exec(_,S,Sf) :-
S = st(_,[],[],OutVs,yes,NCPs),

Sf = st(_,_,_,OutVs,yes,NCPs).
exec(_,S,Sf) :-

S = st(_,[],[_|_],OutVs,yes,NCPs),
Sf = st(_,_,_,OutVs,yes,NCPs).

exec(_,S,Sf) :-

S = st(_,_,[],OutVs,no,TNCPs/0),
Sf = st(_,_,_,OutVs,no,TNCPs/0).

exec(Args,S,Sf) :-
S = st(_,[],[CP|CPs],_,yes,TNCPs/0),
build_retry_state(Args,CP,CPs,TNCPs,S’),

exec(Args,S’,Sf).
exec(Args,S,Sf) :-

S = st(_,_,[CP|CPs],_,no,TNCPs/0),
build_retry_state(Args,CP,CPs,TNCPs,S’),

exec(Args,S’,Sf).

exec(Args,S,Sf) :-

S = st(PP,[A|As],CPs,OutVs,yes,TNCPs/ENCPs),
PP = pp(P/Ar,ClId,Pt),

internal(A),
functor(A,A_f,A_ar),
A =..[A_f|A_args],

next(Pt,Pt’),
solve(A_f/A_ar,A_args,Ans,ENCPs’),

TNCPs’ is TNCPs + ENCPs’,
ENCPs’’ is ENCPs + ENCPs’,

PP’ = pp(P/Ar,ClId,Pt’),
S’ = st(PP’,As,CPs,OutVs,Ans,TNCPs’/ENCPs’’),
exec(Args,S’,Sf).

exec(Args,S,Sf) :-
S = st(PP,[A|As],CPs,OutVs,yes,NCPs),

PP = pp(P/Ar,ClId,Pt),
builtin(A),
next(Pt,Pt’),

run_builtin(PP,A,Ans),
PP’ = pp(P/Ar,ClId,Pt’),

S’ = st(PP’,As,CPs,OutVs,Ans,NCPs),
exec(Args,S’,Sf).

Fig. 3. Code of Prolog meta-interpreter to capture failure

parameters of the original goal, Ans the current answer (“yes” or “no”) and
NCPs the number of choice points left behind. A program point is of the form
pp(P/Ar,ClId,Pt), where P/Ar, ClId and Pt are the predicate signature, the
clause identifier and the program point of the clause at hand. Predicate exec/3

implements the main loop of the interpreter. Given the current state in its second
argument it produces the final state of the computation in the third one. It is
defined by the seven clauses which are applied in they following situations:

1stcl. The current goal is empty, the answer “yes” and there are no pending
choice points. Then, the computation finishes with answer “yes”. The current
answer is actually used as a flag to indicate whether the previous step in the
computation succeeded or failed (see the last two exec/3 clauses).

2ndcl. As 1stcl. but having at least one choice point. This clause represents the
solution in which the computation ends. The 4th clause takes the other al-
ternatives.

3rdcl. The previous step failed and there are no pending choice points. Then, the
computation ends with answer “no”.

4thcl. The current goal is empty, the answer “yes” and there is at least one
pending choice point. This is the same situation as in the 2nd clause, however
in this case the alternative of resuming from the last choice point is taken.
The corresponding state S’ is built by means of build retry state/5 and
the computation is resumed from S’ by recursively calling exec/3.

5thcl. The previous step failed and there is at least one pending choice point.
Then, the computation is resumed from the last choice point in the same
way as in the previous clause.

On the Generation of Test Data for Prolog by Partial Evaluation 37

6thcl. The first atom to be solved is user-defined. A call to solve/4 handles the
atom, and the computation proceeds with the next program point of the
same clause which was the current one before calling solve/4. This way of
solving a predicate call makes the interpreter big-step (issue (3) above).

7thcl. The first atom to be solved is a builtin. Then, run builtin/3 produces
the corresponding answer, and the computation proceeds with the following
program point. An interesting observation (also applicable for the previous
clause) is that the answer obtained from run builtin/3 (or solve/4) is now
set up as the answer of the next state. This will make the computation go
through the 3rd or 5th clauses in the following step, if the obtained answer
was “no”.

The correspondence between these clauses and the flows in the CFGs is as fol-
lows: clauses 1st, 2nd and 4th represent the output edges from every “T” node.
Clause 3rd represents the “no” edges to “F” nodes and 5th the “no” edges to non-
terminal nodes. Finally clauses 6th and 7th represents the execution of builtins
and predicate calls in non-terminal nodes and their corresponding “yes” edges.

Let us now explain how the interpreter handles the above three issues. To
handle (1), a stack of choice points is carried along within the state, initialised
to contain all initial program points of each clause defining the predicate to
be solved, except for the first one. E.g., the initial stack of choice points for
sorted/1 is [pp(sorted/1,2,1),pp(sorted/1,3,1)]. How this stack is used
to perform the backtracking is already explained in the description of the 4th and
5th exec/3 clauses above. As regards issue (2), a quite simple way to implement
this in Prolog is to produce the necessary fresh variables every time the compu-
tation is resumed. This is done inside build retry state/5. The corresponding
unification to link the fresh variables with the original goal variables is made at
the end (see last line of solve/4). This is the reason why 1) the list of the actual
variables used in the current goal needs to be carried along within the state; and
2) the original arguments are carried along as the first argument of exec/3, as
the original ground arguments provided, have to be used when resuming from a
choice point.

Finally, it is worth mentioning that solve/4 does not return the actual stack
of choice points but only the number of them. This means that during a compu-
tation the interpreter only considers choice points of the predicate being solved.
The question is then, how can the interpreter backtrack to the last choice point,
including those induced by other computations of solve/4? E.g., how can the
interpreter follow edge “13” in the CFG of sorted/1? The interpreter performs
the backtracking in the following way: 1) The total number of choice points
left behind, TNCPs, is carried along within the state and finally returned in the
last argument of solve/4. 2) The number of choice points corresponding to in-
voked predicates, ENCPs, is also carried along. It is updated right after the call
to solve/4 in the 6th clause of exec/3. Both numbers are stored in the last
argument of the state as TNCPs/ENCPs. 3) Execution is resumed from choice
points of the current predicate only if ENCPs = 0, as it can be seen in the 4th

and 5th clauses. Otherwise, the computation just fails and Prolog’s backtracking

38 Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla

mechanism is used to ask the last invoked predicate for more solutions. This
indeed means that the non-determinism of the program is still implicit.

4.2 Controlling Partial Evaluation

The specialisation of interpreters has been studied in many different contexts,
see e.g. [9,10,19]. Very recently, [10] proposed control strategies to successfully
specialise low-level code interpreters w.r.t. non trivial programs. Here we demon-
strate how such guidelines can be, and should be, used in the specialisation of
non-trivial Prolog meta-interpreters. They include:

1. Big-step interpreter. This solves the problem of handling recursion (see [10])
and enables a compositional specialisation w.r.t. the program procedures
(or predicates). Note that an effective treatment of recursion is specially
important in Prolog programs where recursion is heavily used.

2. Optimality issues. Optimality must ensure that: a) the code to be trans-
formed is traversed exactly once, and b) residual code is emitted once in
the transformed program. To achieve optimality, during unfolding, all atoms
corresponding with divergence or convergence points in the CFG of the pro-
gram to be transformed, has to be memoised (see Sect. 2.1). A divergence
(convergence) point is a program point from (to) which two or more flows
originate (converge).

We already explained that the interpreter in Fig. 3 is big-step. As regards opti-
mality, by looking at the CFGs of Fig. 2, we can observe: 1) all program points
are divergence points except those corresponding with unifications in which one
argument is a variable, and 2) the first program point of every clause, except for
the one of the first clause, is a convergence point. We assume that conv points(P)
and div points(P) denote, respectively, the set of convergence points and diver-
gence points of a predicate P. We follow the syntax of [10] for PE annotations.
An annotation is of the form “[Precond] ⇒ Ann Pred” where Precond is an
optional precondition defined as a logic formula, Ann is the kind of annotation
(only memo in this case), and Pred is a predicate descriptor, i.e., a predicate
function and distinct free variables. Then, to achieve an effective transformation,
we specialise the interpreter in Fig. 3 w.r.t. the program to be transformed by
using the following annotation for each predicate P/Ar in the program:

PP ∈ div points(P/Ar) ∪ conv points(P/Ar) ⇒ memo exec(, st(PP, , , , ,),)

Additionally solve/4 and run builtin/3 are also annotated to be memoised
always to avoid code duplications.

This already describes how the specialisation has to be steered in the local
control. As regards the global control, the only predicate which can introduce
non-termination is exec/3. Its first and third arguments contain a fixed structure
with variables. The second one might be problematic as it ranges over the set of
all computable states at specialisation time. Note that the number of computable
states remains finite thanks to the big-step nature of the interpreter. Still, it can

On the Generation of Test Data for Prolog by Partial Evaluation 39

solve(foo/2,[C,D],A,B) :-

run_builtin_1(E,C),

exec_1(C,E,F,A,B), F = [D].

exec_1(A,no,F,G,H) :- exec_2(A,F,G,H).

exec_1(_,yes,[pos],yes,1).

exec_1(A,yes,F,G,H) :- exec_2(A,F,G,H).

exec_2(A,G,H,I) :-

run_builtin_2(K,A), exec_3(K,G,H,I).

exec_3(no,[_],no,0).

exec_3(yes,[zero],yes,0).

run_builtin_1(yes,A) :- A#>0.

run_builtin_1(no,A) :- \+ A#>0.

run_builtin_2(yes,A) :- A#=0.

run_builtin_2(no,A) :- \+ A#=0.

Fig. 4. Transformed code with explicit failure for foo/2

happen that the same program point is reached with different values for the NCPs
sub-term of the state. Therefore, if one wants to achieve the optimality criterion
above, such argument has to be always generalised in global control.

Example 1. Figure 4 depicts the transformed code we obtain for predicate foo/2.
It can be observed that there is a clear correspondence between the trans-
formed code and the CFG in Fig. 2. Thus, predicate solve/4 represents the
node “X>0”, exec 1/5 implements its continuation, whose three clauses cor-
respond to the three sub-paths 〈3〉, 〈1, 2〉 and 〈1, 2, 4〉 respectively. Predicate
exec 2/4 represents the node “X=0” and exec 3/5 implements its continuation,
whose two clauses correspond to the sub-paths 〈7〉 and 〈5, 6〉. Note that edge
“8” is not considered in the meta-interpreter (nor in the transformed program)
as it is meaningless for TDG. It is worth mentioning that the transformed pro-
gram captures the way in which variable bindings are undone. For instance in
solve(foo/2,[C,D],. . .), if we keep track of variables C and D, it can be seen
that D, which corresponds to variable Z in the original code, is only used for
the final unification F=[D], while new fresh variables are used for the unifica-
tions with pos and zero. However, variable C, which corresponds to variable
X in the original code, is actually used for the checks in run builtin 1/2 and
run builtin 2/2. This turns out to be fundamental when trying to obtain test
data associated to the first-try failing CP 〈0, 3, 7〉. It must be the same variable
the one which, at the same time, is not “> 0” and not “=0”. Otherwise we
cannot obtain a negative number as test data for such CP. Finally, observe that
the original Prolog arithmetic builtins have been (automatically) transformed
into their clpfd counterparts 4.

5 Generating Test Cases by Partial Evaluation

Once the original Prolog program has been transformed into an equivalent Prolog
program with explicit failure, we can use the approach of [2] to carry out phase

4 We are using the clpfd library of Sicstus Prolog. See [20] for details.

40 Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla

II (see Fig. 1) and generate test data both for successful and failing derivations.
As we have explained in Sect. 2.2, the idea is to perform a second PE over the
CLP transformed program where the unfolding rule plays the role of the cover-
age criterion. In [2] an unfolding rule implementing the block-count(k) coverage
criterion was proposed. A set of computation paths satisfies the block-count(k)
criterion if it includes all terminating computation paths which can be built in
which the number of times each block is visited does not exceed the given k.
The blocks the criterion refers to are the blocks or nodes in the CFGs of the
original Prolog program. As the only form of loops in Prolog are recursive calls,
the “k” in the block-count(k) actually corresponds to the number of recursive
calls which are allowed.

Unfortunately, the presence of Prolog’s negation in our transformed programs
complicates this phase. The negation will appear in the transformed program
for “no” branches originating from nodes corresponding to a (possibly) failing
builtin. See for example predicates run builtin 1/3 and run builtin 2/3 in
the transformed code of foo/2 in Fig. 4. While Prolog’s negation works well
for ground arguments, it gives no information for free variables, as it is re-
quired in the evaluation performed during this TDG phase. In particular, in the
foo/2 example, given the computation which traverses the calls “\+ A#>0” and
“\+ A#=0” (corresponding to the path 〈0, 3, 7〉 in the CFG), we need to infer
that “A<0”. In other words, we need somehow to turn the negative information
into positive information. This transformation is straightforward for arithmetic
builtins: we just have to replace “\+ e1#=e2” by “e1#\=e2” and “\+ e1#>e2” by
“e1#=<e2”, etc.

Example 2. This transformation allows us to obtain the following set of test-
cases for foo/2:

{

〈[1],[pos],yes/first-try〉, 〈[1],[],no/after-retry〉,
〈[0],[zero],yes/first-try〉, 〈[-100],[],no/first-retry〉

}

They correspond respectively (reading by rows) to the CPs 〈0, 1, 2〉, 〈0, 1, 2〉 ·
〈4, 7〉, 〈0, 3, 5, 6〉 and 〈0, 3, 7〉. Each test-case is represented as a 3-tuple 〈Ins, Outs, Ans〉
being Ins the list of input arguments, Outs the list of output arguments and
Ans the answer. The answer takes the form A/B with A ∈ {yes,no} and
B ∈ {first-try,after-retry}5, so that we obtain sufficient information about
the kind of CP to which the test-case corresponds (see Sect. 3). As there are no
recursive calls in foo/2 such test-cases are obtained using the block-count(k)
criterion for any k (greater than 0). The domain used for the integer number is
{−100..100}.

However, it can be the case that negation involves unifications with symbolic
data. For example, the transformed code for sorted/1 includes the negations
“\+ L=[]” and “\+ L=[|]”. As before, we might write transformations for
the negated unifications involving lists, so that at the end it is inferred that “

5 To simplify the presentation in Sect. 4.1, we decided not include in the interpreter
the support to calculate the first-try/after-retry value.

On the Generation of Test Data for Prolog by Partial Evaluation 41

L=[, |]”. However this would be too an ad-hoc solution as many distinct term
structures, different from lists, can appear on negated unifications. A solution for
this problem has been recently proposed for Mercury in the same context [5]. It
roughly consists in the following: 1) It is assumed that each predicate argument
is well-typed. 2) A domain is initialised for each variable, containing the set of
possible functors the variable can take. 3) When a negated unification involving
an output variable is found (in their terminology a negated decomposition), the
corresponding functor is removed from the variable domain. It is crucial at this
point the assumption that complex unifications are broken down into simple
ones. 4) Finally, a search algorithm is described to generate particular values
from the type definition and final domain for the variable. The technique is
implemented using CHR and can be directly used in principle for our purposes
as well.

On the other hand, advanced declarative languages like TOY [15] make
possible the co-existence of different constraint domains. In particular, the co-
existence of boolean and numeric constraint domains enables the possibility of
using disequalities involving both symbolic data and numbers. This allows for
example expressing the negated unifications “\+ L=[]” and “\+ L=[|]” as dis-
equality constraints “ L/=[]” and “ L/=[|]”. Additionally, by relying on the
boolean constraint solver, the negated arithmetic builtins “\+ A#>0” and “\+
A#=0” can be encoded as “(A#>0) == false” and “(A#=0) == false”. This is
in principle a more general solution that we want to explore, although a thorough
experimental evaluation needs to be carried out to demonstrate its applicability
to our particular context.

Example 3. Now, by using any of the techniques outlined above, we obtain the
following set of test-cases for sorted/1, using block-count(2) as the coverage
criterion:

〈[[]],[],yes/first-try〉, 〈[[0]],[],yes/first-try〉,
〈[[0,1]],[],yes/first-try〉, 〈[[0,1,2]],[],yes/first-try〉,
〈[[0,1,2,0|]],[],no/first-try〉, 〈[[0,1,0|]],[],no/first-try〉,
〈[[0,0|]],[],no/first-try〉

They correspond respectively (reading by rows) to the CPs “〈0, 1〉”, “〈0, 2, 4〉”,
“〈0, 2, 5, 7, 10〉 · 〈0, 2, 4〉 · 〈11〉”, “〈0, 2, 5, 7, 10〉 · 〈0, 2, 5, 7, 10〉 · 〈0, 2, 4〉 · 〈11〉 · 〈11〉”,
“〈0, 2, 5, 7, 10〉·〈0, 2, 5, 7, 10〉·〈0, 2, 5, 7, 9〉·〈12〉·〈12〉”, “〈0, 2, 5, 7, 10〉·〈0, 2, 5, 7, 9〉·
〈12〉”, “〈0, 2, 5, 7, 9〉”. They are indeed all the paths that can be followed with no
more than 3 recursive calls. This time the domain has been set up to {0..100}.

6 Conclusions and Ongoing work

Very recently, we proposed in [2] a generic approach to TDG by PE which in
principle can be used for any imperative language. However, applying this ap-
proach to TDG of a declarative language like Prolog introduces some difficulties
like the handling of failing derivations and of symbolic data. In this work, we

42 Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla

have sketched solutions to overcome such difficulties. In particular, we have pro-
posed a program transformation, based on PE, to make failure explicit in the
Prolog programs. To handle Prolog’s negation in the transformed programs, we
have outlined existing solutions that make it possible to turn the negative infor-
mation into positive information. Though our preliminary experiments already
suggest that the approach can be very useful to generate test-cases for Prolog,
we plan to carry out a thorough practical assessment. This requires to cover
additional Prolog features like the module system, builtins like cut/0, fail/0,
if/3, etc. and also to compare the results with other TDG systems. We also
want to study the integration of other kinds of coverage criteria like data-flow
based criteria. Finally, we would like to explore the use of static analyses in the
context of TDG. For instance, the information inferred by a failure analysis can
be very useful to prune some of the branches that our transformed programs
have to consider.

Acknowledgments This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS project, by the Spanish Ministry
of Education under the TIN-2005-09207 MERIT project, and by the Madrid
Regional Government under the S-0505/TIC/0407 PROMESAS project.

References

1. E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java
Bytecode using Analysis and Transformation of Logic Programs. In Proc. PADL,
number 4354 in LNCS. Springer-Verlag, 2007.

2. E. Albert, M. Gómez-Zamalloa, and G. Puebla. Test Data Generation of Bytecode
by clp Partial Evaluation. In 18th International Symposium on Logic-based Pro-
gram Synthesis and Transformation (LOPSTR’08), LNCS. Springer-Verlag, July
2008. To appear.

3. F. Belli and O. Jack. Implementation-based analysis and testing of prolog pro-
grams. In ISSTA, pages 70–80, 1993.

4. Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing
of haskell programs. In ICFP, pages 268–279, 2000.

5. F. Degrave, T. Schrijvers, and W. Vanhoof. Automatic generation of test inputs
for mercury. In 18th International Symposium on Logic-based Program Synthesis
and Transformation (LOPSTR’08), LNCS. Springer-Verlag, 2008. To appear.

6. R. Ferguson and B. Korel. The chaining approach for software test data generation.
ACM Trans. Softw. Eng. Methodol., 5(1):63–86, 1996.

7. S. Fischer and H. Kuchen. Systematic generation of glass-box test cases for func-
tional logic programs. In PPDP, pages 63–74, 2007.

8. Yoshihiko Futamura. Partial evaluation of computation process - an approach to
a compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

9. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proc. of PEPM’93,
pages 88–98. ACM Press, 1993.

10. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Modular Decompilation of Low-
Level Code by Partial Evaluation. In 8th International Working Conference on

On the Generation of Test Data for Prolog by Partial Evaluation 43

Source Code Analysis and Manipulation (SCAM’08). IEEE Computer Society,
September 2008. To appear.

11. A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing structural
test data. In Computational Logic, pages 399–413, 2000.

12. Kim S. Henriksen and John P. Gallagher. Abstract interpretation of pic programs
through logic programming. In SCAM ’06: Proceedings of the Sixth IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation, pages 184–196. IEEE
Computer Society, 2006.

13. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall, New York, 1993.

14. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–
394, 1976.

15. F.J. López-Fraguas and J. Sánchez-Hernández. T OY : A multiparadigm declarative
system. In Proc. Rewriting Techniques and Applications (RTA’99), pages 244–247.
Springer LNCS 1631, 1999.

16. G. Luo, G. Bochmann, B. Sarikaya, and M. Boyer. Control-flow based testing
of prolog programs. In In Proc. of the 3rd International Symposium on Software
Reliability Engineering, pages 104–113, 1992.

17. M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Ap-
proach to the Analysis of Object-Oriented Programs. In 17th International Sympo-
sium on Logic-based Program Synthesis and Transformation (LOPSTR’07), August
2007.

18. C. Meudec. Atgen: Automatic test data generation using constraint logic program-
ming and symbolic execution. Softw. Test., Verif. Reliab., 11(2):81–96, 2001.

19. J.C. Peralta, J. Gallagher, and H. Sağlam. Analysis of imperative programs
through analysis of constraint logic programs. In Proc. of SAS’98, volume 1503 of
LNCS, pages 246–261, 1998.

20. Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista, Sweden.
SICStus Prolog 3.8 User’s Manual, 3.8 edition, October 1999. Available from
http://www.sics.se/sicstus/.

21. L. Zhao, T. Gu, J. Qian, and G. Cai. A novel test case generation method for prolog
programs based on call patterns semantics. In APLAS, pages 105–121, 2007.

22. Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage
and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

Heap Space Analysis for Java Bytecode

Elvira Albert

DSIC, Complutense University of

Madrid, Spain

elvira@sip.ucm.es

Samir Genaim

CLIP, Technical University of

Madrid, Spain

samir@clip.dia.fi.upm.es

Miguel Gómez-Zamalloa

DSIC, Complutense University of

Madrid, Spain

mzamalloa@fdi.ucm.es

Abstract

This article presents a heap space analysis for (sequential)

Java bytecode. The analysis generates heap space cost re-

lations which define at compile-time the heap consumption

of a program as a function of its data size. These relations

can be used to obtain upper bounds on the heap space allo-

cated during the execution of the different methods. In addi-

tion, we describe how to refine the cost relations, by relying

on escape analysis, in order to take into account the heap

space that can be safely deallocated by the garbage collector

upon exit from a corresponding method. These refined cost

relations are then used to infer upper bounds on the active

heap space upon methods return. Example applications for

the analysis consider inference of constant heap usage and

heap usage proportional to the data size (including polyno-

mial and exponential heap consumption). Our prototype im-

plementation is reported and demonstrated by means of a se-

ries of examples which illustrate how the analysis naturally

encompasses standard data-structures like lists, trees and ar-

rays with several dimensions written in object-oriented pro-

gramming style.

Categories and Subject Descriptors F3.2 [Logics and

Meaning of Programs]: Program Analysis; F2.9 [Analy-

sis of Algorithms and Problem Complexity]: General; D3.2

[Programming Languages]

General Terms Languages, Theory, Verification, Reliabil-

ity

Keywords Heap Space Analysis, Heap Consumption, Low-

level Languages, Java Bytecode

1. Introduction

Heap space analysis aims at inferring bounds on the heap

space consumption of programs. Heap analysis is more typi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’07, October 21–22, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-893-0/07/0010. . . $5.00

cally formulated at the source level (see, e.g., [24, 17, 25, 19]

in the context of functional programming and [18, 13] for

high-level imperative programming languages). However,

there are situations where one has only access to compiled

code and not to the source code. An example of this is

mobile code, where the code consumer receives code to

be executed. In this context, Java bytecode [20] is widely

used, mainly due to its security features and the fact that

it is platform-independent. Automatic heap space analysis

has interesting applications in this context. For instance, re-

source bound certification [14, 4, 5, 16, 12] proposes the use

of safety properties involving cost requirements, i.e., that the

untrusted code adheres to specific bounds on the resource

consumption. Also, heap bounds are useful on embedded

systems, e.g., smart cards in which memory is limited and

cannot easily be recovered. A general framework for the

cost analysis of sequential Java bytecode has been proposed

in [2]. Such analysis statically generates cost relations which

define the cost of a program as a function of its input data

size. The cost relations are expressed by means of recursive

equations generated by abstracting the recursive structure of

the program and by inferring size relations between argu-

ments. Cost relations are parametric w.r.t. a cost model, i.e.,

the cost unit associated to the bytecode b appears as an ab-

stract value Tb within the equations.

This article develops a novel application of the cost anal-

ysis framework of [2] to infer bounds on the heap space

consumption of sequential Java bytecode programs. In a

first step, we develop a cost model that defines the cost of

memory allocation instructions (e.g., new and newarray) in

terms of the number of heap (memory) units it consumes.

E.g., the cost of creating a new object is the number of heap

units allocated to that object. The remaining bytecode in-

structions do not add any cost. With this cost model, we

generate heap space cost relations which are then used to

infer upper bounds on the heap space usage of the differ-

ent methods. These upper bounds provide information on

the maximal heap space required for executing each method

in the program. In a second step, we refine this cost model

to consider the effect of garbage collection. This is done by

relying on escape analysis [15, 8] to identify those mem-

ory allocation instructions which create objects that will be

105

garbage collected upon exit from the corresponding method.

With this information available, we can generate heap space

cost relations which contain annotations for the heap space

that will be garbage collected. The annotated cost relations

in turn are used to infer upper bounds on the active heap

space upon exit from methods, i.e., the heap space consumed

and that might not be garbage collected upon exit.

A distinguishing feature of the approach presented in this

article w.r.t. previous type-based approaches (e.g., [5, 17])

is that it is not restricted to linear bounds since the gener-

ated cost relations can in principle capture any complexity

class. Moreover, in many cases, the relations can be simpli-

fied to a closed form solution from which one can glean im-

mediate information about the expected consumption of the

code to be run. The approach has been assessed by means

of a prototype implementation, which originates from the

one of [3]. It should be noted that the examples in [3] are

simple imperative algorithms which did not make use of

the heap, since they were aimed at demonstrating that tradi-

tional complexity schemata can be handled by the cost anal-

ysis of [2]. In contrast, we demonstrate our heap analysis

by means of a series of example applications written in an

object-oriented style which make intensive use of the heap

and which present novel features like heap consumption that

depends on the class fields, multiple inheritance, virtual in-

vocation, etc. These examples allow us to illustrate the most

salient features of our analysis: inference of constant heap

usage, heap usage proportional to input size, support of stan-

dard data-structures like lists, trees, arrays, etc. To the best of

our knowledge, this is the first analysis able to infer arbitrary

heap usage bounds for Java bytecode.

The rest of the paper is structured as follows: Sec. 2

presents an example that illustrates the ideas behind the anal-

ysis. Sec. 3 briefly describes the Java bytecode language.

Sec. 4 defines a cost model for heap consumption and de-

scribes the analysis framework. Sec. 5 demonstrates the dif-

ferent features of the analysis by means of examples. In

Sec.6, we extend our cost model to consider the effect of

garbage collection. Sec. 7 reports on a prototype implemen-

tation and some experimental results. Finally, Sec. 8 con-

cludes and discusses the related work.

2. Worked Example

Consider the Java classes and their corresponding (struc-

tured) Java bytecode depicted in Fig. 1 which define a

linked-list data structure in an object-oriented style, as it

appears in [18]. The class Cons is used for data nodes and

the class Nil plays the role of null to indicate the end of a

list. Both classes define a copy function which is used to

clone the corresponding object. In the case of Nil the copy

method just returns this since it is the last element of the list,

and in the case of Cons it clones the current object and its

successors recursively (by calling the copy method of next).

The rest of this section describes the different steps applied

by the analyzer to approximate the heap consumption of the

program depicted in Fig. 1. Note that the Java program is

provided here just for clarity, the analyzer works directly on

the bytecode which is obtained, for example, by compiling

the Java program.

Step I: In the first step, the analyzer recovers the struc-

ture of the Java bytecode program by building a control

flow graph (CFG) for its methods. The CFG consists of ba-

sic blocks which contain a sequence of non-branching byte-

code instructions, these blocks are connected by edges that

describe the possible flows that originate from the branch-

ing instructions like conditional jumps, exceptions, virtual

method invocation, etc. In Fig. 1, the CFG of the method

Nil.copy consists of the single block BlockNil
0 and the CFG

of the method Cons.copy consists of the rest of the blocks.

BlockCons
0 corresponds to the bytecode of Cons.copy up to

the recursive method call this.next.copy(). Then, depending

on the type of the object stored in this.next the execution is

transferred to either Nil.copy or Cons.copy. This is expressed

by the (guarded) branching to BlockCons
1 and BlockCons

2 .

In both cases, the control returns to BlockCons
3 which corre-

sponds to the rest of the statements.

Step II: In the second step, the analyzer builds an interme-

diate representation for the CFG and uses it to infer infor-

mation about the changes in the sizes of the different data-

structures (or in the values of integer variables) when the

control passes from one part of the program (e.g., a block

or a method) to another part. For example, this step infers

that when Nil.copy or Cons.copy are called recursively, the

length of the list decreases by one. This information is es-

sential for defining the heap consumption of one part of the

program in terms of the heap consumption of other parts.

Step III: In the third step, the intermediate representation

and the size information are used together with the cost

model for heap consumption to generate a set of cost rela-

tions which describe the heap consumption behaviour of the

program. The following equations are the ones we get for the

example in Fig. 1:

Heap Space Cost Equations Size relations

CNil
copy(a) = 0 {a=1}

CCons
copy (a) = C0(a)

C0(a) = size(Cons) + CC0(a, b) {a≥1, b≥0, a=b+1}

CC0(a, b) =

C1(a, b)
C2(a, b)

b̂ ∈ Nil

b̂ ∈ Cons

C1(a, b) = CNil
copy(b) + C3(a) {a=1}

C2(a, b) = CCons
copy (b) + C3(a) {a≥2}

C3(a) = 0

Each of these equations corresponds to a method entry, block

or branching in the CFG. An equation is composed by the

left hand side which indicates the block or the method it

represents, and the right hand side which defines its heap

consumption behaviour. In addition, size relations might be

attached to describe how the data size changes when using

another equation.

106

abstract class List {
abstract List copy();

}
class Nil extends List {

List copy() {
return this;

}
}
class Cons extends List {

int elem;
List next;
List copy(){

Cons aux = new Cons();
aux.elem = this.elem;
aux.next = this.next.copy();
return aux;

}
}

guard(instanceof(Nil))

3: dup

8: aload_1

9: aload_0

16: aload_1

17: aload_0

resolve_virtual(List,copy)

1: areturn

Nil:copy

Block

Block

Block

Cons

Cons

Nil

0

0: aload_0

Cons:copy

0: new Cons

Block
1

Cons

0

3

7: astore_1

4: invoke Cons.<init>

10: getfield Cons.elem

13: putfield Cons.elem

18: getfield Cons.next

21: invoke Nil.copy

24: putfield Cons.next

27: aload_1

28: areturn

guard(instanceof(Cons))

21: invoke Cons:copy

Cons

2
Block

Figure 1. Java source code and CFG bytecode of example

The equation CNil
copy(a) defines the heap consumption

of Nil.copy in terms of (the size of) its first argument a

which corresponds to its this reference variable (in Java byte-

code the this reference variable is the first argument of the

method). In this case the heap consumption is zero since

the method does not allocate any heap space. The equation

CCons
copy (a) defines the heap consumption of Cons.copy as the

heap consumption of BlockCons
0 using the corresponding

equation C0, which in turn defines the heap consumption as

the amount of heap units allocated by the new bytecode in-

structions, namely size(Cons), plus the heap consumption

of its successors which is defined by the equation CC0. All

other instructions in BlockCons
0 contribute zero to the heap

consumption. Note that in C0, the variable b corresponds to

this.next of Cons.copy and that the size analysis is able to

infer the relation a=b+1 (i.e., the list a is longer than b by

one). The equation CC0 corresponds to the heap consump-

tion of the branches at the end of BlockCons
0 , depending on

the type of b (denoted as b̂) it is equal to the heap consump-

tion of BlockCons
1 or BlockCons

2 which are respectively de-

fined by the equations C1 and C2. The equation C1 defines

the heap consumption of BlockCons
1 as the heap consump-

tion of Nil.copy (since it is called in BlockCons
1) plus the

heap consumption of BlockCons
3 (using the equation C3).

Similarly C2 defines the heap consumption of BlockCons
2 in

terms of the heap consumption of Cons.copy. The equation

C3 defines the heap consumption of BlockCons
3 to be zero

since it does not allocate any heap space.

Step IV: In the fourth step, we can simplify the equations

and try to obtain an upper bound in closed form for the

cost relation by applying the method described in [1]. In

particular, assuming that size(Cons) equals 8 (4 bytes for

the integer field data and 4 bytes for the reference field next),

we obtain the following simplified equations:

Equation Size relations

CNil
copy(a) = 0 {a=1}

CCons
copy (a) = 8 {a=2}

CCons
copy (a) = 8 + CCons

copy (b) {a≥3, b≥1, a=b+1}

and then obtain an upper bound in closed form CCons
copy (a) =

8 ∗ (a− 1).
The main focus of this paper is on the generation of heap

space cost relations, as illustrated in Step III. Steps I and II

are done as it is proposed in [2] and Step IV as it is described

in [1] and hence we will not give many details on how they

are performed in this paper.

3. The Java Bytecode Language

Java bytecode [20] is a low-level object-oriented program-

ming language with unstructured control and an operand

stack to hold intermediate computational results. Moreover,

objects are stored in dynamic memory: the heap. A Java

bytecode program consists of a set of class files, one for each

class or interface. A class file contains information about its

name c ∈ Class Name , the class it extends, the interfaces it

implements, and the fields and methods it defines. In partic-

ular, for each method, the class file contains: a method sig-

nature which consists of its name and its type; its bytecode

bcm = 〈pc0:b0, . . . , pcnm
:bnm
〉, where each bi is a bytecode

instruction and pci is its address; and the method’s excep-

tions table. In this work we consider a subset of the JVM [20]

language which is able to handle operations on integers and

references, object creation and manipulation (by accessing

fields and calling methods), arrays of primitive and reference

types, and exceptions (either generated by abnormal execu-

tion or explicitly thrown by the program). For simplicity, we

omit static fields and initializers and primitive types different

from integers. Such features could be handled by making the

underlying abstract interpretation support them by assuming

the worst case approximation for them. Thus, our bytecode

instruction set (bcInst) is:

bcInst ::=
push x | istore v | astore v | iload v | aload v | iconst a
| iadd | isub | imul | idiv | if⋄ pc | goto pc | ireturn | areturn
| return | new Class Name |
| newarray int | anewarray Class Name | iaload | aaload
| iastore | aastore | athrow | dup
| invokevirtual/invokespecial Class Name.Meth Sig

| getfield/putfield Class Name.Field Sig

107

where ⋄ is a comparison operator (ne,le, icmpgt, etc.), v a

local variable, a an integer, pc an instruction address, and x

an integer or the special value null.

4. The Heap Space Analysis Framework

Cost analysis of a low-level object-oriented language such

as Java bytecode is complicated mainly due to its unstruc-

tured control flow (e.g., the use of goto statements rather

than recursive structures), its object-oriented features (e.g.,

virtual method invocation) and its stack-based model. The

recent work of [2] develops a generic framework for the au-

tomatic cost analysis of Java bytecode programs. Essentially,

the complications of dealing with a low-level language are

handled in this framework by abstracting the recursive struc-

ture of the program and by inferring size relations between

arguments. As we have seen in Sect. 2, this analysis frame-

work is based on transforming the Java bytecode program

to an intermediate representation which fits inside the same

setting all possible forms of loops. Then, using this inter-

mediate representation, the analysis infers information about

the change in the sizes of the relevant data structures as the

program goes through its loops (Steps I and II). Finally, this

information is used to set up a cost relation which defines the

cost of the program in terms of the sizes of the corresponding

data structures.

In this section, we present a novel application of this

generic cost analysis framework to infer bounds on the heap

space consumption of sequential Java bytecode programs.

So far, this framework has been only used in [3] to infer the

complexity of some classical algorithms while in this paper

our purpose is completely different: we aim at computing

bounds on the heap usage for programs written in object-

oriented programming style which make intensive use of

the heap. In Sect. 4.1 and Sect. 4.2, we briefly present the

notions of recursive representation and calls-to size-relation

in a rather informal style. Then, we introduce our cost model

for heap consumption and our notion of heap space cost

relation in Sect. 4.3.

4.1 Recursive Representation

Cost relations can be elegantly expressed as systems of re-

cursive equations. In order to automatically generate them,

we need to capture the iterative behaviour of the program

by means of recursion. One way of achieving this is by

computing the CFG of the program. Also, advanced fea-

tures like virtual invocation and exceptions are simply dealt

as additional nodes in the graph. To analyze the bytecode,

its CFG can be represented by using some auxiliary recur-

sive representation (see, e.g., [2]). In this approach, a byte-

code is transformed into a set of guarded rules of the form

〈head ← guard, body〉 where the guard states the applica-

bility conditions for the rule. Rules are obtained from blocks

in the CFG and guards indicate the conditions under which

each block is executed. As it is customary in determinis-

tic imperative languages, guards provide mutually exclusive

conditions because paths from a block are always exclusive

(i.e., alternative) choices.

DEFINITION 4.1 (rec. representation). Consider a block p

in a CFG, which contains a sequence of bytecode instruc-

tions B guarded by the condition Gb and whose successor

blocks are q1, · · · , qn. The recursive representation of p is:

p(l̄, s̄, r)← Gp, B, (q1(l̄, s̄
′, r); · · · ; qn(l̄, s̄

′, r))

where:

• l̄ is a tuple of variables which corresponds to the method’s

local variables,

• s̄ and s̄′ are tuples of variables which respectively cor-

respond to the active stack elements at the block’s entry

and exit,

• r is a single variable which corresponds to the method’s

return value (omitted if there is not return value),

• Gp and B are obtained from the block’s guard and byte-

code instructions by adding the local variables and stack

elements on which they operate as explicit arguments.

We denote by calls(B) the set of method invocation instruc-

tions within B and by bytecode(B) the other instructions. 2

The formal translation of bytecode instructions in B to calls

within the recursive rules is presented in [2]. In this transla-

tion, it is interesting to note that the stack positions are visi-

ble in the rules by explicitly defining them as local variables.

This intermediate representation is convenient for analysis as

in one pass we can eliminate almost all stack variables which

results in a more efficient analysis.

EXAMPLE 4.2. The rules that correspond to the blocks

BlockCons
0 , BlockCons

1 and BlockCons
2 in Fig. 1 are:

copyCons0 (this, aux, r)←
new(Cons, s0), dup(s0, s1), Cons.<init>(s1),
astore(s0, aux

′), aload(aux′, s′0), aload(this, s
′

1),
getfield(Cons.elem, s′1, s

′′

1),
putfield(Cons.elem, s′0, s

′′

1),
aload(aux′, s′′0), aload(this, s′′′1),
getfield(Cons.next, s′′′′1),
(copyCons1 (this, aux′, s′′0 , s′′′′1 , r) ;

copyCons2 (this, aux′, s′′0 , s′′′′1 , r)).

copyCons1 (this, aux, s0, s1, r)←
guard(instanceof(s1, Nil)),
Nil.copy(s1, s

′

1),
copyCons3 (this, aux, s0, s

′

1, r).

copyCons2 (this, aux, s0, s1, r)←
guard(instanceof(s1, Cons)),
Cons.copy(s1, s

′

1),
copyCons3 (this, aux, s0, s

′

1, r).

The rule copyCons0 is not guarded and has two continuation

blocks, while the other rules are guarded by the type of

108

the object of s1 (the top of the stack) and have only one

successor. The bytecode instructions were transformed to

include explicitly the stacks elements and the local variables

on which they operate, moreover, all variables are in single

static assignment form. Note that calls to methods take the

same form as calls to blocks, which makes all different forms

of loops to fit in the same setting. 2

4.2 Size Analysis

A size analysis is then performed on the recursive represen-

tation in order to infer the calls-to size-relations between the

variables in the head of the rule and the variables used in

the calls (to rules) which occur in the body for each program

rule. Derivation of constraints is a standard abstract inter-

pretation over a constraints domain such as Polyhedra [2, 3].

Such relations are essential for defining the cost of one block

in terms of the cost of its successors. The analysis is done

by abstracting the bytecode instructions into the linear con-

straints they impose on their arguments, and then computing

a fixpoint that collects calls-to relations.

DEFINITION 4.3 (calls-to size-relations). Consider the rule

in Def. 4.1, its calls-to size-relations are triples of the form

〈p(x̄), p′(z̄), ϕ〉 where p′(z̄) ∈ calls(B) ∪ q1(ȳ) ∪ . . . ∪ qn(ȳ)

The size-relation ϕ is given as a conjunction of linear con-

straints. The tuples of variables x̄, ȳ and z̄ correspond to the

variables of the corresponding block. 2

In Java bytecode, we consider three cases within size re-

lations: for integer variables, size-relations are constraints

on the possible values of variables; for reference variables,

they are constraints on the length of the longest reachable

paths [21], and for arrays they are constraints on the length of

the array. Note that using the path-length notion cyclic struc-

tures are not handled since to guarantee soundness the corre-

sponding references are abstracted to “unknown-length” and

therefore cost that depends on them cannot be inferred.

EXAMPLE 4.4. The calls-to-size relation for the first rule in

Ex. 4.2 is formed by the triples:

〈copyCons0 (this, aux), copyCons1 (this, aux′, s′′0 , s′′′′1 , r), ϕ〉
〈copyCons0 (this, aux), copyCons2 (this, aux′, s′′0 , s′′′′1 , r), ϕ〉

where ϕ includes, among others, the constraint this=s′′′′1 +1
which states that the list that this points to is longer

by one than the list that s′′′′1 points to (s′′′′1 corresponds

to this.next). The meaning of the above relations is ex-

plained in Section 2. Note that the call to the constructor

Cons.<init> is ignored for simplicity. 2

4.3 Heap Space Cost Relations

In order to define our heap space cost analysis, we start by

defining a cost model which defines the cost of memory

allocation instructions (e.g., new, newarray and anewarray)

as the the number of heap (memory) units they consume.

The remaining bytecode instructions do not add any cost.

DEFINITION 4.5 (cost model for heap space). We define a

cost model Mheap which takes a bytecode instruction bc

and returns a positive expression as follows:

Mheap(bc)=

size(Class) if bc=new(Class,)

SPrimType ∗ L if bc=newarray(PrimType,L,)

Sref ∗ L if bc=anewarray(Class,L,)

0 otherwise

where SPrimType and Sref denote, respectively, the heap con-

sumption of primitive types and references. Function size is

defined as follows:

size(O) =

X

F∈Class.field

size(type(F)) if O=Class

SPrimType if O is a primitive type

Sref if O is a reference type

where the type of a field in a Class (i.e., Class.field) can

be either primitive or reference. 2

In Java bytecode, types are classified into primitive (its

size is represented by SPrimType in our model) and reference

types (Sref). In a particular assessment, one has to set the

concrete values for SPrimType and Sref of the JVM imple-

mentation.

For each rule in the recursive representation of the pro-

gram and its corresponding size relation, the analysis gener-

ates the cost equations which define the heap consumption of

executing the block (or possibly a method call) by relying on

the above cost model. A heap space cost relation is defined

as the set of cost equations for each block of the bytecode

(or rule in the recursive representation).

DEFINITION 4.6 (heap space cost relation). Consider a rule

R of the form p(x̄)← Gp, B, (q1(ȳ); · · · ; qn(ȳ)) and let the

linear constraints ϕ be a conjunction of all call-to size-

relations within the rule. The heap space cost equations for

R are generated as follows:

Cp(x̄) =
X

b∈bytecode(B)

Mheap(b) +
X

r(z̄)∈calls(B)

+Cr(z) + Cp cont(ȳ) ϕ

Cp cont(ȳ) = Cq1(ȳ) Gq1

. . .
Cp cont(ȳ) = Cqn(ȳ) Gqn

where Gqi is the guard of qi. The heap space cost relation

associated to the recursive representation of a method is

defined as the set of cost equations for its blocks. 2

When the rule has multiple continuations, it is trans-

formed into several equations. We specify the cost of each

continuation in a separate equation because the guards for

determining the alternative path qi that the execution will

take (with i = 1, . . . , n) are only known at the end of the

execution of the bytecode B; thus, they cannot be evaluated

before B is executed. The guards appear also decorating the

equations. In the implementation, when a rule has only one

continuation, it gives rise to a single equation which contains

the size relation ϕ as an attachment.

109

Java source code

abstract class Data{
abstract public Data copy();
}
class Polynomial extends Data{

private int deg;
private int[] coefs;
public Polynomial() {

coefs = new int[11];}
public Data copy() {

Polynomial aux = new Polynomial();
aux.deg = deg;
for (int i=0;i<=deg && i<=10;i++)

aux.coefs[i] = coefs[i];
return aux;}}

class Vector3D extends Data{
private int x;
private int y;
private int z;
public Vector3D(int x,int y,int z) {

this.x = x;
this.y = y;
this.z = z;}

public Data copy() {
return new Vector3D(x,y,z);
}
}

class Results{
Data[] rs;
public Results() {

rs = new Data[25];
}

public Results copy() {
Results aux = new Results();
for (int i = 0;i < 25;i++)

aux.rs[i] = rs[i].copy();
return aux;}}

Heap space cost equations

Equation Guard Size rels.

Ccopy(a) = Sref + 25∗Sref + C0(a, 0)
C0(a, i) = Sint + Sref

| {z }

size(Polyn)

+11∗Sint + C0(a, j) 〈â.rs[i] ∈ Polyn〉 {i<25, j = i+1}

C0(a, i) = 3∗Sint
| {z }

size(V ect3D)

+C0(a, j) 〈â.rs[i] ∈ V ect3D〉 {i<25, j = i+1}

C0(a, i) = 0 {i>=25}

Figure 2. Constant heap space example

EXAMPLE 4.7. The heap space cost equations generated

for the rule copyCons
0 of Ex. 4.2 and the size relation of

Ex. 4.4 are (see Sect. 2):

CCons
0 (this, aux)=size(Cons) + CCCons

0

(this, aux′, s′′0 , s′′′′1){this=s′′′′1 +1, . . .}

CCCons
0 (this, aux′, s′′0 , s′′′′1) =

(
CCons

1 (this, aux′, s′′0 , s′′′′1)

CCons
2 (this, aux′, s′′0 , s′′′′1)

ŝ′′′′1 ∈ Nil

ŝ′′′′1 ∈ Cons

The cost of BlockCons
0 is captured by CCons

0 , among all

bytecode instructions in BlockCons
0 , we count only the

creation of the object of class Cons. The continuation of

BlockCons
0 is captured in the relation CCCons

0 , where de-

pending on the type of the object s′′′′1 , we choose between

two mutually exclusive equations CCons
1 or CCons

2 . 2

In addition, the analyzer performs a slicing step, which aims

at removing variables that do not affect the cost. And also

tries to simplify the equations as much as possible by ap-

plying unfolding steps. These steps lead to simpler cost re-

lations. Due to lack of space, during the rest of the paper

we will apply them without giving details on how they were

performed.

5. Example Applications of Heap Space

Analysis

In this section, we show the most salient features of our heap

space analysis by means of a series of examples. All exam-

ples are written in object-oriented style and make intensive

use of the heap. We intend to illustrate how our analysis

is able to deal with standard data-structures like lists, trees

and arrays with several dimensions as well as with multi-

ple inheritance, class fields, virtual invocation, etc. We show

examples which present heap usage which depends propor-

tionally to the data size, namely in some cases it depends on

class fields while in another one on the input arguments. An

interesting point is that heap consumption is, in the differ-

ent examples, constant, linear, polynomial or exponentially

proportional to the data sizes.

For each example, we show the Java source code and

its heap space cost relation. Each relation consists of three

parts: the equations, the guards and the size relations. The

applicability conditions of each equation are defined by the

guards and the size relations. Guards usually provide non-

numeric conditions while size relations provide conditions

on the sizes of the corresponding variables. In addition, size

relations describe how the data changes when the control

moves from one to another part of the program. Since our

110

Java source code

abstract class List{
abstract public List copy();
}
class Nil extends List{

public List copy() {
return this;

}

class Cons extends List
private Data elem;
private List next;
public List copy() {

Cons aux = new Cons();
aux.elem = this.elem.copy();
aux.next = this.next.copy();
return aux;}

Heap space cost equations

Equation Guard Size rels.

Ccopy(a) =

size(Cons)
z }| {

2∗Sref +

this.elem.copy()
z }| {

Sint + Sref + 11∗Sint

fi
â.elem ∈ Polyn∧
â.next ∈ Nil

fl

{a = 2}

Ccopy(a) = 2∗Sref + Sint + Sref

+11∗Sint + Ccopy(b)

fi
â.elem ∈ Polyn∧
â.next ∈ Cons

fl
a≥3, b≥2
a>b

ff

Ccopy(a) = 2∗Sref
| {z }

size(Cons)

+ 3∗Sint
| {z }

this.elem.copy()

fi
â.elem ∈ V ect3D∧
â.next ∈ Nil

fl

{a = 2}

Ccopy(a) = 2∗Sref + 3∗Sint + Ccopy(b)

fi
â.elem ∈ V ect3D∧
â.next ∈ Cons

fl
a≥3, b≥2
a>b

ff

Figure 3. Generic list example

system only deals with integer primitive types, we use the

cost model presented in Sect. 4.3 with the constants Sint

and Sref to denote the basic sizes for integers and reference

types, respectively. Also note that we provide the Java source

code instead of the bytecode just for clarity and space limi-

tations. The analyzer works directly on the bytecode which

can be found in the appendix.

5.1 Constant Heap Space Usage

In the first example we consider a method with constant

heap space usage, i.e., its heap consumption does not de-

pend on any input argument. Fig. 2 shows both the source

code and the heap space cost equations generated by the

analyzer. The program implements a data hierarchy which

will be used throughout the section. It consists of an abstract

class, Data and two subclasses, Polynomial and Vector3D.

The class Polynomial defines a polynomial expression of de-

gree up to 10 with integer coefficients, the coefficients are

stored in the array field coefs and the degree in the integer

field deg. Its copy method returns a deep copy of the corre-

sponding polynomial by creating a new array of 11 integers

and copying the first deg+1 original coefficients. The class

Vector3D represents an integer vector with 3 dimensions.

The class Results stores 25 objects of type Data, which in

execution time will be Polynomial or Vector3D objects. Its

copy method produces a deep copy of the whole structure

where each of the 25 elements is copied by its correspond-

ing copy method (hence dynamically resolved).

The cost equations generated by the analyzer for the

method Results.copy are shown in Fig. 2 (at the bottom left).

The first equation Ccopy(a) defines the heap consumption

of the method in terms of its first argument a which corre-

sponds to the abstraction of its this reference variable (i.e.,

its size). It counts the heap space allocated for the creation of

an object of type Results, namely Sref ; the space allocated

by its constructor, namely 25∗Sref ; and the space allocated

when executing the loop. The heap space allocated by the

loop is captured by C0 and it depends on the type of the

object at the current position of the array (which is spec-

ified in the guards by checking the class of â.rs[i]) such

that the call to its corresponding copy method contributes

Sint + Sref+11∗Sint if it is an instance of Polynomial and

3∗Sint if it is an instance of Vector3D.

As already mentioned, a further issue is how to automat-

ically infer closed form solutions (i.e., without recurrences)

from the generated cost relations. In our examples, we can

directly apply the method of [1] to compute an upper bound

in closed form. However, we will not go into details of this

process as it is not a concern of this paper and we will sim-

ply show the asymptotic complexity that can be directly ob-

tained from such upper bounds. We can observe from the

equations that the asymptotic complexity is O(1), as equa-

tion Ccopy is a constant plus C0, and C0 is called a constant

number of times (in this case 25 times). By assuming that

Sint = 4 and Sref = 4, we can obtain the following upper

bound Ccopy = 4 + 25 ∗ 4 + 25 ∗ 52 = 1404.

5.2 Bounds Proportional to the Input Data Size

For the second example, we consider a generic data structure

of type List. Both the source code and the heap space cost

equations obtained by our analyzer are depicted in Fig. 3.

The list is implemented taking advantage of the polymor-

phism as in the style of the example in Sect. 1, but in this

case the elements of the list are objects extending from Data

111

Java source code

class Score{
private int gt1, gt2;
public Score() {

gt1 = 0;
gt2 = 0;
}

class Scoreboard{
private Score[][][] scores;

public Scoreboard(int a,int b) {
scores = new Score[a][][];
for (int i = 1;i <= a;i++) {

scores[i-1] = new Score[i][];
for (int j = 0;j < (i-1);j++) {

scores[i-1][j] = new Score[b];
for (int k = 0;k < b;k++)

scores[i-1][j][k] = new Score();}}}}

Heap space cost equations

Equation Guard Size rels.

C<init>(a, b) = a∗Sref + C1(a, b, 1)
C1(a, b, i) = i∗Sref + C2(b, i, 0) + C1(a, b, d) {i≤a, d = i+1}
C1(a, b, i) = 0 {i > a}
C2(b, i, j) = b∗Sref + C3(b, 0) + C2(b, i, d) {j <(i−1), d = j+1}
C2(b, i, j) = 0 {j ≥ (i−1)}
C3(b, k) = 2∗Sint + C3(b, c) {k<b, c = k+1}
C3(b, k) = 0 {k ≥ b}

Figure 4. Multi-dimensional arrays example

(see the classes in Fig. 2) rather than integer primitive types.

The List.copy method returns a deep copy of the list which,

in addition to copying the whole list structure, it copies each

element by using the corresponding Data.copy method (re-

solved at execution time).

At the bottom of Fig. 3, we show the heap space cost

equations our analyzer generates for the method List.copy

of class Cons. The equation Ccopy(a) defines the heap con-

sumption of the whole method in terms of its first argument a

which represents the size of its this reference variable. There

are four equations for Ccopy , two of them (the second and

the fourth one) are recursive and correspond to the case in

which the rest of the list is not empty, i.e., â.next ∈ Cons.

Note that, in such recursive equations, the size analysis is

able to infer the constraint a > b, thus ensuring that re-

cursive calls are made with a strictly decreasing value. The

other two equations are constant and correspond to the base

case (i.e. the rest of the list is empty). This is abstracted in

the size relations with the constraint a = 2. Note that the

heap usage depends on whether we invoke the copy method

of a Polynomial or a Vector3D object. By considering the

worst cases for all equations, we can infer the upper bound

Ccopy(a)≤(5∗Sref +15∗Sint)∗a ≡ O(a) which describes

a heap consumption linear in a, the size of the list.

5.3 Multi-Dimensional Arrays

Let us consider the example in Fig. 4. The class Scoreboard

is instrumental to show how our heap space analysis deals

with complex multi-dimensional array creation. The class

has a 3-dimensional array field. The constructor takes two

integers a and b and creates an array such that: the first

dimension is a; the second dimension ranges from 1 to a;

and the third dimension is b. Each array entry scores[i][j][k]
stores an object of type Score.

At the bottom of Fig. 4 we can see the heap space cost

equations generated by the analyzer for the constructor of

class Scoreboard. The equation C<init>(a, b) represents the

heap space consumption of the constructor where a and b

correspond to the size of its input parameters. It counts the

heap consumed by constructing the first array dimension,

a∗Sref , plus the heap consumption when executing the out-

ermost loop which is represented by the call C1(a, b, 1). The

heap consumption modeled by C1 includes the amount of

heap allocated for the second array dimension in each itera-

tion, i∗Sref , and the consumption of executing the middle

loop which is represented by the call C2(b, i, 0). Note that

size analysis infers that within C1, the value of i increases

by 1 at each iteration (d=i+1) until it converges to a (i≤a).

The equation C2 defines the heap consumption of the mid-

dle loop, which includes the heap allocated for the third ar-

ray dimension, b∗Sref , plus the consumption of executing

the innermost loop which is represented by the call C3(b, 0).
Finally, C3 models the heap space required for creating

b−k Score objects by the innermost loop. In this case, we

can infer the upper bound C<init>(a, b) ≤ (((2∗Sint∗b) +
b∗Sref)∗a + a∗Sref)∗a + a∗Sref ≡ O(b∗a2).

5.4 Complex Data Structures

For the last example, let us consider a more complex tree-

like data structure which is depicted in Fig. 5. The class

MultiBST implements a binary search tree data structure

where each node has an object of type List (from Fig. 3) and

two successors of type MultiBST which correspond to the

right and left branches of the tree. The constructor method

creates an empty tree whose data field is initialized to an

empty list, i.e., an instance of class Nil. The copy method

performs a deep copy of the whole tree by relying on the

copy method of class List.

112

Java source code

class BST {
private List data;
private MultiBST lc;
private MultiBST rc;
public MultiBST() {

data = new Nil();
lc = null; rc = null; }

public MultiBST copy() {
MultiBST aux = new MultiBST();
aux.data = data.copy();
if (l==null) aux.lc=null; else aux.lc=lc.copy();
if (r==null) aux.rc=null; else aux.rc=rc.copy();
return aux;}}

Heap space cost equations

Equation Guard Size rels.

C(a) = 3∗Sref + D(d) 〈â.lc = null, â.rc = null〉 {a>0, a>d}
C(a) = 3∗Sref + D(d) + C(l) 〈â.lc 6= null, â.rc = null〉 {a>0, a>d, a>l}
C(a) = 3∗Sref + D(d) + C(r) 〈â.lc = null, â.rc 6= null〉 {a>0, a>d, a>r}
C(a) = 3∗Sref + D(d) + C(l) + C(r) 〈â.lc 6= null, â.rc 6= null〉 {a>0, a>d, a>l, a>r}

Figure 5. Multi binary search tree example

The heap space cost equations generated by the analyzer

for the method MultiBST.copy are depicted in Fig. 5 (at the

bottom). The equations defining C(a) represent the heap

space usage of the whole method in terms of the parameter

a, which corresponds to the maximal path-length in the tree.

There are four cases which correspond to the different pos-

sible values for the left and right branches (equal or different

from null). Consider for example the last equation: 3 ∗ Sref

is the heap allocated by the new instruction; D(d) is the

heap consumption for copying an object of type List which

corresponds to Ccopy from Fig. 3; C(l) and C(r) corre-

spond to the heap consumption of copying the left and right

branches respectively. From the cost relation, we infer the

upper bound C(a)≤(3∗Sref+D(a))∗2a where D(a) corre-

sponds to the cost of copying the data field (see Sec. 5.2).

6. Active Heap Space with Garbage

Collection

One of the safety principles in the Java language is ensured

by the use of a garbage collector which avoids errors by the

programmer related to deallocation of objects from the heap.

The aim of this section is to furnish the heap usage cost

relations with safe annotations which mark the heap space

that will be deallocated by the garbage collector upon exit

from the corresponding method. The annotations are then

used to infer heap space upper bounds for methods upon exit.

In order to generate such annotations, we rely on the use

of escape analysis (see, e.g., [8, 15]). Essentially, we as-

sume that the heap allocation instructions new, newarray

and anewarray have been respectively transformed by new

instructions new gc, newarray gc and anewarray gc as

long as it is guaranteed that the lifetime of the correspond-

ing allocated heap space does not exceed the instruction’s

static scope. In this case, the heap space can be safely deal-

located upon exit from the corresponding method. This pre-

processing transformation can be done in a straightforward

way by using the information inferred by escape analysis. In

the following, we refer by transformed bytecode instructions

to the above transformation performed on the heap alloca-

tion instructions. Also, we use gc(H) to denote that the heap

space H will safely be garbage collected upon exit from the

corresponding method (according to escape analysis) and

ngc(H) to denote that it might not be garbage collected.

DEFINITION 6.1. We define a cost model for heap space

with garbage collection which takes a transformed bytecode

instruction bc and returns a positive symbolic expression as:

Mgc
heap(bc)=

ngc(size(Class)) if bc=new(Class,)
gc(size(Class)) if bc=new gc(Class,)

ngc(SPrimType ∗ L) if bc=newarray(PrimType,L,)
gc(SPrimType ∗ L) if bc=newarray gc(PrimType,L,)

ngc(Sref ∗ L) if bc=anewarray(Class,L,)
gc(Sref ∗ L) if bc=anewarray gc(Class,L,)

0 otherwise

where SPrimType, Sref and size() are as in Def. 4.5. 2

The above cost model returns a symbolic positive expres-

sion which contains the annotations gc and ngc as described

above. Therefore, when generating the heap space cost rela-

tions as described in Def. 4.6 w.r.t.Mgc
heap, the cost relations

will be of the following form:

C(x̄) = gc(Hgc) + ngc(Hngc) +
∑

Cr(z) ϕ

where we assume that all symbolic expressions wrapped

by gc (resp. by ngc) are grouped together within each cost

equation and denote the total heap space Hgc that will be

garbage collected (resp. Hngc which might not be) after the

application of such equation.

EXAMPLE 6.2. Suppose we add the following methods

abstract List map(Func o); // List
List map(Func o) { return this; } // Nil
List map(Func o) { // Cons

List tail = this.next.map(o);
Cons head = new Cons();
head.next = tail;
head.elem = o.f(new Integer(this.elem));
return head;

}

113

respectively to the classes List, Nil and Cons which are

depicted in Fig. 1. The method map clones the corresponding

list structure, but the value of the field elem in the clone is

the result of applying the method o.f on the corresponding

value in the cloned list. Note that the method o.f, takes as

input an object of type Integer, therefore this.elem (which

is of type int) is first converted to Integer by creating a

temporary corresponding Integer object. For simplicity, we

do not give a specific definition for Func, but we assume that

its method f (which is called using o.f) does not allocate

any heap space and that it returns a value of type int. Using

escape analysis, the creation of the temporary Integer object

can be annotated as local to map, therefore we replace the

corresponding new instruction by new gc. Assuming that the

size of an Integer object is 4 bytes, and using the cost model

of Def. 6.1, we obtain the following cost equations:

Equation Size relations

CNil
map(a) =0 {a=1}

CCons
map (a)=gc(4)+ngc(8) {a=2}

CCons
map (a)=gc(4)+ngc(8)+CCons

map (b){a≥3, b≥1, a=b+1}

The symbolic expression gc(4) in the above equations corre-

sponds to the heap space allocated for the temporary Integer

object which can be garbage collected upon exit from map,

and ngc(8) corresponds to the heap space allocated for the

Cons object. As before, a corresponds to the size of the this

reference variable (i.e., the list length) and b to this.next. 2

Using the refined cost relations we can infer different

information about the heap space usage depending on the

interpretation given to the gc and ngc annotations. Let us

first consider the following definitions:

∀ H , gc(H) = 0 and ngc(H) = H (1)

where we do not count the heap space that will be deal-

located upon exit from the corresponding method. By ap-

plying Eq. (1) to a cost relation Cm of a method m, we

can infer an upper bound Ugc
m of the active heap space

upon the exit from m, i.e., the heap space consumed by m

which might not be deallocated upon exit. In this setting,

for the cost relations of Ex. 6.2 we infer the closed form

Ugc
map ≡ CCons

map (a) = 8 ∗ (a − 1). It is important to note

that, in general, such upper bound does not ensure that the

heap space required for executing m does not exceed Ugc
m ,

i.e., it is not an upper bound of the heap usage during the

execution of m but rather only after its execution. Actually,

in this simple example, we can observe already that during

the execution of the method map, if all objects are heap al-

located, we need more than 8 ∗ (a − 1) heap units (as the

objects of type Integer will be heap allocated and they are

not accounted in the upper bound). However, one of the ap-

plications of escape analysis is to determine which objects

can be stack allocated instead of heap allocated in order to

avoid invoking the garbage collector which is time consum-

ing [8]. For instance, in the above example, the objects of

type Integer can be safely stack allocated. When this stack

allocation optimization is performed, then Ugc
m is indeed an

upper bound for the heap space required to execute m.

In order to infer upper bounds for the heap space required

during the execution of m, we define gc and ngc as follows:

∀ H , gc(H) = H and ngc(H) = H (2)

In this case, we obtain the same cost relations as in Def. 4.6

which correspond to the worst case heap usage in which we

do not discount any deallocation by the garbage collector.

In this setting, for the cost relation of Ex. 6.2 we infer the

closed form Umap(a) ≡ CCons
map (a) = 12 ∗ (a− 1).

Analysis for finding upper bounds on the memory high-

watermark cannot be directly done using cost relations as

introducing decrements in the equations requires computing

lower bounds. As a further issue, the active heap space

upper bound, Ugc
m , can be used to improve the accuracy of

the upper bound on the heap space required for executing

a sequence of method calls. For example, an upper bound

of the heap space required for executing a method m1 and

upon its return immediately executing a method m2 can be

approximated by max(Um1
, Ugc

m1
+ Um2

) which is more

precise than taking Um1
+ Um2

as it takes into account

that after executing m1 we can apply garbage collection and

only then executing m2. This idea is the basis for a post-

processing that could be done on the program in order to

obtain more accurate upper bounds on the heap usage at a

program point level. This is a subject of ongoing research.

7. Experiments

In order to assess the practicality of our heap space analy-

sis, we have implemented a prototype inter-procedural an-

alyzer in Ciao [10] as an extension of the one in [3]. We

still have not incorporated an escape analysis in our imple-

mentation and hence the upper bounds inferred correspond

to those generated using Eq. (2) of Sect. 6. The experiments

have been performed on an Intel P4 Xeon 2 GHz with 4 GB

of RAM, running GNU Linux FC-2, 2.6.9. Table 1 shows

the run-times of the different phases of the heap space anal-

ysis process. The name of the main class to be analyzed is

given in the first column, Benchmark, and its size (the sum

of all its class file sizes) in KBytes is given in the second

column, Size. Columns 3-6 shows the runtime of the differ-

ent phases in milliseconds, they are computed as the arith-

metic mean of five runs: RR is the time for obtaining the

recursive representation (building CFG, eliminating stack el-

ements, etc., as outlined in Sec. 4.1); Size An. is the time for

the abstract-interpretation based size analysis for computing

size relations; Cost is the time taken for building the heap

space cost relations for the different blocks and representing

them in a simplified form; and Total shows the total times

of the whole analysis process. In the last column, Complex-

ity, we depict the asymptotic complexity of the (worst-case)

heap space cost obtained from the cost relations.

114

Benchmark Size RR Size An. Cost Total Complexity

ListInt 0.86 24 53 7 83 O(n) n ≡ list length

Results 1.31 83 275 15 374 O(1) –

BSTInt 0.48 37 113 5 156 O(2n) n ≡ tree depth

List 1.79 71 207 16 293 O(n) n ≡ list length

Queue 1.93 219 570 24 813 O(n) n ≡ queue length

Stack 1.38 89 643 17 749 O(n) n ≡ stack length

BST 1.43 97 238 14 349 O(2n) n ≡ tree depth

Scoreboard 0.65 280 1539 12 1830 O(a2∗b) {a, b} ≡ input args.

MultiBST 2.35 166 510 34 709 O(n∗2n) n ≡ tree depth

Table 1. Measured time (in ms) of the different phases of cost analysis

Regarding the benchmarks we have used, on one hand,

we have benchmarks implementing some classic data struc-

tures using an object-oriented programming style, which

expose the analyzer’s ability in handling such classical data

structures as well as sophisticated object-oriented program-

ming features. In particular, ListInt, List, Queue, Stack,

BSTInt, BST and MultiBST implement respectively integer

and generic lists, generic queues, generic stacks, integer and

generic binary search trees which allow data repetitions.

On the other hand, we have some benchmarks which expose

more particular issues of heap space analysis, such as Results

which has constant heap space usage and Scoreboard which

presents a multidimensional arrays creation. For all bench-

marks, we have analyzed the corresponding copy method

which performs a deep copy of the corresponding structure.

We can observe in the table that computing size relations

is the most expensive step as it requires a global analysis of

the program, whereas RR and Cost basically involve a single

pass on the code. Our prototype implementation supports the

full instructions set of sequential Java bytecode, however, it

is still preliminary, and there is plenty of room for optimiza-

tion, mainly in the size analysis phase, which in addition as-

sumes the absence of cyclic data structures, which can be

verified using the non-cyclicity analysis [23].

8. Conclusions and Related Work

We have presented an automatic analysis of heap usage for

Java bytecode, based on generating at compile-time cost re-

lations which define the heap space consumption of an in-

put bytecode program. By means of a series of examples

which allocate lists, trees, trees of lists, arrays, etc. in the

heap, we have shown that our analysis is able to infer non-

trivial bounds for them (including polynomial and exponen-

tial complexities). We believe that the experiments we have

presented show that our analysis improves the state of the

practice in heap space analysis of Java bytecode.

Related work in heap space analysis includes advanced

techniques developed in functional programming, mainly

based on type systems with resource annotations (see,

e.g., [24, 17, 25, 19]) and, hence, they are quite different

technically to ours. But heap space analysis is compara-

tively less developed for low-level languages such as Java

bytecode. A notable exception is the work in [11], where

a memory consumption analysis is presented. In contrast

to ours, their aim is to verify that the program executes in

bounded memory by simply checking that the program does

not create new objects inside loops, but they do not infer

bounds as our analysis does. Moreover, it is straightforward

to check that new objects are not created inside loops from

our cost relations. Another related work includes research

in the MRG project [5, 7], which focuses on building a

proof-carrying code [22] architecture for ensuring that byte-

code programs are free from run-time violations of resource

bounds. The analysis is developed for a functional language

which then compiles to a (subset of) Java bytecode and it

is restricted to linear bounds. In [6] the Bytecode Specifica-

tion Language is used to annotate Java bytecode programs

with memory consumption behaviour and policies, and then

verification tools are used to verify those policies.

For Java-like languages, the work of [18] presents a type

system for heap analysis without garbage collection, it is

developed at the level of the source code and based on

amortised analysis (hence it is technically quite different to

our work) and, unlike us, they do not present an inference

method for heap consumption. On the other hand, the work

of [9] deals also with Java source code, it is able to infer

polynomial complexity though it does not handle recursion.

Some works consider explicit deallocation of objects by

decreasing the cost by the size of the deallocated object (see,

e.g., [18, 17]). This approach is interesting when one wants

to observe the heap consumption at certain program points.

However, it cannot be directly incorporated in our cost re-

lations because they are intended to provide a global upper

bound of a method’s execution. Naturally, it should happen

that allocated objects are correctly deallocated and hence our

cost relations would provide zero as (global) upper bound.

Other work which considers cost with garbage collection

is [24]. Unlike ours, it is developed for pure functional pro-

grams where the garbage collection behaviour is easier to

predict as programs do not have assignments.

In the future, we want to extend our work in several direc-

tions. On the practical side, we want to incorporate an escape

115

analysis to transform the bytecode as outlined in Sect. 6. Re-

garding scalability, it is a question of performance vs. preci-

sion trade-off and depends much on the underlying abstract

domain used by the size analysis. We believe our analysis

would scale without sacrificing precision if an efficient do-

main like octagons is used together with [1]. On the theoret-

ical side, we plan to adapt our analysis to infer upper bounds

on the heap usage at given program points in the presence of

garbage collection. We also would like to develop an analy-

sis which infers upper bounds on the call stack usage.

Acknowledgments

This work was funded in part by the Information Society

Technologies program of the European Commission, Future

and Emerging Technologies under the IST-15905 MOBIUS

project, by the Spanish Ministry of Education (MEC) un-

der the TIN-2005-09207 MERIT project, and the Madrid Re-

gional Government under the S-0505/TIC/0407 PROMESAS

project. S. Genaim was supported by a Juan de la Cierva

Fellowship awarded by MEC.

References

[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic

Inference of Upper Bounds for Cost Equation Systems.

Submitted, 2007.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.

Cost analysis of java bytecode. In 16th European Symposium

on Programming, ESOP’07, Lecture Notes in Computer

Science. Springer, March 2007.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.

Experiments in Cost Analysis of Java Bytecode. In Proc. of

BYTECODE’07, Electronic Notes in Theoretical Computer

Science. Elsevier - North Holland, March 2007.

[4] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-

Carrying Code. In Proc. of LPAR’04, number 3452 in LNAI,

pages 380–397. Springer-Verlag, 2005.

[5] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and

I. Stark. Mobile Resource Guarantees for Smart Devices. In

CASSIS’04, number 3362 in LNCS. Springer, 2005.

[6] Gilles Barthe, Mariela Pavlova, and Gerardo Schneider.

Precise analysis of memory consumption using program

logics. In Bernhard K. Aichernig and Bernhard Beckert,

editors, SEFM, pages 86–95. IEEE Computer Society, 2005.

[7] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkar-

avska. Automatic Certification of Heap Consumption. In

Proc. of LPAR’04, LNCS 3452, pages 347–362. Springer,

2004.

[8] Bruno Blanchet. Escape Analysis for Javatm: Theory and

practice. ACM Trans. Program. Lang. Syst., 25(6):713–775,

2003.

[9] Victor Braberman, Diego Garbervetsky, and Sergio Yovine.

A static analysis for synthesizing parametric specifications

of dynamic memory consumption. Journal of Object

Technology, 5(5):31–58, 2006.

[10] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-

Garcı́a, and G. Puebla (Eds.). The Ciao System. Ref.

Manual (v1.13). Technical report, C. S. School (UPM),

2006. Available at http://www.ciaohome.org.

[11] D. Cachera, D. Pichardie T. Jensen, and G. Schneider.

Certified memory usage analysis. In FM’05, number 3582 in

LNCS. Springer, 2005.

[12] A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula.

Enforcing resource bounds via static verification of dynamic

checks. In Proc. of ESOP’05, volume 3444 of Lecture Notes

in Computer Science, pages 311–325. Springer, 2005.

[13] W. Chin, H. Nguyen, S. Qin, and M. Rinard. Memory Usage

Verification for OO Programs. In Proc. of SAS’05, LNCS

3672, pages 70–86. Springer, 2005.

[14] K. Crary and S. Weirich. Resource bound certification. In

Proc. of POPL’00, pages 184–198. ACM Press, 2000.

[15] Patricia M. Hill and Fausto Spoto. Deriving Escape Analysis

by Abstract Interpretation. Higher-Order and Symbolic

Computation, (19):415–463, 2006.

[16] M. Hofmann. Certification of Memory Usage. In Theoretical

Computer Science, 8th Italian Conference, ICTCS, volume

2841 of Lecture Notes in Computer Science, page 21.

Springer, 2003.

[17] M. Hofmann and S. Jost. Static prediction of heap space

usage for first-order functional programs. In 30th ACM

Symposium on Principles of Programming Languages

(POPL), pages 185–197. ACM Press, 2003.

[18] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space

Analysis. In 15th European Symposium on Programming,

ESOP 2006, volume 3924 of Lecture Notes in Computer

Science, pages 22–37. Springer, 2006.

[19] J. Hughes and L. Pareto. Recursion and Dynamic Data-

structures in Bounded Space: Towards Embedded ML

Programming. In Proc. of ICFP’99, pages 70–81. ACM

Press, 1999.

[20] T. Lindholm and F. Yellin. The Java Virtual Machine

Specification. Addison-Wesley, 1996.

[21] Patricia M.Hill, Etienne Payet, and Fausto Spoto. Path-length

analysis of object-oriented programs. In Proc. EAAI, 2006.

[22] G. Necula. Proof-Carrying Code. In POPL’97. ACM Press,

1997.

[23] S. Rossignoli and F. Spoto. Detecting Non-Cyclicity by

Abstract Compilation into Boolean Functions. In E. A.

Emerson and K. S. Namjoshi, editors, Proc. of the 7th

workshop on Verification, Model Checking and Abstract

Interpretation, volume 3855 of Lecture Notes in Computer

Science, pages 95–110, Charleston, SC, USA, January 2006.

Springer-Verlag.

[24] L. Unnikrishnan, S. Stoller, and Y. Liu. Optimized Live Heap

Bound Analysis. In Proc. of VMCAI’03, Lecture Notes in

Computer Science, pages 70–85. Springer, 2003.

[25] P. Vasconcelos and K. Hammond. Inferring Cost Equations

for Recursive, Polymorphic and Higher-Order Functional

Programs. In IFL, volume 3145 of LNCS. Springer, 2003.

116

Live Heap Space Analysis for Languages with Garbage Collection

Elvira Albert

Complutense University of Madrid

elvira@sip.ucm.es

Samir Genaim

Complutense University of Madrid

samir.genaim@fdi.ucm.es

Miguel Gómez-Zamalloa

Complutense University of Madrid

mzamalloa@fdi.ucm.es

Abstract

The peak heap consumption of a program is the maximum size
of the live data on the heap during the execution of the program,
i.e., the minimum amount of heap space needed to run the program
without exhausting the memory. It is well-known that garbage col-
lection (GC) makes the problem of predicting the memory required
to run a program difficult. This paper presents, the best of our
knowledge, the first live heap space analysis for garbage-collected
languages which infers accurate upper bounds on the peak heap
usage of a program’s execution that are not restricted to any com-
plexity class, i.e., we can infer exponential, logarithmic, polyno-
mial, etc., bounds. Our analysis is developed for an (sequential)
object-oriented bytecode language with a scoped-memory manager
that reclaims unreachable memory when methods return. We also
show how our analysis can accommodate other GC schemes which
are closer to the ideal GC which collects objects as soon as they be-
come unreachable. The practicality of our approach is experimen-
tally evaluated on a prototype implementation. We demonstrate that
it is fully automatic, reasonably accurate and efficient by inferring
live heap space bounds for a standardized set of benchmarks, the
JOlden suite.

Categories and Subject Descriptors F3.2 [Logics and Meaning
of Programs]: Program Analysis; F2.9 [Analysis of Algorithms
and Problem Complexity]: General; D3.2 [Programming Lan-
guages]

General Terms Languages, Theory, Verification, Reliability

Keywords Live Heap Space Analysis, Peak Memory Consump-
tion, Low-level Languages, Java Bytecode

1. Introduction

Predicting the memory required to run a program is crucial in many
contexts like in embedded applications with stringent space re-
quirements or in real-time systems which must respond to events
or signals within a predefined amount of time. It is widely rec-
ognized that memory usage estimation is important for an accu-
rate prediction of running time, as cache misses and page faults
contribute directly to the runtime. Another motivation is to config-
ure real-time garbage collectors to avoid mutator starvation. Be-
sides, upper bounds on the memory requirement of programs have
been proposed for resource-bound certification [10] where certifi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’09, June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-347-1/09/06. . . $5.00

cates encode security properties involving resource usage require-
ments, e.g., the (untrusted) code must adhere to specific bounds on
its memory usage. On the other hand, automatic memory manage-
ment (also known as garbage collection) is a very powerful and use-
ful mechanism which is increasingly used in high-level languages
such as Java. Unfortunately, GC makes the problem of predicting
the memory required to run a program difficult.

A first approximation to this problem is to infer the total mem-
ory allocation, i.e., the accumulated amount of memory allocated
by a program ignoring GC. If such amount is available it is ensured
that the program can be executed without exhausting the memory,
even if no GC is performed during its execution. However, it is an
overly pessimistic estimation of the actual memory requirement.
Live heap space analysis [18, 5, 8] aims at approximating the size
of the live data on the heap during a program’s execution, which
provides a much tighter estimation. This paper presents a general
approach for inferring the peak heap consumption of a program’s
execution, i.e., the maximum of the live heap usage along its execu-
tion. Our live heap space analysis is developed for (an intermediate
representation of) an object-oriented bytecode language with au-
tomatic memory management. Programming languages which are
compiled to bytecode and executed on a virtual machine are widely
used nowadays. This is the approach used by Java bytecode and
.NET.

Analysis of live heap usage is different from total memory allo-
cation because it involves reasoning on the memory consumed at all
program states along an execution, while total allocation needs to
observe the consumption at the final state only. As a consequence,
the classical approach to static cost analysis proposed by Wegbreit
in 1975 [20] has been applied only to infer total allocation. Intu-
itively, given a program, this approach produces a cost relation sys-
tem (CR for short) which is a set of recursive equations that cap-
ture the cost accumulated along the program’s execution. Symbolic
closed-form solutions (i.e., without recursion) are found then from
the CR. This approach leads to very accurate cost bounds as it is
not limited to any complexity class (infers polynomial, logarithmic,
exponential consumption, etc.) and, besides, it can be used to infer
different notions of resources (total memory allocation, number of
executed instructions, number of calls to specific methods, etc.).
Unfortunately, it is not suitable to infer peak heap consumption be-
cause it is not an accumulative resource of a program’s execution
as CR capture. Instead, it requires to reason on all possible states
to obtain their maximum. By relying on different techniques which
do not generate CR, live heap space analysis is currently restricted
to polynomial bounds and non-recursive methods [5] or to linear
bounds dealing with recursion [8].

Inspired by the basic techniques used in cost analysis, in this
paper, we present a general framework to infer accurate bounds
on the peak heap consumption of programs which improves the
state-of-the-art in that it is not restricted to any complexity class
and deals with all bytecode language features including recursion.
To pursue our analysis, we need to characterize the behavior of

the underlying garbage collector. We assume a standard scoped-
memory manager that reclaims memory when methods return. In
this setting, our main contributions are:

1. Escaped Memory Analysis. We first develop an analysis to infer
upper bounds on the escaped memory of method’s execution,
i.e., the memory that is allocated during the execution of the
method and which remains upon exit. The key idea is to infer
first an upper bound for the total memory allocation of the
method. Then, such bound can be manipulated, by relying on
information computed by escape analysis [4], to extract from it
an upper bound on its escaped memory.

2. Live Heap Space Analysis. By relying on the upper bounds on
the escaped memory, as our main contribution, we propose a
novel form of peak consumption CR which captures the peak
memory consumption over all program states along the execu-
tion for the considered scoped-memory manager. An essential
feature of our CRs is that they can be solved by using existing
tools for solving standard CRs .

3. Ideal Garbage Collection. An interesting, novel feature of our
approach is that we can refine the analysis to accommodate
other kinds of scope-based managers which are closer to an
ideal garbage collector which collects objects as soon as they
become unreachable.

4. Implementation. We report on a prototype implementation
which is integrated in the COSTA system [2] and experimen-
tally evaluate it on the JOlden benchmark suite. Preliminary
results demonstrate that our system obtains reasonably accurate
live heap space upper bounds in a fully automatic way.

2. Bytecode: Syntax and Semantics

Bytecode programs are complicated for both human and automatic
analysis because of their unstructured control flow, operand stack,
etc. Therefore, it is customary to formalize analyses on interme-
diate representations of the bytecode (e.g., [3, 19, 13]). We con-
sider a rule-based procedural language (in the style of any of the
above) in which a rule-based program consists of a set of proce-
dures and a set of classes. A procedure p with k input arguments
x̄ = x1, . . . , xk and m output arguments ȳ = y1, . . . , ym is de-
fined by one or more guarded rules. Rules adhere to the following
grammar:

rule ::= p(〈x̄〉, 〈ȳ〉) ::=g, b1, . . . , bt

g ::= true | exp1 op exp2 | type(x, c)
b ::= x := exp | x := new ci | x := y.f | x .f := y | q(〈x̄〉, 〈ȳ〉)

exp ::= null | aexp
aexp ::= x | n | aexp−aexp | aexp+aexp | aexp∗aexp | aexp/aexp

op ::= > | < | ≤ | ≥ | = | �=

where p(〈x̄〉, 〈ȳ〉) is the head of the rule; g its guard, which spec-
ifies conditions for the rule to be applicable; b1, . . . , bt the body
of the rule; n an integer; x and y variables; f a field name, and
q(〈x̄〉, 〈ȳ〉) a procedure call by value. The language supports class
definition and includes instructions for object creation, field ma-
nipulation, and type comparison through the instruction type(x, c),
which succeeds if the runtime class of x is exactly c. A class c is
a finite set of typed field names, where the type can be integer or
a class name. The superscript i on a class c is a unique identifier
which associates objects with the program points where they have
been created. The key features of this language are: (1) recursion
is the only iterative mechanism, (2) guards are the only form of
conditional, (3) there is no operand stack, (4) objects can be re-
garded as records, and the behavior induced by dynamic dispatch
in the original bytecode program is compiled into dispatch blocks

class Test {
static Tree m(int n) {

if (n>0) return new

Tree(m(n-1),m(n-1),f(n));
else return null;

}
static int f(int n) {

int a=0,i=n;
while (n>1) {

a += g(n).intValue();
n=n/2;

}
for(; i>1; i=i/2)

a *= h(i).intValue();
return a;

}

static Integer g(int n) {
Integer x=new Integer(n);
return new Integer(x.intValue()+1);

}
static Long h(int n) {

return new Long(n-1);
}

} // end of class Test

class Tree {
Tree l,r;
int d;
Tree(Tree l,Tree r,int d) {

this.l = l;
this.r = r;
this.d = d;

}
}

Figure 1. Java code of running example

(1) m(〈n〉, 〈r〉)::=
n > 0,
s0 := new Tree1;
s1 := n − 1,
m(〈s1〉, 〈s1〉),
s2 := n − 1,
m(〈s2〉, 〈s2〉),
f(〈n〉, 〈s3〉),
init(〈s0, s1, s2, s3〉, 〈〉),
r = s0.

(2) m(〈n〉, 〈r〉)::=
n ≤ 0,
r := null.

(3) f(〈n〉, 〈a〉)::=
a := 0,
i := n,
fc(〈n, a〉, 〈n, a〉),
fd(〈i, a〉, 〈i, a〉).

(4) fc(〈n, a〉, 〈n, a〉)::=
n > 1,
g(〈n〉, 〈s0〉),
intValue1(〈s0〉, 〈s0〉)
a := a + s0,
n := n/2,
fc(〈n, a〉, 〈n, a〉).

(5) fc(〈n, a〉, 〈n, a〉)::=
n ≤ 1.

(6) fd(〈i, a〉, 〈i, a〉)::=
i > 1,
h(〈i〉, 〈s0〉),
intValue2(〈s0〉, 〈s0〉)
a := a ∗ s0,
i := i/2,
fd(〈i, a〉, 〈i, a〉).

(7) fd(〈i, a〉, 〈i, a〉)::=
i ≤ 1.

(8) g(〈n〉, 〈r〉)::=
x := new Integer2,
init1(〈x, n〉, 〈〉),
intValue1(〈x〉, 〈s0〉),
s0 := s0 + 1.
r := new Integer3,
init1(〈r, s0〉, 〈〉).

(9) h(〈n〉, 〈r〉)::=
s0 := n − 1.
r := new Long4,
init2(〈r, s0〉, 〈〉).

(10) init(〈this, l, r, d〉, 〈〉)::=
this.l := l,
this.r := r,
this.d := d.

Figure 2. Intermediate representation of running example.

guarded by a type check, and (5) procedures may have multiple re-
turn values. The translation from (Java) bytecode to the rule-based
form is performed in two steps. First, a control flow graph (CFG)
is built. Second, a procedure is defined for each basic block in the
graph and the operand stack is flattened by considering its elements
as additional local variables. E.g., this translation is explained in
more detail in [3]. For simplicity, our language does not include
advanced features of Java bytecode, such as exceptions, interfaces,
static methods and fields, access control (e.g., the use of public,
protected and private modifiers) and primitive types besides in-
tegers and references. Such features can be easily handled in our
framework and indeed our implementation deals with full (sequen-
tial) Java bytecode.

EXAMPLE 2.1. Fig. 1 depicts our running example in Java, and
Fig. 2 depicts its corresponding rule-based representation where
the procedures are named as the method they represent and “fc”
and “fd” denote intermediate procedures for f . The Java program
is included only for clarity as the analyzer generates the rule-
based representation from the corresponding bytecode only. As
an example, we explain rules (1) and (2) which correspond to
method m. Each rule is guarded by a corresponding condition,
resp. n > 0 and n ≤ 0. Variable names of the form si indicate that

they originate from stack positions. In rule (1), the “new Tree1”
instruction creates an object of type Tree (the superscript 1 is the
unique identifier for this program point) and assigns the variable
s0 to its reference (which corresponds to pushing the reference
on the stack in the original bytecode). Then, the local variable n
is decremented by one and the result is assigned to s1. Next, the
method m is recursively invoked which receives as input argument
the result of the previous operation (s1) and returns its result in
s1. Similar invocations to methods m, f and init follow. In Java
bytecode, constructor methods are named init. In both rules, the
return value is r which in (1) is assigned to the object reference and
in (2) to null. It can be observed that, like in bytecode, all guards
and instructions correspond to three-address code, except for calls
to procedures which may involve more variables as parameters.
The methods intValue1 and init1 belong to class Integer, and
intValue2 and init2 belong to class Long. �

Observe in the example that, in our syntax, with the aim of sim-
plifying the presentation, we do not distinguish between calls to
methods and calls to intermediate procedures. For instance, fc and
fd are intermediate procedures while f is the method. This distinc-
tion can be made observable in the translation phase trivially and,
when needed, we assume such distinction is available.

2.1 Semantics

The execution of bytecode in rule-based form is exactly like stan-
dard bytecode; a thorough explanation is outside the scope of this
paper (see [14]). An operational semantics for rule-based bytecode
is shown in Fig. 3. An activation record is of the form 〈p, bc, tv〉,
where p is a procedure name, bc is a sequence of instructions and
tv a variable mapping. Executions proceed between configurations
of the form A; h, where A is a stack of activation records and h
is the heap which is a partial map from an infinite set of memory
locations to objects. We use h(r) to denote the object referred to
by the memory location r in h and h[r �→ o] to indicate the result
of updating the heap h by making h(r) = o. An object o is a pair
consisting of the object class tag and a mapping from field names
to values which is consistent with the type of the fields.

Intuitively, rule (1) accounts for all instructions in the byte-
code semantics which perform arithmetic and assignment opera-
tions. The evaluation eval(exp, tv) returns the evaluation of the
arithmetic or Boolean expression exp for the values of the cor-
responding variables from tv in the standard way, and for refer-
ence variables, it returns the reference. Rules (2), (3) and (4) deal
with objects. We assume that newobject(ci) creates a new object
of class c and initializes its fields to either 0 or null, depending on
their types. Rule (5) (resp., (6)) corresponds to calling (resp., re-
turning from) a procedure. The notation p[ȳ, ȳ′] records the associ-
ation between the formal and actual return variables. It is assumed
that newenv creates a new mapping of local variables for the corre-
sponding method, where each variable is initialized as newobject
does.

An execution starts from an initial configuration of the form
〈⊥, p(〈x̄〉, 〈ȳ〉), tv〉; h and ends when we reach a final configura-
tion 〈⊥, ǫ, tv ′〉; h′ where tv and h are initialized to suitable initial
values, tv ′ and h′ include the final values, and ⊥ is a special symbol

indicating an initial state. We assume that any object stored in the
initial heap h is reachable from (at least) one of the xi, namely there
are not collectable objects that can removed from h at the initial
state. Note that dom(tv) = dom(tv ′) = x̄ ∪ ȳ. Finite executions
can be regarded as traces S0�S1� · · ·�Sω , denoted S0�

∗Sω ,
where Sω is a final configuration. Infinite traces correspond to non-
terminating executions.

3. Total Memory Allocation Analysis

Let us first define the notion of total memory consumption. We let
size(c) denote the amount of memory required to hold an instance
object of class c, size(o) denotes the amount of memory occupied
by an object o, and size(h) denotes the amount of memory occu-
pied by all objects in the heap h, namely Σr∈dom(h)size(h(r)).
We consider the semantics in Fig. 3 where no GC is performed.
Given a trace t ≡ A1; h1 �

∗ An; hn, the total memory allocation
of t is defined as total(t) = size(hn) − size(h1).

In this section, we briefly overview the application of the cost
analysis framework, originally proposed by Wegbreit [20], to total
memory consumption inference of bytecode as proposed in [3]. The
original analysis framework [1] takes as input a program and a cost
model M, and outputs a closed-form upper bound that describes its
execution cost w.r.t. M. The cost model M defines the cost that we
want to accumulate. For instance, if the cost model is the number
of executed instructions, M assigns cost 1 to all instructions. The
application of this framework to total memory consumption of
bytecode takes as input a bytecode program and the following cost
model Mt, which is a simplification for our language of the cost
model for heap space usage of [3].

DEFINITION 3.1 (heap consumption cost model [3]). Given a byte-
code instruction b, the heap consumption cost model is defined as

Mt(b) =

j

size(ci) b ≡ x := new ci

0 otherwise

For a sequence of instructions, Mt(b1 · · · bn) = Mt(b1) + · · · +
Mt(bn). �

3.1 Inference of Size Relations

The aim of the analysis is to approximate the memory consumption
of the program as an upper bound function in terms of its input data
sizes. As customary, the size of data is determined by its variable
type: the size of an integer variable is its value; the size of an array
is its length; and the size of a reference variable is the length of the
longest path that can be traversed through the corresponding object
(e.g., length of a list, depth of a tree, etc.). To keep the presentation
simple, we use the original variable names (possible primed) to
refer to the corresponding abstract (size) variables; but we write the
size in italic font. For instance, let x be a reference to a tree, then x
represents the depth of x. When we need to compute the sizes v̄ of
a given tuple of variables x̄, we use the notation v̄ = α(x̄, tv , h),
which means that the integer value vi is the size of the variable xi in
the context of the variables table tv and the heap h. For instance, if
x is the reference to a tree, we need to access the heap h where the
tree is allocated to compute its depth and obtain v. If x is an integer
variable, then its size (value) can be obtained from the variable table
tv .

Standard size analysis is used in order to obtain relations be-
tween the sizes of the program variables at different program
points. For instance, associated to procedure fc, we infer the size
relation n′ = n/2 which indicates that the value of n decreases by
half when calling fc recursively. We denote by ϕr the conjunction
of linear constraints which describes the relations between the ab-
stract variables of a rule r and refer to [9, 3] for more information.

(1)
b ≡ x := exp, v = eval(exp, tv)

〈p, b·bc, tv〉·A; h � 〈p, bc, tv [x �→ v]〉·A; h

(2)
b ≡ x := new ci, o=newobject(ci), r
∈dom(h)
〈p, b·bc, tv〉·A; h � 〈p, bc, tv [x �→ r]〉·A; h[r �→ o]

(3)
b ≡ x := y.f, tv(y)
= null, o = h(tv(y))
〈p, b·bc, tv〉·A; h � 〈p, bc, tv [x �→ o.f]〉·A; h

(4)
b ≡ x.f := y, tv(x)
= null, o = tv(x)

〈p, b·bc, tv〉·A; h � 〈p, bc, tv〉·A; h[o.f �→ tv(y)]

(5)
b ≡ q(〈x̄〉, 〈ȳ〉), there is a program rule q(〈x̄′〉, 〈ȳ′〉):=g, b1, · · · , bk

such that tv ′=newenv(q), ∀i.tv ′(x′

i) = tv(xi), eval(g, tv ′) = true
〈p, b·bc, tv〉·A; h � 〈q, b1 · . . . · bk, tv ′〉·〈p[ȳ, ȳ′], bc, tv〉·A; h

(6)
〈q, ǫ, tv〉·〈p[ȳ, ȳ′], bc, tv ′〉·A; h � 〈p, bc, tv ′[ȳ �→ tv(ȳ′)]〉·A; h

Figure 3. Operational semantics of bytecode programs in rule-based form

(1) m(n)=size(Tree1)+m(s1)+m(s2)+ {n>0, s0=1,
f(n)+init(s0, s1, s2, s3) s1=n−1, s2=n−1}

(2) m(n)=0 {n≤0}

(3) f(n)=fc(n, a) + fd(i, a′) {a=0, i=n}

(4) fc(n, a)=g(n)+fc(n′, a′) {n>1, n′=n/2}

(5) fc(n, a)=0 {n≤1}

(6) fd(i, a)=h(i)+fd(i′, a′) {i>1, i′=i/2}

(7) fd(i, a)=0 {i≤0}

(8) g(n)=size(Integer2)+size(Integer3) {x=1}

(9) h(n)=size(Long4) {r=1, s0=n−1}

(10) init(this, l, r, d)=0 {}

Figure 4. Total Allocation CR.

3.2 Generation of Cost Relations

In a nutshell, given a bytecode program P , the analysis of [3] pro-
ceeds in three steps: (1) it first transforms it into an equivalent
rule-based program (our work directly starts from such rule-based
form), (2) it infers size relations as explained above, (3) it gener-
ates a CR which describes the total memory consumption of the
program as follows.

DEFINITION 3.2 (total allocation CR [3]). Consider a rule r ≡
p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn and the size relations ϕr computed
for r. We distinguish the subsequence of all calls to procedures
bi1 . . . bik in r, with 1 ≤ i1 ≤ · · · ≤ ik ≤ n and assume
bij = qij(〈x̄ij〉, 〈ȳij〉). Then, the cost equation for r is:

p(x̄) = Mt(g, b1, . . . , bn) + Σk
j=1 qij

(x̄ij
), ϕr

Given a program P , we denote by SP the cost relation generated
for each rule in P w.r.t. the heap consumption cost model Mt. �

Note that each call in the rule qij(〈x̄ij〉, 〈ȳij〉) has a corresponding
abstract version bα

ij
= qij

(x̄ij
) where x̄ij

are the size abstractions
of x̄ij . The output variables are ignored in the CR as the cost is
a function of the input data sizes, however it should be noted that
the possible effect of output variables on the cost has been already
modeled by the size relation ϕr . For simplicity, the same procedure
name is used to define its associated cost relation, but in italic font.

EXAMPLE 3.3. The CR generated for the rule-based program in
Fig. 2 w.r.t. Mt is depicted in Fig. 4. To simplify the presenta-

tion, we assume that the total heap consumption of all external
methods (init1, intValue1, init2 and intValue2) is 0 and we do
not show them in the equations from now on. Consider, for exam-
ple, equation (4). It states that the memory consumption of exe-
cuting fc(〈n, a〉, 〈n, a〉) is the total memory consumption of exe-
cuting g(〈n〉, 〈r〉) plus the one of fc(〈n

′, a′〉, 〈n′, a′〉). The set of
constraints attached to equation (4) includes information on: (1)
how the sizes of the data change when the program moves from
one rule to another, e.g., the constraint n′ = n/2 indicates that
the value of n decreases by half when calling fc recursively; and
(2) numeric conditions (obtained by abstracting the guards) under
which the corresponding rule is applicable, e.g., n > 1 indicates
that the equation can be applied only when n is greater than 1. �

An important observation is that, as discussed in Sec. 1, this analy-
sis approach is intrinsically designed to infer the total cost (memory
allocation in this case) of the program’s execution and not to infer
its peak consumption. This is because the equations accumulate the
cost of all instructions and rules together as it can be observed in
the CR for the example above.

3.3 Closed-Form Upper Bounds

Once the CR is generated, a cost analyzer has to use a CR solver
in order obtain closed-form upper bounds, i.e., expressions without
recurrences. The technical details of this process are not explained
in the paper as our analysis does not require any modification to
such part. In what follows, we rely on the CR solver of [3] (which
can be accessed online through a web interface) to obtain closed-
form upper bounds for our examples. The soundness of the overall
analysis, as stated in the next theorem, requires that the equations
generated as well as their closed-form upper bounds are sound.

THEOREM 3.4 (soundness [3]). Given a procedure p, and a trace
t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 �

∗ 〈q, bc, tvn〉·A; hn, then
p(v̄) ≥ total(t) where v̄ = α(x̄, tv1, h1). �

Observe that the trace t in the theorem represents an execution of
procedure p for some specific input data (properly stored in tv1 and
h1) where the first configuration corresponds to calling p and the
last one to returning from that specific call. As already mentioned
in Sec. 3.1, v̄ denotes the size of the input data.

EXAMPLE 3.5. Solving the equations of Fig. 4 results in the fol-
lowing closed-form upper bounds for f , m, g and h:

m(n) = (2nat(n) − 1)∗(f(n)+size(Tree1))
f(n) = log2(nat(n−1)+1)∗(size(Integer2)+size(Integer3))+

log2(nat(n−1)+1)∗size(Long4))
fc(n, a) = log2(nat(n−1)+1)∗(size(Integer2)+size(Integer3))
fd(i, a) = log2(nat(i−1)+1)∗size(Long4))

g(n) = size(Integer2)+size(Integer3)
h(n) = size(Long4)

where the expression nat(l) is defined as max(l, 0) to avoid nega-
tive evaluations. As expected, method m has an exponential mem-
ory consumption due to the two recursive calls, which in turn is
multiplied by the allocation at each iteration (i.e., the consumption
of f plus the creation of a Tree object). The solver indeed substi-
tutes f(n) by its upper bound shown below. The memory consump-
tion of f has two logarithmic parts: the leftmost one corresponds
to the first loop which accumulates the allocation performed along
the execution of g(n), the rightmost one corresponds to the second
loop with the allocation of h(n). �

A fundamental observation is that the above upper bounds on the
memory consumption can be tighter if one considers the effect of
GC. For instance, a more precise upper bound for m can be inferred
if we take into account that the memory allocated by f can be
entirely garbage collected upon return from f . Likewise, the upper
bound for f can be more precise if we take advantage of the fact that
not all memory escapes from g. The goal of the rest of the paper is
to provide automatic techniques to infer accurate bounds by taking
into account the memory freed by scoped-GC.

4. Escaped Memory Upper Bounds

In a real language, GC removes objects which become unreachable
along the program’s execution. Given a configuration A; h, we say
that an object o = h(r) where r ∈ dom(h) is not reachable, if
it cannot be accessed (directly or indirectly) through the variables
table tv of any activation record in A. To develop our analysis, we
assume a scoped-memory manager, which at the level of the source
language, meets these conditions: (1) it reclaims memory only upon
return from methods and, (2) it collects all unreachable objects
which have been created during the execution of the corresponding
method call.

In order to simulate the behavior of such garbage collector at
the level of the corresponding rule-based bytecode, it is enough
to assume that the memory manager reclaims memory only upon
return from procedures that correspond to methods but not from
procedures that correspond to intermediate states like fc and fd. We
use �gc to denote �-transitions with a scoped-memory manager
which meets the two conditions above. In this context, the escaped
memory of a procedure execution is defined as follows. Given a
trace t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 ·A; h1 �

∗

gc 〈q, bc, tvn〉 ·A; hn

whose first configuration corresponds to calling p and the last one
to returning from that specific call, the escaped memory of t is
escaped(t) = size(hn) − size(h1), which corresponds to the
amount of memory allocated during the execution of p and still
live in the memory upon exit from p. Our first contribution is an
automatic technique to infer escaped memory upper bounds.

4.1 Inference of Escape Information

We say that an object escapes from a procedure p, in the context
of a scoped-memory manager, if it is created during the execution
of p, and still available in the heap upon exit from p. Note that if
p corresponds to an intermediate procedure, such object might be
unreachable but still has not been garbage collected because GC
is applied only when exiting from procedures that correspond to
methods in the original program. As a preprocessing phase, for

each procedure p, we need to over-approximate the set of allocation
instructions “new ci” that might be executed when calling p and its
transitive calls such that it is guaranteed that all objects they create
are not in memory upon exit from p, i.e., they have been garbage
collected. Recall that an allocation instruction “new ci” is uniquely
identified by the tagged class ci. We use the notation A \B for the
difference on sets.

DEFINITION 4.1 (collectable objects). Given a procedure p, we
denote by collectable(p) the set of all allocation instructions,
identified by their tagged classes, defined as follows.

ci ∈ collectable(p) iff the following conditions hold:

1. “new ci” is a reachable instruction from p;

2. for any trace t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 �
∗

gc

〈q, bc, tvn〉 · A; hn, it holds that ∀r ∈ dom(hn) \ dom(h1)
the object hn(r) is not an instance of ci. �

The set of collectable objects can be approximated from the
information computed by escape analysis [15, 4]. The goal of
escape analysis is to determine all program points where an object
is reachable and whether the lifetime of the object can be proven to
be restricted only to the current method. In our implementation, we
use the approach described in [21] which, as our experiments show,
behaves well in practice.

EXAMPLE 4.2. The escape information is computed for all proce-
dures (both methods and intermediate rules) defined in Fig. 2:

collectable(m) = collectable(f) = {Integer2, Integer3, Long4}
collectable(fc) = collectable(g) = {Integer2}
collectable(fd) = collectable(h) = ∅

As an example, the information in the set collectable(f) states that

the objects created with class tags Integer2, Integer3 and Long4

during the execution of f by the transitive calls to g and h, do not
escape from f . Also, collectable(fd) = ∅ means that the object

Long4 created in h might escape from fd. An important observation
is that this object is not reachable upon exit from fd, but since GC is
applied only upon exit from procedures that correspond to methods,
it will be collected only upon exit from f . This issue will be further
discussed in Sec. 6. �

4.2 Upper Bounds on the Escaped Memory

Intuitively, our technique to infer upper bounds on the escaped
memory consists of two steps. In the first step, we generate equa-
tions for the total allocation (exactly as stated in Def. 3.2) which
accumulate symbolic expressions of the form size(ci) to repre-
sent the heap allocation for the instruction new ci, rather than its
concrete allocation size. From these equations, we obtain an up-
per bound for the total memory allocation as a symbolic expression
which contains residual size(ci) sub-expressions. The main nov-
elty is that, in a second step, we tighten up such total allocation
upper bound to extract from it only its escaped memory as follows.
Given a procedure p, and its total heap consumption upper bound
p(x̄), we obtain the upper bound on the escaped memory by replac-
ing expressions of the form size(ci) by 0 if it is guaranteed that all
corresponding objects are not available in the memory upon exit
from p, namely ci ∈ collectable(p). Given an expression exp and
a substitution σ from sub-expressions to values, exp[σ] denotes the
application of σ on exp.

DEFINITION 4.3 (escaped memory upper bound). Given a proce-
dure p, its escape information collectable(p), and its (symbolic)
upper-bound for the total memory allocation p(x̄) = exp, the es-

caped memory upper-bound of p is defined as: p̌(x̄) = exp[∀ci ∈
collectable(p).size(ci) �→ 0]. �

Observe that, in the above definition, it is required that the set
collectable(p) contains the information for objects created in tran-
sitive calls from p, as stated in Def. 4.1, because escaped memory
upper-bounds for a method p are obtained by using only the in-
formation in collectable(p) and not in any other collectable(q)
with q
= p. This is an essential difference w.r.t. existing work [3]
which does not compute information for transitive calls, but instead
computes the escape information only for the objects which are cre-
ated inside each method (excluding its transitive calls). We obtain
strictly more accurate bounds as the following example illustrates.

EXAMPLE 4.4. Applying Def. 4.3 to the total heap allocation in-
ferred in Ex. 3.5, by using the escape information of Ex. 4.2, results
in the escaped memory upper bounds:

m̌(n) = (2nat(n) − 1)∗size(Tree1) f̌(n) = 0
f̌c(n, a) = log(nat(n−1)+1) ∗ size(Integer3) ǧ(n) = size(Integer3)
f̌d(i, a) = log(nat(i−1)+1) ∗ size(Long4) ȟ(n) = size(Long4)

We can see that the escaped memory upper bound for m does not

accumulate the allocations of Long4 nor Integer2 and Integer3

objects because they do not escape from f . In [3], the allocations

corresponding to Integer3 and Long4 are accumulated because
they escape from the method where these objects have been created.
The problem is that in [3] they are accumulated in the CR and
hence in all upper bounds for methods that transitively invoke g
and h. �

The following theorem states the soundness of our escaped memory
upper bounds.

THEOREM 4.5 (soundness). Given a procedure p, and a trace
t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 �

∗

gc 〈q, bc, tvn〉·A; hn, then
p̌(v̄) ≥ escaped(t) where v̄ = α(x̄, tv1, h1).

Proof.
(sketch) First, by Theorem 3.4, we have the soundness of the
total allocation upper bound p(v̄) ≥ total(t). Second, by the
soundness of escape analysis [4], we know that collectable(p)
gives a safe approximation of the objects that escape from t. Now,
by combining both parts, we have that p̌(v̄) ≥ escaped(t) and,
hence, the soundness of p̌(v̄) follows. �

5. Live Heap Space Analysis

This section presents a novel live heap space analysis for garbage-
collected languages which obtains precise upper bounds including
logarithmic, exponential, etc. complexity classes. Achieving accu-
racy is crucial because live heap bounds represent the minimum
amount of memory required to execute a program.

5.1 The Notion of Peak Consumption

Essentially, given a trace t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 ·A; h1 �
∗

gc

〈q, bc, tvn〉 · A; hn, the peak consumption can be defined as
peak(t) = max(size(h2), . . . , size(hn))− size(h1). We decre-
ment size(h1) because the objects created in an outer scope (i.e.,
those in h1) cannot be collected during the execution t, as stated in
condition (2) of scoped-GC in Sec. 4.

Let us illustrate this notion by means of this simple method
“void r() {A; p(); B; q(); C; }” whose memory consumption
is showed in Fig. 5. A, B and C are sequences of instructions that
do not contain any method invocation. We use the notation p̂ to
the note the peak consumption of executing the method p. We can
observe that the peak heap consumption r̂ is the maximal of three
possible scenarios: (1) In the leftmost column, we depict a scenario
where we allocate A and then execute p, thus we add the peak
heap consumption of p. (2) In the next alternative scenario, we
still have A and then return from p’s execution, thus we add the

��

�
�
�
�

�
�
�
�

��

�
�
�

�
�
�

��

�
�
�

�
�
�

A
B

C

p

q

p

q

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
�����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
�����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
�����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
��
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���

��
��
��
�����
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

��
��
��
�����
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

��
��
��
��

���
���
���

���
���
������
���
���
���

Live Heap Total Heap

Figure 5. Memory Consumption of simple program

memory escaped upon return from p (i.e., p̌) and we continue until
the execution of q. Hence we add B plus the peak of q. (3) In the
next column, we have A, plus the memory escaped from p, plus
B, plus the memory escaped from q, plus C. Observe that any of
these scenarios may correspond to the actual peak and we need
to infer upper bounds for all of them and then take the maximal.
The rightmost column indicates the upper bound for total allocation
which is clearly much less accurate.

��

�
�
�
�

�
�
�
�

�
�
�
�

h

g

h

g

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
��
��
���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
��
��
���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
��
��
���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
�����

�
�

�
�
�

�
�
�
�
��
��
��
��
�
�
�
�

�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

1 2 3

*
lo

g
(n

) 1 2 3

*
lo

g
(n

)
Loop1 Loop2

Figure 6. Memory Consumption of running example

In general the problem is more complicated, e.g., when method
invocations occur within loops. Fig. 6 depicts the actual memory
consumption of the execution of method f in our running example.
Column 1 captures the heap allocation of executing g at the first
iteration of the first loop (defined by procedure fc). Column 2
represents the escaped memory from g plus the next iteration of
the loop where g allocates again ĝ memory and so on. As the loop
in fc is executed log(n) times we have all such possible scenarios
over the tag Loop 1. Then, we start the execution of the second loop
with an initial heap usage of log(n) times the memory escaped
from g. Similarly, at each iteration of the second loop, method

h is invoked which allocates a maximal of memory ĥ and upon
return, we need to consider the escaped memory from h plus the
next execution. As the loop is executed log(n) times, we have all
possible scenarios to the right grouped over the tag Loop 2. The
peak heap allocation of executing f is the maximal of all such
scenarios, namely the maximal between the two scenarios marked
with ∗. The important point is that we need to infer upper bounds

for ĥ, ĝ, ȟ, ĝ and generate as peak heap consumption the expression

f̂ = max(ĝ + (log(n)− 1) ∗ ǧ, ĥ+ (log(n)− 1) ∗ ȟ+ log(n) ∗ ǧ).

Note that, in principle, it could happen that ĝ > (log(n)−1)∗ȟ+ĥ.

5.2 Peak Consumption Cost Relation

We now propose a novel approach for generating CR that, by rely-
ing on the escaped memory bounds, capture the peak heap con-
sumption by considering all possible states of a program’s exe-
cution. Our proposal is based on the following intuition: Let m1

and m2 be two methods, and let m̂1(x̄1) and m̂2(x̄2) be the peak
heap consumption of executing m1 and m2 respectively, then the
peak heap consumption of the two consecutive calls m1;m2 is
max(m̂1(x̄1), m̌1(x̄1) + m̂2(x̄2)). The following definition gen-
eralizes this idea for an arbitrary sequence of statements.

DEFINITION 5.1 (peak consumption CR). Consider a rule r ≡
p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn and its corresponding size relations
ϕr . Then, its peak consumption equation is p̂(x̄) = T (b1, . . . , bn), ϕr

where T is defined as follows:

T (b1, . . . , bn)::=
8

<

:

0 if n = 0
max(q̂(x̄1), q̌(x̄1) + T (b2, . . . , bn)) if b1= q(〈x̄1〉, 〈ȳ1)〉 is a call

Mt(b1) + T (b2, . . . , bn) if b1 is an instruction

Given a program P , we denote by ŜP the peak consumption cost
relation generated for each rule in P . �

In the above definition, it can be observed that, in the second
case, we generate two possible scenarios not only for methods,
but also for intermediate procedures. These scenarios correspond
to either the peak of the first procedure call or to the escaped
memory from the first procedure call plus the peak of the rest
of the instructions sequence. Considering the two scenarios at the
level of procedures (no only of methods) allows us to gain further
accuracy in situations, like in the method f , in which intermediate
procedures correspond to loops which contain method invocations.
The next example illustrates this point.

EXAMPLE 5.2. The peak consumption CR ŜP of the rule-based
program is different from the one in Fig. 4 in equations (1), (3), (4)
and (6) which are now as follows:

(1) m̂(n) =size(Tree1)+max(m̂(s1), m̌(s1)+max(m̂(s2),

m̌(s2)+max(f̂(n), f̌(n)+ ˆinit(s0, s1, s2, s3))))

(3) f̂(n) =max(f̂c(n, a), f̌c(n, a)+f̂d(i, a′))

(4) f̂c(n, a) =max(ĝ(n), ǧ(n)+f̂c(n′, a′))

(6) f̂d(i, a) =max(ĥ(i), ȟ(i)+f̂d(i′, a′))

with the same constraints as those of Fig. 4. We can now replace the

escaped memory upper bounds ǧ, ȟ, m̌ and f̌ by the ones in Ex. 4.4.
As an optimization, we do not apply the transformation to the last
call in the rules, for instance, to the call to init in equation (1),

since trivially ˆinit ≥ ˇinit. Observe that in equation (3) we have
applied also two possible scenarios to the intermediate procedure
fc which does not correspond to a method by introducing the max
operator. This is essential to keep the two possible peaks (marked
with “*” in the figure) separate instead of accumulating both of
them, which would lead to a larger, less accurate upper bound.
Besides, it is sound w.r.t. scoped-GC because the corresponding

escaped memory bounds for f̌c and f̌d are obtained by considering
that GC takes place upon method’s return only.

The most important point is that equation (4) accurately cap-
tures the memory consumption of all scenarios in Loop 1 of Fig. 6
and equation (6) captures those in Loop 2 to the right of the figure,
as it will become clear after solving the equations in Ex. 5.3. �

An important feature of our CR ŜP is that they can still be solved
by relying on a standard upper bound solver for CR produced
by cost analysis like the one in [3]. The only adjustment is that
our CR use the max operator which is frequently not supported.
This is handled by a further preprocessing which transforms one
equation that uses max into an equivalent set of equations that

do not use max by creating nondeterministic equations whenever
we have max. In particular, an equation of the form p(x̄) =
A + max(B, C), ϕ is translated into the two equations p(x̄) =
A + B, ϕ and p(x̄) = A + C, ϕ. Since an upper bound solver
looks for an upper bound for all possible paths, it is guaranteed
that this transformation simulates the effect of the max operator.
Nested max are translated iteratively. For instance, the translation
of equation (1) in Ex. 5.2, results in the following equations:

m̂(n) = size(Tree1)+m̂(s1), ϕ1

m̂(n) = size(Tree1)+m̌(s1)+m̂(s2), ϕ1

m̂(n) = size(Tree1)+m̌(s1)+m̌(s2)+f̂(n), ϕ1

m̂(n) = size(Tree1)+m̌(s1)+m̌(s2)+f̌(n)+ ˆinit(s0, s1, s2, s3), ϕ1

EXAMPLE 5.3. Solving the transformed equations results in the
following closed-form upper bounds:

m̂(n) = 2nat(n)∗size(Tree1) + f̂(n)

f̂(n) = max(f̂c(n, a), f̌c(n, a) + f̂d(n, a′))

f̂c(n, a)= (log(nat(n−1)+1) + 1) ∗ size(Integer3) + size(Integer2)

f̂d(i, a) = (log(nat(i−1)+1) + 1) ∗ size(Long4)
ĝ(n) = size(Integer2) + size(Integer3)

ĥ(n) = size(Long4)

We can observe that the peak bound for f accurately captures the

maximal of the two scenarios in the figure: (1) f̂c(n, a) corre-

sponds to the leftmost column of Fig. 6 (since ǧ is size(Integer3)
which is accumulated log(n)−1 times and ĝ(n) is size(Integer2)+

size(Integer3) and (2) f̌c(n, a) + f̂d(n, a′) corresponds to the
rightmost column where, as expected, we accumulate log(n) − 1
times the escaped size(Long4) object plus an additional one which
is the peak consumption of h (and nothing escapes from fc).

It is fundamental to observe the difference between the above
live heap space bound for m and the total allocation computed
in Ex. 3.5. In our live bound, since the allocation required by f
can be entirely garbage collected upon exit from f , the required
heap is not proportional to the number of times that f is invoked
(i.e., exponential on n) but rather the memory required for a single
execution of f . �

The following theorem states that the upper bounds computed by
our analysis are sound, i.e., for any input values, they evaluate to a
larger value than the actual peak consumption.

THEOREM 5.4 (soundness). Given a procedure p, and a trace
t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 �

∗

gc 〈q, bc, tvn〉·A; hn then
p̂(v̄) ≥ peak(t) where v̄ = α(x̄, tv1, h1). �

6. Approximating the Ideal Garbage Collector

In this section, we show how the analysis of Sec. 5 can be refined
to consider other GC schemes and, in particular, to get closer to
the ideal GC manager where objects are collected as soon as they
become unreachable. For instance, the peak consumption upper
bound inferred in Ex. 5.3 for f is accurate when using a scope-
GC scheme, since all objects created inside the loops are collected
only upon exit from f . However, it is clearly inaccurate for an ideal
GC scheme, since the lifetime of each object created in f is limited
to one iteration of the corresponding loop, and therefore f can be
executed in constant heap space.

Luckily, we can take advantage of scopes in the rule-based rep-
resentation in order to infer accurate upper bounds for such GC
schemes without modifying our analysis. In Def. 4.1 the effect of
GC is considered only on exit from procedures that correspond to
methods, this is essential in order to obtain safe upper bounds for
scoped-GC, since in the original language GC is assumed to be ap-
plied upon exit from method scopes. However, the rule-based lan-
guage distinguishes scopes that correspond to code fragments (in

the original program) smaller than methods, e.g., fc and fd respec-
tively correspond to the first and second loop of f . Considering the
effect of GC on exit from these (non-method) smaller scopes cor-
responds to applying more often GC than in the original language,
and therefore getting closer to the ideal GC. In order to support this,
we need to compute the set of collectable objects for blocks exactly
as we do for methods in Def. 4.1. Let us see an example.

EXAMPLE 6.1. If we apply GC upon exit from fc, then the col-

lectable objects are collectable(fc) = {Integer2, Integer3}, and

hence f̌c(n, a) = 0. Observe that in Ex. 4.2 collectable(fc) con-

tains only Integer3. This in turn improves the peak consumption

for f to f̂(n) = max(f̂c(n, a), f̂d(n, a′)), which is clearly more
precise than the one in Ex. 5.3. �

Interestingly, the above upper-bound can be even further im-
proved in order to obtain one which is as close as possible to the
ideal behavior. Consider Rule (6) in Fig. 2 which corresponds to
the second loop in f . The object created in h, and escaped to the
calling context, becomes unreachable immediately after executing
intValue2. Thus, if we separate the loop’s body into a separate pro-
cedure f ′d, we make this behavior observable to our analysis. This
can be done by transforming the rules associated to the loops as
follows:

(4) fc(〈n, a〉, 〈n, a〉)::=
f′c(〈n, a〉, 〈n, a〉).
fc(〈n, a〉, 〈n, a〉).

f′c(〈n, a〉, 〈n, a〉)::=
n > 1,
g(〈n〉, 〈s0〉),
intValue1(〈s0〉, 〈s0〉)
a := a + s0,
n := n/2.

(6) fd(〈i, a〉, 〈i, a〉)::=
f′d(〈i, a〉, 〈i, a〉).
fd(〈i, a〉, 〈i, a〉).

f′d(〈i, a〉, 〈i, a〉)::=
i > 1,
h(〈i〉, 〈s0〉),
intValue2(〈s0〉, 〈s0〉)
a := a ∗ s0,
i := i/2.

Now the peak consumption equations for fc and fd are:

f̂c(n, a) = max(f̂ ′

c(n, a), f̌ ′

c(n, a) + f̂c(n
′, a′)) {n>1, n′=n/2}

f̂c(n, a) = 0 {n≤1}

f̂d(i, a) = max(f̂ ′

d(i, a), f̌ ′

d(i, a) + f̂d(i′, a′)) {i>1, i′=i/2}

f̂d(i, a) = 0 {i≤1}

f̂ ′

c(n, a) = size(Integer2) + size(Integer3)

f̂ ′

d(i, a) = size(Long4)

and, since f̌ ′

c(n, a)=f̌ ′

d(i, a)=0, solving them results in

f̂c(n, a)=size(Integer2)+size(Integer3)

f̂d(i, a)=size(Long4)

which in turn improves the upper bound of f to

f̂(n) = max(size(Integer2) + size(Integer3), size(Long4))

which is indeed the minimal amount of memory required in order
to execute f in the presence of an ideal GC.

In order to support such transformations, one should guide the
transformation from the bytecode to the rule-based program by the
information previously computed on the lifetime of the different
objects. Such analysis should give us indications about when it is
profitable to make smaller scopes. Currently, we do this transfor-
mation only for scopes that correspond to loops. Also, it should be
noted that there is an efficiency versus accuracy trade-off here, as
we generate more equations in this case which thus will be more ex-
pensive to solve. Note that the same ideas are useful for supporting
region-based memory management. The idea is to infer regions and
use this information to separate the scopes, such that the exit from
scopes coincides with the removal of the corresponding region.

7. Experiments

In this section, we assess the practicality of our proposal on real-
istic programs, the standardized set of benchmarks in the JOlden
suite [12]. This benchmark suite was first used by [7] in the context
of memory usage verification for a different purpose, namely for
checking memory adequacy w.r.t. given specifications, but there
is no inference of upper bounds as our analysis does. It has been
also used by [5] for our same purpose, i.e., the inference of peak
consumption. However, since [5] does not deal with memory-
consuming recursive methods, the process is not fully automatic
in their case and they have to provide manual annotations. Also,
they require invariants which sometimes have to be manually pro-
vided. In contrast, our tool is able to infer accurate live heap upper
bounds in a fully automatic way, including logarithmic and expo-
nential complexities.

The first column of Table 1 contains the name of the benchmark.
For most examples, we analyze the method main which transitively
requires the analysis of the majority of the methods in the package.
Only in those benchmarks whose name appears in two different
rows, we do not analyze the main but rather all those methods
invoked within the main that we succeed to analyze. In partic-
ular, benchmarks Health(cV), Health(gR), Bh(cTD), Bh(eB),
Voronoi(cP), and Voronoi(b) correspond, respectively, to methods
createVertex, getResults, createTreeData, expandBox,
createPoints, and buildDelaunayTriangulation in the cor-
responding packages. In benchmark Bh, we cannot obtain an up-
per bound for the method stepSystem which is invoked within
main. The reason is that this method contains a loop whose termi-
nation condition does not depend on the size of the data struc-
ture, but rather on the particular value stored at certain loca-
tions within the data structure. In general, it is complicated to
bound the number of iterations of this kind of loops. Basically,
the same situation happens in the method simulate of bench-
mark Health. In Voronoi, we are able to analyze all methods when
they are not connected together. Unfortunately, we cannot ana-
lyze the main which, first invokes the method createPoints

which returns an object point and then invokes the method
point.buildDelaunayTriangulation on such object. The
problem is that the upper bound of buildDelaunayTriangu-

lation depends on the size of the object point returned by
createPoints and the size analysis is not able to propagate such
relation. It should be noted that, in these three cases, the limita-
tions are not related to our proposal in this paper but to external
components which can be independently improved.

The second and third columns in the table show, respectively,
the upper bounds for total allocation and for live heap space usage.
Note that the cost model we use for the experiments substitutes the
symbolic expressions size(Obj) by their corresponding numeri-
cal values, so that the system can perform mathematical simplifica-
tions. In particular, the size of primitive types is 1, 2, 4, etc. bytes
respectively for byte, char, int, etc.; the size of a reference is set
to 4 bytes; and the size of an object is the sum of the sizes of all its
fields (including those inherited).1

Let us first explain the examples Tsp, Bisort, Health, TreeAdd,
Perimeter and Voronoi which follow a similar pattern. Basically,
they contain methods (in rule-based form) which have this shape
p(X) ::= alloc(k), p(Y1), . . . , p(Yn), i.e., a certain allocation k is
accumulated by several recursive calls to the method. The size of
the arguments in the recursive calls decrease by half in examples
Tsp, Bisort and Voronoi and there are two recursive calls. Thus,
their resulting upper bounds are linear. In benchmarks Health,
Perimeter and TreeAdd, the size of the argument decreases by a
constant; the first two examples contain 4 recursive calls and the

1 This is just an estimation. The sizes depend on the particular JVM

Bench Total Allocation Upper Bounds Live Heap Space Upper Bounds

Mst
nat(A+1)*nat(A

4
) +

33*nat(A+1) + 8

nat(A+1) + 8 + max(nat(A+1)2 + 18*nat(A+1) + nat(A

4
) + 72,

nat(A+1)*nat(A

4
) + 25*nat(A+1) + 2*nat(A

4
) + 48)

Em3d
2*nat(D-1)*(32+nat(B)) + 2*nat(B)

+ 16*nat(C) + 2*nat(D) + 89

max(4*nat(B) + nat(C) + 2*nat(D) + 2*nat(D-1) + 153,

4*nat(B) + max(16,nat(C)) + 2*nat(D) + 2*nat(D-1) + 153),

(34 + nat(B))*nat(D-1) + 6*nat(B) + 3*nat(D) + 313)

Bisort 4*nat(A) + 12*nat(B-1) + 52 max(4*nat(A),12*nat(B-1) + 36)

Tsp 46*nat(2*B-1) + 138 28*nat(2*B-1) + 84

Power 258544 5992

Health(cV) 104*4nat(A) + 416 104*4nat(A) + 416

Health(gR) 28*4nat(A−1) + 36 28*4nat(A−1) + 36

TreeAdd 40*2nat(B−1) + 4*nat(A) + 76 24*2nat(B−1) + 60

Bh(cTD) 96*nat(B) + 128 92*nat(B) + nat(B-1) + 308

Bh(eB) 96 92

Perimeter 56*4nat(B) + 4*nat(A) + 128 56*4nat(B) + 112

Voronoi(cP) 20*nat(2*A-1) + 60 20*nat(2*A-1) + 60

Voronoi(b) 88*2nat(A−1) + 8 88*2nat(A−1) + 8

Table 1. Upper bounds for Total Allocation and Live Heap Usage

latter one 2 recursive calls. Thus, their resulting upper bounds are
exponential. The upper bounds for live heap and total heap for
the methods in Health and Voronoi are the same. This happens
because the analyzed methods are encharged of creating the data
structures and there is no memory that can be garbage collected. In
the remaining examples, the method main first calls the method
parseCmdLine which creates a (linear) number of objects that
do not escape to the main and, then, calls other methods that
construct (and modify) a data structure which escapes to the main.
The fact that some memory can be garbage collected explains that
the live heap bounds are smaller than the total allocation. Tsp
is interesting because some auxiliary Double objects are created
during the execution of the methods uniform and median which
do not escape from such methods and hence the difference between
the live bound and the total allocation is bigger.

Benchmark Power has a constant memory consumption. Its live
bound is much smaller than the total allocation because many ob-
jects are created by the constructor of Lateral which become un-
reachable and hence can be garbage collected. In the examples Mst
and Em3d, most of the memory is allocated during the construc-
tion of a graph and all such memory cannot be garbage collected.
As before, the live bound is slightly smaller because of the memory
created by parseCmdLine which can be entirely garbage collected.
Finally, the methods analysed for the benchmark Bh also create a
number of auxiliary objects that can be garbage collected and the
live heap bounds become tighter than the total allocation.

It is not easy to compare our upper bounds with those obtained
by [5] since the cost models are different (we count sizes of ob-
jects as explained above while they count number of objects), they
consider a region-based memory model while our analysis is devel-
oped for a scope-based model and, besides, for recursive methods
(which occur in most benchmarks) [5] requires manual annotations
that are not shown in their paper. In spite of these differences, as ex-
pected, our upper bounds coincide with those of [5] asymptotically
(i.e., by ignoring the coefficients and constants).

An interesting experimentation that we plan to do for future
work is to compare our upper bounds with actual observed values.
This is however a rather complicated task. Note that it would
require choosing particular inputs, and the memory consumption
of the program could highly vary depending on such choice. We
are confident about the positive results since, as we saw above, our
UBs are coherent with those in [5], which in turn have already been
compared to actual observed values.

8. Related Work

There has been much work on analyzing program cost or resource
complexities, but the majority of it is on time analysis (see, e.g.,
[22]). Analysis of live heap space is different because it involves
explicit analysis of all program states. Most of the work of memory
estimation has been studied for functional languages. The work in
[11] statically infers, by typing derivations and linear program-
ming, linear expressions that depend on functional parameters
while we are able to compute non-linear bounds (exponential, log-
arithmic, polynomial). The technique is developed for functional
programs with an explicit deallocation mechanism while our tech-
nique is meant for imperative bytecode programs which are better
suited for an automatic memory manager. The techniques proposed
in [18, 17] consist in, given a function, constructing a new function
that symbolically mimics the memory consumption of the former.
Although these functions resemble our cost equations, their com-
puted function has to be executed over a concrete valuation of pa-
rameters to obtain a memory bound for that assignment. Unlike our
closed-form upper bounds, the evaluation of that function might
not terminate, even if the original program does. Other differences
with the work by Unnikrishnan et al. are that their analysis is de-
veloped for a functional language by relying on reference counts
for the functional data constructed, which basically count the num-
ber of pointers to data and that they focus on particular aspects of
functional languages such as tail call optimizations.

For imperative object-oriented languages, related techniques
have been recently proposed. Previous work on heap space anal-
ysis [3] cannot be used to infer upper bounds on the maximum live
memory as their cost relation systems are generated to accumulate
cost, as explained in Sec. 3. Their refinement to infer escaped mem-
ory bounds is strictly less precise than ours as explained in Sec. 4,
besides, there is no solution there to infer peak consumption. Later
work improves [3] by taking garbage collection into account. In
particular, for an assembly language, [8] infers memory resource
bounds (both stack usage and heap usage) for low-level programs
(assembly). The approach is limited to linear bounds, they rely on
explicit disposal commands rather than on automatic memory man-
agement. In their system, dispose commands can be automatically
generated only if alias annotations are provided. For a Java-like
language, the approach of [5] infers upper bounds of the peak con-
sumption by relying on an automatic memory manager as we do.
They do not deal with recursive methods and are restricted to poly-
nomial bounds. Besides, our approach is more flexible as regards
its adaptation to other GC schemes (see Sec. 6). We believe that

our system is the first one to infer upper bounds on the live heap
consumption which are not restricted to simple complexity classes.

9. Conclusions and Future Work

We have presented a general approach to automatic and accurate
live heap space analysis for garbage-collected languages. As a first
contribution, we propose how to obtain accurate bounds on the
memory escaped from a method’s execution by combining the
total allocation performed by the method together with informa-
tion obtained by means of escape analysis. Then, we introduce a
novel form of peak consumption cost relation which uses the com-
puted escaped memory bounds and precisely captures the actual
heap consumption of programs’ execution for garbage-collected
languages. Such cost relations can be converted into closed-form
upper bounds by relying on standard upper bound solvers. For the
sake of concreteness, our analysis has been developed for object-
oriented bytecode, though the same techniques can be applied to
other languages with garbage collection. We first develop our anal-
ysis under a scoped-memory management which reclaims mem-
ory on method’s return. The amount of memory required to run a
method under such model can be used as an over-approximation
of the amount required to run it in the context of an ideal garbage
collection which frees objects as soon as they become dead. We
also show how to approximate such ideal behavior with our anal-
ysis. For future work, we also plan to consider how to adapt our
techniques to region based memory management [16, 6].

Finally, the idea developed in Sec. 5 can be used to estimate
other (non accumulative) resources which require to consider the
maximal consumption of several execution paths. For example, it
can be used to estimate the maximal height of the frames stack
as follows. Given a rule r ≡ p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn, where
bi1 . . . bik

are the calls in r, with 1 ≤ i1 ≤ · · · ≤ ik ≤ n and
bij = qij(〈x̄ij〉, 〈ȳij〉), its corresponding equation would be

p(x̄) = max(1 + qi1(x̄ij
), . . . , 1 + qi1(x̄ik

)) ϕr

which takes the maximal height from all possible call chains. Each
“1” corresponds to a single frame created for the corresponding
call. Note that in this setting, tail call optimization can be also
supported, by using an analysis that detects calls in tail position,
and then replace their corresponding 1’s by 0’s. This is a subject
for future work.

Acknowledgments

This work was funded in part by the Information Society Technolo-
gies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS and IST-231620 HATS
projects, by the Spanish Ministry of Education (MEC) under the
TIN-2005-09207 MERIT ,TIN-2008-05624 DOVES and HI2008-
0153 (Acción Integrada) projects, and the Madrid Regional Gov-
ernment under the S-0505/TIC/0407 PROMESAS project.

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
Cost Analysis of Java Bytecode. In Rocco De Nicola, editor, 16th

European Symposium on Programming, ESOP’07, volume 4421 of
Lecture Notes in Computer Science, pages 157–172. Springer, March
2007.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
COSTA: Design and Implementation of a Cost and Termination
Analyzer for Java Bytecode. In Post-proceedings of Formal Methods

for Components and Objects (FMCO’07), number 5382 in LNCS,
pages 113–133. Springer-Verlag, October 2008.

[3] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Heap Space Analysis
for Java Bytecode. In ISMM ’07: Proceedings of the 6th international

symposium on Memory management, pages 105–116, New York, NY,
USA, October 2007. ACM Press.

[4] Bruno Blanchet. Escape Analysis for Object Oriented Languages.
Application to Java(TM). In Conference on Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA’99),
pages 20–34. ACM, November 1999.

[5] V. Braberman, F. Fernández, D. Garbervetsky, and S. Yovine. Para-
metric Prediction of Heap Memory Requirements. In Proceedings of

the International Symposium on Memory management (ISMM), New
York, NY, USA, 2008. ACM.

[6] Sigmund Cherem and Radu Rugina. Region analysis and transfor-
mation for java programs. In David F. Bacon and Amer Diwan,
editors, Proceedings of the 4th International Symposium on Memory

Management, ISMM 2004, Vancouver, BC, Canada, October 24-25,

2004, pages 85–96. ACM, 2004.

[7] W.-N. Chin, H. H. Nguyen, S. Qin, and M. C. Rinard. Memory Usage
Verification for OO Programs. In Proc. of SAS’05, volume 3672 of
LNCS, pages 70–86, 2005.

[8] W-N. Chin, H.H. Nguyen, C. Popeea, and S. Qin. Analysing Memory
Resource Bounds for Low-Level Programs. In Proceedings of the

International Symposium on Memory management (ISMM), New
York, NY, USA, 2008. ACM.

[9] P. Cousot and N. Halbwachs. Automatic Discovery of Linear
Restraints among Variables of a Program. In ACM Symposium on

Principles of Programming Languages (POPL), pages 84–97. ACM
Press, 1978.

[10] K. Crary and S. Weirich. Resource bound certification. In POPL’00.
ACM Press, 2000.

[11] M. Hofmann and S. Jost. Static prediction of heap space usage for
first-order functional programs. In ACM Symposium on Principles of

Programming Languages (POPL), 2003.

[12] JOlden Suite Collection.
http://www-ali.cs.umass.edu/DaCapo/benchmarks.html.

[13] H. Lehner and P. Müller. Formal translation of bytecode into
BoogiePL. In Bytecode’07, ENTCS, pages 35–50. Elsevier, 2007.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[15] Y. G. Park and B. Goldberg. Escape analysis on lists. In PLDI, pages
116–127, 1992.

[16] Mads Tofte and Jean-Pierre Talpin. Region-based memory manage-
ment. Inf. Comput., 132(2):109–176, 1997.

[17] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Automatic Accurate
Live Memory Analysis for Garbage-Collected Languages. In Proc.

of LCTES/OM, pages 102–111. ACM, 2001.

[18] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized Live Heap
Bound Analysis. In Proc. of VMCAI’03, volume 2575 of LNCS, pages
70–85, 2003.

[19] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and
P. Co. Soot - a Java optimization framework. In CASCON’99, pages
125–135, 1999.

[20] B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM,
18(9), 1975.

[21] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI, pages
131–144. ACM, 2004.

[22] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström. The worst-
case execution-time problem - overview of methods and survey of
tools. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

	Introduction
	The Class Reader (jvml to jvml_r in LP)
	Specification of the Dynamic Semantics
	Automatic Generation of Residual Programs
	Verification of Java Bytecode Using LP Analysis Tools
	Run-Time Error Freeness Analysis
	Cost Analysis and Termination

	Experiments and Discussion
	Introduction
	An Overview of the Decompilation Process
	The LP Representation of the Bytecode
	The JVML Interpreter

	Basics of Online Partial Evaluation of Logic Programs
	Challenges in Specialization of JVM Interpreter
	A Challenging Example
	Control Strategies based on Embedding

	Partial Evaluation Types for Decompilation
	Reducing Polyvariance in Global Control
	Experimental Results
	Conclusions
	Acknowledgement
	References
	Type-Based Homeomorphic Embedding and Its Applications to Online Partial Evaluation
	Introduction
	Basics on Embedding in Partial Evaluation
	Embedding with Infinite Signatures: Motivating Example
	Using the Original Homeomorphic Embedding
	Recovering Termination: Embedding with Number Filtering
	Increasing Accuracy: Static Symbols in the Program

	Type-Based Homeomorphic Embedding
	Types: Preliminaries and Notation
	Type-Based Homeomorphic Embedding

	Automatic Inference of Well-Typings
	Well-Typings for Working Example
	Experimental Results

	Type-Based Homeomorphic Embedding in Practice
	Automatic Inference of Finite Signature
	Experimental Results

	Discussion and Related Work

	Type-based homeomorphic embedding for online termination
	Introduction
	Preliminaries and notation
	Symbolic expressions
	Homeomorphic embedding
	Types

	Type-based homeomorphic embedding
	The type-based relation

	A case-study in online partial evaluation
	Instances of type-based embedding
	Embedding with number filtering
	Static vs. dynamic symbols

	Experimental evaluation
	Discussion
	Acknowledgements
	References

	Decompilation of Java bytecode to Prolog by partial evaluation
	Introduction
	Summary of contributions
	Outline of the article

	Background on partial evaluation of logic programs
	Logic programming
	Partial deduction
	Correctness of partial deduction
	Online vs. offline partial deduction

	The interpretive approach to compilation
	Non-modular interpretive decompilation
	The bytecode language
	Non-modular, online decompilation
	Limitations

	A modular decompilation scheme
	Big-step semantics interpreter to enable modularity
	Guiding online PE with annotations
	Modular decompilation

	An optimal decompilation scheme
	Decompiling object-oriented bytecode
	Handling the heap during decompilation
	Decompilation with classes
	Virtual invocations

	Experimental evaluation
	Assessing the scalability of decompilation
	Efficiency: comparing against other decompilers

	Related work
	Conclusions
	Acknowledgement
	References

	Test Data Generation of Bytecode by CLP Partial Evaluation
	Introduction
	Preliminaries and Notation in Constraint Logic Programs
	Decompilation of Bytecode to CLP
	Decompilation by PE and Block-Level Decompilation

	Test Data Generation Using CLP Decompiled Programs
	Symbolic Execution for Glass-Box Testing
	From Constraint Stores to Test Data

	An Evaluation Strategy for {\it Block-Count(k)} Coverage
	{\it Block-count(k)}: A Coverage Criteria for Bytecode
	An Intra-procedural Evaluation Strategy for Block-Count(k)
	An Inter-procedural Evaluation Strategy Based on Ancestors

	Test Data Generation by Partial Evaluation
	Using an Unfolding Rule for Implementing Block-Count(k)
	Generating Test Data Generators

	Conclusions and Related Work

	On the Generation of Test Data for Prolog by Partial Evaluation
	Miguel Gómez-Zamalloa, Elvira Albert, Germán Puebla

